中国水稻科学 ›› 2019, Vol. 33 ›› Issue (5): 391-400.DOI: 10.16819/j.1001-7216.2019.9029
胡娟1, 林晗1, 徐娜1, 焦然1, 戴志俊1, 鲁草林2, 饶玉春1,*(), 王跃星2,*()
收稿日期:
2019-03-18
修回日期:
2019-05-17
出版日期:
2019-09-10
发布日期:
2019-09-10
通讯作者:
饶玉春,王跃星
Juan HU1, Han LIN1, Na XU1, Ran JIAO1, Zhijun DAI1, Caolin LU2, Yuchun RAO1,*(), Yuexing WANG2,*()
Received:
2019-03-18
Revised:
2019-05-17
Online:
2019-09-10
Published:
2019-09-10
Contact:
Yuchun RAO, Yuexing WANG
摘要:
水稻叶倾角是指叶片与茎秆之间的夹角,叶倾角影响叶片光合作用速率,与株型和产量密切相关,如直立叶片就是水稻理想株型形态因素之一。叶倾角的大小受到多种植物激素的调控,是油菜素内酯、生长素、赤霉素、茉莉酸等多种激素相互作用的结果,另外,其他因素如根系分布、叶片大小、生长环境等也会对水稻叶倾角大小产生一定的影响。本文根据水稻叶倾角的研究进展,着重从叶枕的发育、激素水平及其他因素等方面,对水稻叶倾角的分子机制及其在育种中的应用进行阐述与总结,以期为水稻株型的分子设计育种提供参考,为进一步提高水稻的产量奠定理论基础。
中图分类号:
胡娟, 林晗, 徐娜, 焦然, 戴志俊, 鲁草林, 饶玉春, 王跃星. 水稻叶倾角分子机制及育种应用的研究进展[J]. 中国水稻科学, 2019, 33(5): 391-400.
Juan HU, Han LIN, Na XU, Ran JIAO, Zhijun DAI, Caolin LU, Yuchun RAO, Yuexing WANG. Advances in Molecular Mechanisms of Rice Leaf Inclination and Its Application in Breeding[J]. Chinese Journal OF Rice Science, 2019, 33(5): 391-400.
图1 水稻叶倾角调控途径及影响因素 A–油菜素内酯信号途径调控叶倾角;B–生长素信号途径调控叶倾角;C–赤霉素信号途径调控叶倾角;D–其他因素调控叶倾角。以垂直条结束的黑线表示抑制性蛋白质与蛋白质相互作用,箭头表示转录的正调控;相连的圆圈表示蛋白质之间直接互作;虚线表示尚未完全理解的相互作用或调节机制。
Fig. 1. Rice leaf inclination angle regulation pathway and its influencing factors. A, Brassinolide signaling pathway regulates rice leaf inclination; B, Auxin signaling pathway regulates rice leaf inclination; C, Gibberellin signaling pathway regulates rice leaf inclination; D, Other factors regulate rice leaf inclination. Black lines ending with vertical bars indicate that inhibitory proteins interact with proteins; Arrows indicate positive regulation of transcription, connected circles indicate direct interactions between proteins, and dashed lines indicate interaction or regulatory mechanisms that are not fully understood.
