中国水稻科学 ›› 2019, Vol. 33 ›› Issue (6): 489-498.DOI: 10.16819/j.1001-7216.2019.8126
曹妮, 陈渊, 季芝娟, 曾宇翔, 杨长登*(), 梁燕*(
)
收稿日期:
2018-11-22
修回日期:
2019-03-23
出版日期:
2019-11-10
发布日期:
2019-11-10
通讯作者:
杨长登,梁燕
基金资助:
Ni CAO, Yuan CHEN, Zhijuan JI, Yuxiang ZENG, Changdeng YANG*(), Yan LIANG*(
)
Received:
2018-11-22
Revised:
2019-03-23
Online:
2019-11-10
Published:
2019-11-10
Contact:
Changdeng YANG, Yan LIANG
摘要:
稻瘟病是危害世界水稻生产最严重的真菌病害之一。稻瘟病菌生理小种变异快,水稻品种的抗性一般仅能维持3~5年。培育和种植抗性品种是目前最经济有效的措施。近年来,对稻瘟病菌致病机制和抗性基因分子机理的系统研究,加深了对该病原菌-宿主系统中病原相关分子模式诱导的免疫反应机制和病原菌效应蛋白诱导的免疫反应机制的了解。本文综述了水稻抗稻瘟病的两种天然免疫机制研究的最新进展,并对目前水稻抗稻瘟病分子机制研究中急需解决的问题和挑战进行探讨和展望。
中图分类号:
曹妮, 陈渊, 季芝娟, 曾宇翔, 杨长登, 梁燕. 水稻抗稻瘟病分子机制研究进展[J]. 中国水稻科学, 2019, 33(6): 489-498.
Ni CAO, Yuan CHEN, Zhijuan JI, Yuxiang ZENG, Changdeng YANG, Yan LIANG. Recent Progress in Molecular Mechanism of Rice Blast Resistance[J]. Chinese Journal OF Rice Science, 2019, 33(6): 489-498.
抗性基因Resistant gene | 无毒基因Avirulence gene | 参考文献 Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
稻瘟病抗性基因 R gene | 编码蛋白类型 Encoding protein | 稻瘟菌无毒基因 Avr gene | 编码蛋白类型 Encoding protein | ||||||||
Pi1 | NBS-LRR蛋白 | 未知Unknown | - | [40] | |||||||
Pi2 | NBS-LRR蛋白 | 未知Unknown | - | [33] | |||||||
Pi5 | NBS-LRR蛋白 | 未知Unknown | - | [42] | |||||||
Pi9 | NBS-LRR蛋白 | AvrPi9 | 分泌蛋白 | [32][43] | |||||||
Pi25 | NBS-LRR蛋白 | 未知Unknown | - | [44] | |||||||
Pi33 | - | ACE1 | 聚酮合成酶 | [45] | |||||||
Pi35 | NBS-LRR蛋白 | 未知Unknown | - | [46] | |||||||
Pi36 | NBS-LRR蛋白 | 未知Unknown | - | [47] | |||||||
Pi37 | NBS-LRR蛋白 | 未知Unknown | - | [48] | |||||||
Pi50 | NBS-LRR蛋白 | 未知Unknown | 分泌蛋白 | [49] | |||||||
Pi56 | NBS-LRR蛋白 | 未知Unknown | 分泌蛋白 | [50] | |||||||
Pi64 | NBS-LRR蛋白 | 未知Unknown | 分泌蛋白 | [51] | |||||||
Piz-t | NBS-LRR蛋白 | AvrPiz-t | 分泌蛋白 | [35][52] | |||||||
Pit | NBS-LRR蛋白 | 未知Unknown | - | [37] | |||||||
Pit-a | NBS-LRR蛋白 | AvrPi-ta | 分泌蛋白 | [41][53] | |||||||
Pia | NBS-LRR蛋白 | Avr-Pia | 分泌蛋白 | [54][55] | |||||||
Pib | NBS-LRR蛋白 | Avr-Pib | 分泌蛋白 | [56][57] | |||||||
Pish | NBS-LRR蛋白 | 未知Unknown | - | [58] | |||||||
Pb1 | NBS-LRR蛋白 | 未知Unknown | - | [59] | |||||||
Pik | NBS-LRR蛋白 | Avr-Pik/km/kp | 分泌蛋白 | [55][60] | |||||||
Pik-m | NBS-LRR蛋白 | Avr-Pik/km/kp | 分泌蛋白 | [55][61] | |||||||
Pik-p | NBS-LRR蛋白 | Avr-Pik/km/kp | 分泌蛋白 | [55][62] | |||||||
Pid3 | NBS-LRR蛋白 | 未知Unknown | - | [63] | |||||||
Pi-d2 | B-lectin蛋白 | 未知Unknown | - | [27] | |||||||
Pi21 | 富含脯氨酸类蛋白 | 未知Unknown | - | [28] | |||||||
Ptr | ARM蛋白 | 未知Unknown | - | [29] | |||||||
Pi-CO39 | NBS-LRR蛋白 | AvrPi-CO39 | 分泌蛋白 | [64] | |||||||
Pigm | NBS-LRR蛋白 | 未知 Unknown | - | [34] | |||||||
Pii | - | Avr-Pii | 分泌蛋白 | [55] | |||||||
Pi54 | NBS-LRR蛋白 | AvrPi54 | 分泌蛋白 | [39] | |||||||
Pi63 | NBS-LRR蛋白 | 未知Unknown | - | [65] | |||||||
Pid3-A4 | NBS-LRR蛋白 | 未知Unknown | - | [66] | |||||||
Pi54rh | NBS-LRR蛋白 | 未知Unknown | - | [67] | |||||||