基因 Gene | 染色体 Chromosome | 编码产物 Coded product | 调控途径 Regulatory pathway | 调控影响 Regulatory influence | 文献 Literature |
---|---|---|---|---|---|
D2 | 1 | 细胞色素P450 CYP90D2 | BR合成 | 正调控 | [20] |
BRD2 | 10 | DIM/AWF1蛋白 | BR合成 | 正调控 | [21] |
D11 | 4 | 细胞色素P450 CYP724B1 | BR合成 | 正调控 | [22] |
OsDWARF4 | 3 | 细胞色素P450 CYP90B2 | BR合成 | 正调控 | [23] |
OsBRI1 | 1 | BR受体激酶BRI1 | BR信号 | 正调控 | [24] |
OsBAK1 | 8 | SERK家族类受体蛋白激酶 | BR信号 | 正调控 | [25] |
OsGSK1 | 1 | 糖原合成酶激酶( GSK3/SHAGGY-like kinase) | BR信号 | 负调控 | [26] |
OsGSK2 | 5 | 糖原合成酶激酶( GSK3/SHAGGY-like kinase) | BR信号 | 负调控 | [27] |
LIC1 | 6 | CCCH型锌指蛋白 | BR信号 | 负调控 | [28] |
RLA1/SMOS1 | 5 | ERF家族转录因子 | BR信号 | 正调控 | [29] |
OsPRA2 | 6 | 小GTP结合蛋白 | BR信号 | 负调控 | [30] |
OsRLCK176 | 5 | 类受体胞质激酶 | BR信号 | 负调控 | [31] |
OsBZR1 | 7 | 拟南芥BZR1同源蛋白 | BR信号 | 正调控 | [32] |
ILI1 | 4 | HLH转录因子 | BR信号 | 负调控 | [33] |
IBH1 | 4 | IBH1转录因子 | BR信号 | 负调控 | [33] |
OsBUL1 | 2 | 非典型HLH蛋白 | BR信号 | 正调控 | [34] |
BU1 | 6 | 螺旋-环-螺旋(HLH)结构域的蛋白 | BR信号 | 正调控 | [11] |
TUD1 | 3 | U-box家族的E3泛素连接酶 | BR信号 | 正调控 | [36] |
SLG | 8 | BAHD酰基转移酶的蛋白 | BR稳态 | 正调控 | [37] |
RAV6 | 2 | B3 DNA结合结构域蛋白 | BR稳态 | 正调控 | [38] |
OsWRKY53 | 5 | WRKY转录因子 | BR信号 | 正调控 | [39] |
RLI1 | 4 | HTH-MYB类转录因子 | BR信号 | 正调控 | [79] |
表1 油菜素内酯相关基因调控水稻叶倾角
Table 1 Brassinolide-related genes regulate rice leaf inclination.
基因 Gene | 染色体 Chromosome | 编码产物 Coded product | 调控途径 Regulatory pathway | 调控影响 Regulatory influence | 文献 Literature |
---|---|---|---|---|---|
D2 | 1 | 细胞色素P450 CYP90D2 | BR合成 | 正调控 | [20] |
BRD2 | 10 | DIM/AWF1蛋白 | BR合成 | 正调控 | [21] |
D11 | 4 | 细胞色素P450 CYP724B1 | BR合成 | 正调控 | [22] |
OsDWARF4 | 3 | 细胞色素P450 CYP90B2 | BR合成 | 正调控 | [23] |
OsBRI1 | 1 | BR受体激酶BRI1 | BR信号 | 正调控 | [24] |
OsBAK1 | 8 | SERK家族类受体蛋白激酶 | BR信号 | 正调控 | [25] |
OsGSK1 | 1 | 糖原合成酶激酶( GSK3/SHAGGY-like kinase) | BR信号 | 负调控 | [26] |
OsGSK2 | 5 | 糖原合成酶激酶( GSK3/SHAGGY-like kinase) | BR信号 | 负调控 | [27] |
LIC1 | 6 | CCCH型锌指蛋白 | BR信号 | 负调控 | [28] |
RLA1/SMOS1 | 5 | ERF家族转录因子 | BR信号 | 正调控 | [29] |
OsPRA2 | 6 | 小GTP结合蛋白 | BR信号 | 负调控 | [30] |