Pi54of | NBS-LRR蛋白 | 未知Unknown | - | [68] | |||||||
Pike | NBS-LRR蛋白 | 未知Unknown | - | [69] | |||||||
Piks | - | 未知Unknown | - | GeneBank: AET36547.1, AET36548.1 | |||||||
未知Unknown | - | PWL1 | 分泌蛋白 | [70] | |||||||
未知Unknown | - | PWL2 | 分泌蛋白 | [71] | |||||||
bsr-k1 | TPRs蛋白 | 未知Unknown | - | [30] |
表1 已克隆的稻瘟病抗性基因和无毒基因信息
Table 1 The cloned rice resistance genes and avirulence genes of M. oryzae.
抗性基因Resistant gene | 无毒基因Avirulence gene | 参考文献 Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
稻瘟病抗性基因 R gene | 编码蛋白类型 Encoding protein | 稻瘟菌无毒基因 Avr gene | 编码蛋白类型 Encoding protein | ||||||||
Pi1 | NBS-LRR蛋白 | 未知Unknown | - | [40] | |||||||
Pi2 | NBS-LRR蛋白 | 未知Unknown | - | [33] | |||||||
Pi5 | NBS-LRR蛋白 | 未知Unknown | - | [42] | |||||||
Pi9 | NBS-LRR蛋白 | AvrPi9 | 分泌蛋白 | [32][43] | |||||||
Pi25 | NBS-LRR蛋白 | 未知Unknown | - | [44] | |||||||
Pi33 | - | ACE1 | 聚酮合成酶 | [45] | |||||||
Pi35 | NBS-LRR蛋白 | 未知Unknown | - | [46] | |||||||
Pi36 | NBS-LRR蛋白 | 未知Unknown | - | [47] | |||||||
Pi37 | NBS-LRR蛋白 | 未知Unknown | - | [48] | |||||||
Pi50 | NBS-LRR蛋白 | 未知Unknown | 分泌蛋白 | [49] | |||||||
Pi56 | NBS-LRR蛋白 | 未知Unknown | 分泌蛋白 | [50] | |||||||
Pi64 | NBS-LRR蛋白 | 未知Unknown | 分泌蛋白 | [51] | |||||||
Piz-t | NBS-LRR蛋白 | AvrPiz-t | 分泌蛋白 | [35][52] | |||||||
Pit | NBS-LRR蛋白 | 未知Unknown | - | [37] | |||||||
Pit-a | NBS-LRR蛋白 | AvrPi-ta | 分泌蛋白 | [41][53] | |||||||
Pia | NBS-LRR蛋白 | Avr-Pia | 分泌蛋白 | [54][55] | |||||||
Pib | NBS-LRR蛋白 | Avr-Pib | 分泌蛋白 | [56][57] | |||||||
Pish | NBS-LRR蛋白 | 未知Unknown | - | [58] | |||||||
Pb1 | NBS-LRR蛋白 | 未知Unknown | - | [59] | |||||||
Pik | NBS-LRR蛋白 | Avr-Pik/km/kp | 分泌蛋白 | [55][60] | |||||||
Pik-m | NBS-LRR蛋白 | Avr-Pik/km/kp | 分泌蛋白 | [55][61] | |||||||
Pik-p | NBS-LRR蛋白 | Avr-Pik/km/kp | 分泌蛋白 | [55][62] | |||||||
Pid3 | NBS-LRR蛋白 | 未知Unknown | - | [63] | |||||||
Pi-d2 | B-lectin蛋白 | 未知Unknown | - | [27] | |||||||
Pi21 | 富含脯氨酸类蛋白 | 未知Unknown | - | [28] | |||||||
Ptr | ARM蛋白 | 未知Unknown | - | [29] | |||||||
Pi-CO39 | NBS-LRR蛋白 | AvrPi-CO39 | 分泌蛋白 | [64] | |||||||
Pigm | NBS-LRR蛋白 | 未知 Unknown | - | [34] | |||||||
Pii | - | Avr-Pii | 分泌蛋白 | [55] | |||||||
Pi54 | NBS-LRR蛋白 | AvrPi54 | 分泌蛋白 | [39] | |||||||
Pi63 | NBS-LRR蛋白 | 未知Unknown | - | [65] | |||||||
Pid3-A4 | NBS-LRR蛋白 | 未知Unknown | - | [66] | |||||||
Pi54rh | NBS-LRR蛋白 | 未知Unknown | - | [67] | |||||||
Pi54of | NBS-LRR蛋白 | 未知Unknown | - | [68] | |||||||
Pike | NBS-LRR蛋白 | 未知Unknown | - | [69] | |||||||
Piks | - | 未知Unknown | - | GeneBank: AET36547.1, AET36548.1 | |||||||
未知Unknown | - | PWL1 | 分泌蛋白 | [70] | |||||||
未知Unknown | - | PWL2 | 分泌蛋白 | [71] | |||||||
bsr-k1 | TPRs蛋白 | 未知Unknown | - | [30] |
[1] | 杜轶威. 水稻开花相关RING蛋白1(FRRP1)基因的克隆和开花功能分析. 北京: 中国农业大学, 2016. |
Du Y W.Molecular cloning and functional analysis of Flowering Related RING Protein 1(FRRP1) in rice. Beijing: China Agriculture University, 2016. (in Chinese with English abstract) | |