OsRLCK176 | 5 | 类受体胞质激酶 | BR信号 | 负调控 | [31] |
OsBZR1 | 7 | 拟南芥BZR1同源蛋白 | BR信号 | 正调控 | [32] |
ILI1 | 4 | HLH转录因子 | BR信号 | 负调控 | [33] |
IBH1 | 4 | IBH1转录因子 | BR信号 | 负调控 | [33] |
OsBUL1 | 2 | 非典型HLH蛋白 | BR信号 | 正调控 | [34] |
BU1 | 6 | 螺旋-环-螺旋(HLH)结构域的蛋白 | BR信号 | 正调控 | [11] |
TUD1 | 3 | U-box家族的E3泛素连接酶 | BR信号 | 正调控 | [36] |
SLG | 8 | BAHD酰基转移酶的蛋白 | BR稳态 | 正调控 | [37] |
RAV6 | 2 | B3 DNA结合结构域蛋白 | BR稳态 | 正调控 | [38] |
OsWRKY53 | 5 | WRKY转录因子 | BR信号 | 正调控 | [39] |
RLI1 | 4 | HTH-MYB类转录因子 | BR信号 | 正调控 | [79] |
基因 Gene | 染色体 Chromosome | 编码产物 Coded product | 调控途径 Regulatory pathway | 调控影响 Regulatory influence | 文献 Literature |
---|---|---|---|---|---|
OsGH3.13/TLD1 | 11 | 吲哚乙酸氨基化合成酶基因 | IAA合成 | 正调控 | [45] |
OsGH3-1/LC1 | 1 | 吲哚乙酸氨基化合成酶基因 | IAA合成 | 正调控 | [46] |
OsTIR1 | 5 | 生长素受体 | IAA信号 | 负调控 | [48] |
OsAFB2 | 4 | 生长素受体 | IAA信号 | 负调控 | [48] |
LC3 | 3 | 含SPOC结构域的蛋白质 | IAA信号 | 负调控 | [50] |
OsARF11 | 4 | 生长素应答因子 | IAA信号 | 正调控 | [51] |
DS1/EMF1 | 1 | EMF1样蛋白 | IAA-BR互作 | 正调控 | [53] |
LPA1 | 3 | ID转录抑制因子 | IAA-BR互作 | 负调控 | [54] |
表2 生长素调控水稻叶倾角相关基因
Table 2 Auxin-related genes regulate rice leaf inclination.
基因 Gene | 染色体 Chromosome | 编码产物 Coded product | 调控途径 Regulatory pathway | 调控影响 Regulatory influence | 文献 Literature |
---|---|---|---|---|---|
OsGH3.13/TLD1 | 11 | 吲哚乙酸氨基化合成酶基因 | IAA合成 | 正调控 | [45] |
OsGH3-1/LC1 | 1 | 吲哚乙酸氨基化合成酶基因 | IAA合成 | 正调控 | [46] |
OsTIR1 | 5 | 生长素受体 | IAA信号 | 负调控 | [48] |
OsAFB2 | 4 | 生长素受体 | IAA信号 | 负调控 | [48] |
LC3 | 3 | 含SPOC结构域的蛋白质 | IAA信号 | 负调控 | [50] |
OsARF11 | 4 | 生长素应答因子 | IAA信号 | 正调控 | [51] |
DS1/EMF1 | 1 | EMF1样蛋白 | IAA-BR互作 | 正调控 | [53] |
LPA1 | 3 | ID转录抑制因子 | IAA-BR互作 | 负调控 | [54] |
基因 Gene | 染色体 Chromosome | 编码产物 Coded product | 调控途径 Regulatory pathway | 调控影响 Regulatory influence | 文献 Literature |
---|---|---|---|---|---|
D1/RGA1 | 5 | 异三聚体G蛋白α亚基 | BR-GA互作 | 正调控 | [57] |
SPY | 8 | O-连接的N-乙酰葡糖胺转移酶 | GA信号 | 负调控 | [59] |
GSR1 | 6 | 编码赤霉素刺激转录基因 | BR-GA互作 | 负调控 | [60] |
D18/GA3ox-2 | 1 | 赤霉素3β羟化酶 | BR-GA互作 | 负调控 | [62] |
表3 赤霉素相关基因调控水稻叶倾角
Table 3 Gibberellin-related genes regulate rice leaf inclination.
基因 Gene | 染色体 Chromosome | 编码产物 Coded product | 调控途径 Regulatory pathway | 调控影响 Regulatory influence | 文献 Literature |
---|---|---|---|---|---|
D1/RGA1 | 5 | 异三聚体G蛋白α亚基 | BR-GA互作 | 正调控 | [57] |
SPY | 8 | O-连接的N-乙酰葡糖胺转移酶 | GA信号 | 负调控 | [59] |
GSR1 | 6 | 编码赤霉素刺激转录基因 | BR-GA互作 | 负调控 | [60] |
D18/GA3ox-2 | 1 | 赤霉素3β羟化酶 | BR-GA互作 | 负调控 | [62] |
基因 Gene | 染色体 Chromosome | 编码产物 Coded product | 调控影响 Regulatory influence | 文献 Literature |
---|---|---|---|---|
ILA1 | 6 | 丝裂原活化蛋白激酶激酶激酶 | 负调控 | [66] |
CesA7 | 10 | 纤维素合酶催化亚基 | 负调控 | [67] |
CD1 | 12 | 类纤维素合酶OsCSLD4 | 负调控 | [68] |
DL | 3 | YABBY基因家族成员 | 负调控 | [69] |
IG1 | 1 | 转录因子 | 负调控 | [70] |
表4 其他因素调控水稻叶倾角相关基因
Table 4 Other factors regulate rice leaf inclination.
基因 Gene | 染色体 Chromosome | 编码产物 Coded product | 调控影响 Regulatory influence | 文献 Literature |
---|---|---|---|---|
ILA1 | 6 | 丝裂原活化蛋白激酶激酶激酶 | 负调控 | [66] |
CesA7 | 10 | 纤维素合酶催化亚基 | 负调控 | [67] |
CD1 | 12 | 类纤维素合酶OsCSLD4 | 负调控 | [68] |
DL | 3 | YABBY基因家族成员 | 负调控 | [69] |
IG1 | 1 | 转录因子 | 负调控 | [70] |
[1] | 程式华, 陈温福, 谢华安, 武小金. 中国超级稻育种. 北京:科学出版社, 2010. |
Chen S H, Chen W F, Xie H A, Wu X J.Chinese Super Rice Breeding. Beijing:Science Press, 2010. (in Chinese) | |
[2] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望. 遗传, 2018, 40(10): 841-857. |
Wu B, Hu W, Xing Y Z.History and prospect of rice genetics and breeding in China.Genetics, 2018, 40(10): 841-857. (in Chinese with English abstract) | |
[3] | Khush G S.What it will take to feed 5.0 billion rice consumers in 2030.Plant Mol Biol, 2005, 59(1): 1-6. |
[4] | Yang S R, Chen W F, Zhang L B.Trends in breeding rice forideotype.Chin J Rice Sci, 1988. |
[5] | 袁隆平. 杂交水稻超高产育种. 杂交水稻, 1997(6): 1-6. |
Yuan L P.Super high yield breeding of hybrid rice.Hybrid Rice, 1997(6): 1-6. (in Chinese with English abstract) | |
[6] | 徐静, 王莉, 钱前, 张光恒. 水稻叶片形态建成分子调控机制研究进展. 作物学报, 2013, 39(5): 767-774. |
Xu J, Wang L, Qian Q, Zhang G H.Research advance in molecule regulation mechanism of leaf morphogenesis in rice (Oryza sativa L.). Acta Agron Sin, 2013, 39(5): 767-774. (in Chinese with English abstract) | |
[7] | Mantilla-Perez M B, Salas Fernandez M G. Differential manipulation of leaf angle throughout the canopy: Current status and prospects.J Exp Bot, 2017, 68(21-22): 5699-5717. |
[8] | 朱长丰, 梁利君, 曾思远, 李天伟, 董冠杉, 洪德林. 水稻剑叶角度qFla-8-2位点的精细定位. 中国水稻科学, 2016, 30(1): 27-34. |
Zhu C F, Liang L J, Zeng S Y, Li T W, Dong G S, Hong D L.Fine mapping ofqFla-8-2 for flag leaf angle in rice. Chin J Rice Sci, 2016, 30(1): 27-34. (in Chinese with English abstract) | |
[9] | 周行岳, 吴向东, 王奉斌, 王容. 高产水稻品种株型模式探讨. 新疆农垦科技, 1999(4): 30-31. |
Zhou X Y, Wu X D, Wang F B, Wang R.Discussion on plant type pattern of high yield rice varieties.Xinjiang Agric Reclam Sci Technol, 1999(4): 30-31. (in Chinese with English abstract) | |
[10] | Duan K, Li L, Hu P, Xu S P, Xu Z H, Xue H W.A brassinolide-suppressed rice MADS-box transcription factor,OsMDP1, has a negative regulatory role in BR signaling. Plant J, 2010, 47(4): 519-531. |
[11] | Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C J, Dubouzet J G, Kikuchi S, Sekimoto H, Kamakura T, Mori M.BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol, 2009, 151(2): 669-680. |