[2] | Seck P A, Diagne A, Mohanty S, Wopereis M C S. Crops that feed the world 7: Rice. Food Sec, 2012, 4(1): 7-24 |
[3] | Dean R, van Kan J A, Pretorius Z A, Hammond-Kosack K E, Di Pietro A, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. The top 10 fungal pathogens in molecular plant pathology.Mol Plant Pathol, 2012, 13(4): 414-430. |
[4] | Skamnioti P, Gurr S J.Against the grain: Safeguarding rice from rice blast disease.Trends Biotechnol, 2009, 27(3):141-150. |
[5] | Pennisi E.Armed and dangerous.Science, 2010, 327(5967): 804-805 |
[6] | Nakahara K, Masuta C.Interaction between viral RNA silencing suppressors and host factors in plant immunity.Curr Opin Plant Biol, 2014, 20: 88-95. |
[7] | Akerley B J, Cotter P A, Miller J F.Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell, 1995, 80(4): 611-620. |
[8] | Dow M, Newman M A, von Roepenack E. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu Rev Phytopathol, 2000, 38: 241-261. |
[9] | Zipfel C.Pattern-recognition receptors in plant innate immunity.Curr Opin Immunol, 2008, 20(1): 10-16. |
[10] | Shiu S, Karlowski W, Pan R, Tzeng Y H, Mayer K F, Li W H.Comparative analysis of the receptor-like kinase family inArabidopsis and rice. Plant Cell, 2004, 16(5): 1220-1234. |
[11] | Chen X, Ronald P.Innate immunity in rice.Trends Plant Sci, 2011, 16(8): 451-459. |
[12] | Liu B, Li J, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi K, He Y, Wang J, Wang H B.Lysin motif- containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity.Plant Cell, 2012, 24(8): 3406-3419. |
[13] | Felix G, Duran JD, Volko S, Boller T.Plants have a sensitive perception system for the most conserved domain of bacterial flagellin.Plant J, 1999, 18(3): 265-276. |
[14] | Delphine C, Martin R, Boller T.The Arabidopsis receptor kinase fls2 binds flg22 and determines the specificity of flagellin perception. Plant Cell, 2006, 18(2): 465-476. |
[15] | Shinya T, Osada T, Desaki Y, Hatamoto M, Yamanaka Y, Hirano H, Takai R, Che F S, Kaku H, Shibuya N.Characterization of receptor proteins using affinity cross-linking with biotinylated ligands.Plant & Cell Physiol, 2010, 51(2): 262-270. |
[16] | Lu D, Wu S, Gao X, Zhang Y, Shan L, He P.A receptor- like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity.Proc Natl Acad Sci USA, 2010, 107(1): 496-501. |
[17] | 张慧娟. 磷酸-1-鞘氨醇在植物抗病反应中的作用及水稻和拟南芥BIK1在逆境反应中的功能分析. 杭州: 浙江大学, 2009. |
Zhang H J.Role of sphingosine-1-phosphate in plant defense response and functional analysis of Arabidopsis and rice BIK1 in stress responses. Hangzhou: Zhejiang University, 2009. (in Chinese with English abstract) | |
[18] | Sun Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, Zhou J M, Chai J.Structural basis for flg22-induced activation of theArabidopsis FLS2-BAK1 immune complex. Science, 2013, 342(6158): 624-628. |