[12] | Sun S Y, Chen D H, Li X M, Qiao S A, Li C X, Shen H Y, Wang X E.Brassinosteroid signaling regulates leaf erectness inOryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev Cell, 2015, 34(2): 220-228. |
[13] | Zhao S Q, Hu J, Guo L B, Qian Q, Xue H W.Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar.Cell Res, 2010, 20(8): 935-947. |
[14] | Luo X Y, Zheng J S, Huang Y M, Huang H C, Wang L G, Fang X J.Phytohormones signaling and crosstalk regulating leaf angle in rice.Plant Cell Rep, 2016, 35(12): 2423-2433. |
[15] | Clouse S D, Sasse J M.BRASSINOSTEROIDS: Essential regulators of plant growth and development.Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 427-451. |
[16] | Fabregas N, Cano-delgado A I. Turning on the microscope turret: A new view for the study of brassinosteroid signaling in plant development.Physiol Plant, 2014, 151(2): 172-183. |
[17] | Fujioka S, Yokota T.Biosynthesis and metabolism of brassinosteroids.Annu Rev Plant Biol, 2003, 54: 137-64. |
[18] | Wada K, Marumo S, Abe H, Morishita T, Nakamura K, Uchiyama M, Mori M.A rice lamina inclination test: A micro-quantitative bioassay for brassinosteroids.J Agric Chem Soc, 1984, 48(3): 719-726. |
[19] | Choe S.Brassinosteroid biosynthesis and inactivation.Physiol Plant, 2010, 126(4): 539-548. |
[20] | Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Ashikari M, Kitano H, Matsuoka M.A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2004, 15(12): 2900-2910. |
[21] | Zhi H, Miyako U T, Shozo F, Suguru T, Shigeo Y, Yasuko H, Motoyuki A, Hidemi K, Makoto M.The Rice brassinosteroid-deficientdwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell, 2005, 17(8): 2243-2254. |
[22] | Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y.A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant,dwarf11, with reduced seed length. Plant Cell, 2005, 17(3): 776-790. |
[23] | Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M.Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice.Nat Biotechnol, 2006, 24(1): 105-109. |
[24] | Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M.Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint.Plant Cell, 2000, 12(9): 1591-1606. |
[25] | Li D, Wang L, Wang M, Xu Y Y, Luo W, Liu Y J, Xu Z H, Li J, Chong K.EngineeringOsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol J, 2009, 7(8): 791-806. |
[26] | Zhang C, Xu Y, Guo S, Zhu J, Huan Q, Liu H, Wang L, Luo G, Wang X, Chong K.Dynamics of brassinosteroid response modulated by negative regulatorLIC in rice. PLoS Genet, 2012, 8(4): e1002686. |
[27] | Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C.DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinaseto mediate brassinosteroid responses in rice. Plant Cell, 2012, 24(6): 2562-2577. |
[28] | Wang L, Xu Y, Zhang C, Ma Q, Joo S H, Kim S K, Xu Z, Chong K.OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS ONE, 2008, 3(10): e3521. |
[29] | Qiao S L, Sun S Y, Wang L L, Wu Z H, Li C X, Li X M, Wang T, Leng L N, Tian W S, Lu T G, Wang X E.The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture, Plant Cell, 2017, 29(2): 292-309. |
[30] | Zhang G, Song X, Guo H, Wu Y, Chen X, Fang R.A small G protein as a novel component of the rice brassinosteroid signal transduction.Mol Plant, 2016, 9(9): 1260-1271. |
[31] | Zhou X, Wang J, Peng C, Zhu X, Yin J, Li W, He M, Wang J, Chern M, Ronald P, Chen X.Four receptor-like cytoplasmic kinases regulate development and immunity in rice.Plant Cell Environ, 2016, 39(6): 1381-1392. |
[32] | Bai M Y, Zhang L Y, Gampala S S, Zhu S W, Song W Y, Chong K, Wang Z Y.Functions ofOsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA, 2007, 104(34): 13839-13844. |
[33] | Zhang L Y, Bai M Y, Wu J, Zhu J Y, Wang H, Zhang Z, Wang W, Sun Y, Zhao J, Fujioka S, Lin W H, Chong K, Lu T, Wang Z Y.AntagonisticHLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell, 2009, 21(12): 3767-3780. |
[34] | Jang S, An G, Li H Y.Rice leaf angle and grain size are affected by theOsBUL1 transcriptional activator complex. Plant Physiol, 2017, 173(1): 688-702. |
[35] | Wang L, Xu Y Y, Ma Q B.Heterotrimeric G protein α subunit is involved in rice brassinosteroid response.Cell Res, 2006, 16(12): 916-922. |
[36] | Hu X, Qian Q, Xu T, Zhang Y, Dong G, Gao T, Xie Q, Xue Y.The U-box E3 ubiquitin ligaseTUD1 functions with a heterotrimeric G alpha subunit to regulate brassinosteroid-mediated growth in rice. PLoS Genet, 2013, 9(3): e1003391. |
[37] | Feng Z, Wu C, Wang C, Roh J, Zhang L, Chen J, Zhang S, Zhang H, Yang C, Hu J, You X, Liu X, Yang X, Guo X, Zhang X, Wu F, Terzaghi W, Kim S K, Jiang L, Wan J.SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. J Exp Bot, 2016, 67(14): 4241-4253. |
[38] | Zhao X Q, Sun J, Cao X F, Song X W.Epigenetic mutation ofRAV6 affects leaf angle and seed size in rice. Plant Physiol, 2015, 169(3): 2118-2128. |
[39] | Tian X, Li X, Zhou W, Ren Y, Wang Z, Liu Z, Tang J, Tong H, Fang J, Bu Q.Transcription factorOsWRKY53 positively regulates brassinosteroid signaling and plant architecture. Plant Physiol, 2017, 175(3): 1337-1349. |
[40] | Davies P J.Plant hormones: Physiology, biochemistry and molecular biology.Sci Hortic, 1996, 66(3): 267-270. |
[41] | Li L C, Kang D M, Chen Z L, Qu L J.Hormonal regulation of leaf morphogenesis in Arabidopsis.J Integr Plant Biol, 2010, 49(1): 75-80. |
[42] | Song Y, You J, Xiong L.Characterization ofOsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol Biol, 2009, 70(3): 297-309. |
[43] | Xia K F, Wang R, Ou X J, Fang Z M, Tian C J, Duan J, Wang Y Q, Zhang M Y.OsTIR1 and OsAFB2 down regulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE, 2012, 7(1): e30039. |
[44] | Peer W A.From perception to attenuation: Auxin signalling and responses.Curr Opin Plant Biol, 2013, 16(5): 561-568. |
[45] | Luo J, Zhou J J, Zhang J Z.Aux/IAA gene family in plants: Molecular structure, regulation, and function. Inter J Mol Sci, 2018, 19(1): 259-276. |
[46] | Zhao S Q, Xiang J J, Xue H W.Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Mol Plant, 2013, 6(1): 174-187. |
[47] | Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L.AGH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot, 2012, 63(18): 6467-6480. |