[19] | Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N.CERK1, a LysM receptor kinase, is essential for chitin elicitor signal in inArabidopsis. Proc Natl Acad Sci USA, 2007, 104(49): 19613-19618. |
[20] | Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N.Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice.Plant J, 2010, 64(2): 204-214. |
[21] | Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto- Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N.Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor.Proc Natl Acad Sci USA, 2006, 103(29): 11 086-11 091. |
[22] | Liu B, Li J F, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi KB, He Y M, Wang J F, Wang H B.Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity.Plant Cell, 2012, 24(8): 3406-3419. |
[23] | Ao Y, Li Z Q, Feng D R, Xiong F, Liu J, Li J F, Wang J, Liu B, Wang H B.OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. Plant J ,2014, 80: 1072-1084. |
[24] | Li Z, Ao Y, Feng D, Liu J, Wang J, Wang H B, Liu B.OsRLCK 57, OsRLCK107 and OsRLCK118 positively regulate chitin- and PGN-induced immunity in rice.Rice, 2017, 10(1): 6. |
[25] | Kawasaki T, Yamada K, Yoshimura S, Yamaquchi K.Chitin receptor-mediated activation of MAP kinases and ROS production in rice and Arabidopsis. Plant Signal Behav, 2017: e1361076 |
[26] | Wang B H, Ebbole D J, Wang Z H.The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes. J Integr Agric, 2017, 16: 2746-2760. |
[27] | Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G.A B-lectin receptor kinase gene conferring rice blast resistance.Plant J, 2006, 46(5): 794-804. |
[28] | Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M.Loss of function of a proline-containing protein confers durable disease resistance in rice.Science, 2009, 325: 998-1001. |
[29] | Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Jia M H, Famoso A, Edward J D, Wamishe Y, Valent B, Wang G L, Yang Y.The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun, 2018, 9(1): 2039. |
[30] | Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, Zhu X, Chen Z, Chen Z, Yuan C, Zhao W, Wang J, Li W, He M, Ma B, Wang J, Qin P, Chen W, Wang Y, Liu J, Qian Y, Wang W, Wu X, Li P, Zhu L, Li S, Ronald P C, Chen X.Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance.Proc Natl Acad Sci, 2018, 115(12): 3174-3179. |
[31] | Wu Y, Yu L, Pan C, Dai Z, Li Y, Xiao N, Zhang X, Ji H, Huang N, Zhao B.Development of near-isogenic lines with different alleles of Piz locus and analysis of their breeding effect under Yangdao 6 background. Mol Breeding, 2016, 36(2): 12. |
[32] | Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL.The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172(3): 1901-1914. |