[48] | Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Wang J, Yang Y, Zhu M.Distinctive expression patterns and roles of themiRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice(Oryza sativa). New Phytol, 2012, 196(1): 149-161. |
[49] | Qu L, Lin L B, Xue H W.Rice miR394 suppresses leaf inclination through targeting an F-box gene,LEAF INCLINATION 4. J Integr Plant Biol, 2019, 61(4): 406-416. |
[50] | Chen S H, Zhou L J.SPOC domain-containing protein Leaf inclination3 interacts withLIP1 to regulate rice leaf inclination through auxin signaling, PLoS Genet, 2018, 14(11): e1007829. |
[51] | Zhang S, Wang S, Xu Y, Yu C, Shen C, Qian Q, Geisler M, Jiang De A, Qi Y.The auxin response factor,OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environ, 2015, 38(4): 638-654. |
[52] | Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S.Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice.Plant J, 2013, 73(4): 676-688. |
[53] | Liu X, Yang C Y, Miao R, Zhou C L, Cao P H, Lan J, Zhu X J, Mou C L, Huang Y S, Liu S J, Tian Y L, Nguyen T L, Jiang L, Wan J M.DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling. Rice, 2018, 11(1): 46-58. |
[54] | Liu J M, Park S J, Huang J, Lee E J, Xuan Y H, Je B I, Kumar V, Priatama R A, Raj K V, Kim S H, Min M K, Cho J H, Kim T H, Chandran A K, Jung K H, Takatsuto S, Fujioka S, Han C D.Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signaling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice. J Exp Bot, 2016, 67(6): 1883-1895. |
[55] | Nakamura A, Fujioka S, Takatsuto S, Tsujimoto M, Kitano H, Yoshida S, Asami T, Nakano T.Involvement of C-22-hydroxylated brassinosteroids in auxin-induced lamina joint bending in rice.Plant Cell Physiol, 2009, 50(9): 1627-1635. |
[56] | Hedden P, Sponsel V.A century of gibberellin research.J Plant Growth Regul, 2015, 34(4): 740-760. |
[57] | Ferrero-Serrano A, Assmann S M.The a-subunit of the rice heterotrimeric G protein,RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. J Exp Bot, 2016, 67(11): 3433-3443. |
[58] | Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M.Molecular interactions of a soluble gibberellin receptor,GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 2007, 19(7): 2140-2155. |
[59] | Ueguchi-Tanaka M, Fujisawa Y, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M.Rice dwarf mutantd1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 2000, 97(21): 11 638-11 643. |
[60] | Shimada A, Ueguchi-Tanaka M, Sakamoto T, Fujioka S, Takatsuto S, Yoshida S, Sazuka T, Ashikari M, Matsuoka M.The riceSPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J, 2006, 48(3): 390-402. |
[61] | Wang L, Wang Z, Xu Y, Joo S H, Kim S K, Xue Z, Xu Z, Wang Z, Chong K.OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J, 2009, 57(3): 498-510. |
[62] | Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q, Chu C.Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice.Plant Cell, 2014, 26(11): 4376-4393. |
[63] | Cao H, Chen S.Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene.Plant Growth Regul, 1995, 16(2): 189-196. |
[64] | Li X, Sun S, Li C, Qiao S, Wang T, Leng L, Shen H, Wang X.The Strigolactone-related mutants have enhanced lamina joint inclination phenotype at the seedling stage.J Genet Genom, 2014, 41(11): 605-608. |
[65] | Gan L, Wu H, Wu D, Zhang Z, Guo Z, Yang N, Xia K, Zhou X, Oh K, Matsuoka M, Ng D, Zhu C.Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice.Plant Sci, 2015, 241: 238-245. |
[66] | Ning J, Zhang B, Wang N, Zhou Y, Xiong L.Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell, 2011, 23(12): 4334-4347. |
[67] | Wang D, Qin Y, Fang J, Yuan S, Peng L, Zhao J, Li X.A missense mutation in the Zinc finger domain ofOsCESA7 deleteriously affects cellulose biosynthesis and plant growth in rice. PLoS ONE, 2016, 11(4): e0153993. |
[68] | Luan W, Liu Y, Zhang F, Song Y, Wang Z, Peng Y, Sun Z.OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. Plant Biotechnol J, 2011, 9(4): 513-524. |
[69] | Ohmori Y, Toriba T, Nakamura H, Ichikawa H, Hirano H Y.Temporal and spatial regulation ofDROOPING LEAF gene expression that promotes midrib formation in rice. Plant J, 2011, 65(1): 77-86. |
[70] | Zhang J, Tang W, Huang Y, Niu X, Zhao Y, Han Y, Liu Y.Down-regulation of aLBD-like gene, OsIG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice. J Exp Bot, 2015, 66(1): 99-112. |
[71] | Lee J, Park J J, Kim S L, Yim J, An G.Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint.Plant Mol Biol, 2007, 65(4): 487-499. |
[72] | Wu X, Tang D, Li M, Wang K, Cheng Z.Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice.Plant Physiol, 2013, 161(1): 317-329. |
[73] | Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J.LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17(5): 402-410. |
[74] | 凌启鸿, 陆卫平. 水稻根系分布与叶角关系的研究初报. 作物学报, 1989(2): 123-131. |
Ling Q H, Lu W P.Preliminary report on the relationship between rice root distribution and leaf angle.Acta Agron Sin, 1989(2): 123-131. (in Chinese with English abstract) | |
[75] | 王彤, 阙补超, 夏明, 郑英杰, 于亚辉, 王莹, 李林蔚, 陈广红, 王绍林. 水稻产量和品质的研究进展. 北方水稻, 2017, 47(2): 51-55. |
Wang T, Que B C, Xia M, Zheng Y J, Yu Y H, Wang Y, Li L W, Chen G H, Wang S L.Research progress in rice yield and quality.Northern Rice, 2017, 47(2): 51-55. (in Chinese with English abstract) | |
[76] | 董海娇. 基于全基因组关联分析的水稻分蘖角度和剑叶夹角的遗传基础解析. 武汉: 华中农业大学, 2017. |
Dong H J.Genetic basis analysis of rice tiller angle and flag leaf angle based on genome-wide association analysis. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[77] | Luo Y F, Ma X M, Cheng J F.The relationship between flag leaf angle of various rice germplasms and their nitrogen nutrition efficiencies.Chin Agric Sci Bull, 2014, 30(18): 29-34. |
[78] | Mach J.So inclined: Phosphate status and leaf angle in rice.Plant Cell, 2018, 30(4): 743-744. |
[79] | Ruan W, Guo M, Xu L.AnSPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice. Plant Cell, 2018, 30(4): 853-870. |
[80] | 左科生, 李育, 钟平安. 水稻理想株型与超高产育种的研究进展. 江西农业学报, 2003, 15(1): 37-42. |
Zuo K S, Li Y, Zhong P A.Research progress on ideal plant type and super high yield breeding of rice.J Jiangxi Agric Univ, 2003, 15(1): 37-42. (in Chinese with English abstract) | |
[81] | Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M.Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice.Plant Physiol, 2006, 141(3): 924-931. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||