[33] | Chen D H, Zeigler R S, Ahn S W, Nelson R J.Phenotypic characterization of the rice blast resistance gene Pi-2(t). Plant Dis, 1996: 80. |
[34] | Deng Y, Zhu X, Shen Y, He Z.Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet, 2006, 113(4): 705-713. |
[35] | Zhou B, Qu S H, Liu G F, Dolan M, Sakai H, Lu GD, Bellizzi M, Wang G L.The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact, 2006, 19(11): 1216-1228. |
[36] | Hua L X, Liang L Q, He X Y, Wang L, Zhang W S, Liu W, Liu X Q, Lin F.Development of a marker specific for the rice blast resistance gene Pi39 in the Chinese cultivar Q15 and its use in genetic improvement. Biotechnol Biotecnol Equip, 2015, 29(3): 448-456. |
[37] | Hayashi K, Yoshida H.Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J, 2009, 57: 413-425. |
[38] | Xu X, Hayashi N, Wang CT, Fukuoka S, Kawasaki S, Takatsuji H, Jiang C J.Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breeding, 2014, 34(2): 691-700. |
[39] | Sharma T R, Rai A K, Gupta S K, Singh N K.Broad-spectrum blast resistance gene Pi-k(h) cloned from rice line Tetep designated as Pi54. Plant Biochem Biotechnol, 2010, 19(1): 87-89. |
[40] | Hua L, Wu J Z, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H.The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 125(5): 1047-1055. |
[41] | Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B.A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2019-2032. |
[42] | Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S.Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics, 2009, 181(4): 1627-1638. |
[43] | Wu J, Kou Y, Bao J, Li Y, Tang M, Zhu X, Ponaya A, Xiao G, Li C, Song M Y, Cumagun C J, Deng Q, Lu G, Jeon J S, Naqvi N I.Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytol, 2015, 206: 1463-1475. |
[44] | Chen J, Shi Y F, Liu W Z, Chai R Y, Fu Y, Zhuang J Y, Wu J L.A Pid3 allele from rice cultivar Gumei 2 confers resistance to Magnaporthe oryzae. Genet Genom, 2011, 38: 209-216. |
[45] | Bohnert HU, Fudal I, Dioh W.A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell, 2004, 16: 2499-2513. |
[46] | Fukuoka S, Yamamoto S I, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TTT, Koizumi S, Sugimoto K, Matsumoto T, Yano M.Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast.Sci Rep, 2014: 4. |
[47] | Liu X, Lin F, Wang L, Pan Q.The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race specific resistance to the blast fungus. Genetics, 2007, 176: 2541-2549. |
[48] | Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q . The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007, 177: 1871-1880. |
[49] | Su J, Wang W, Han J, Chen S, Wang C, Zeng L, Feng A, Yang J, Zhou B, Zhu X.Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet, 2015, 128: 2213-2225. |
[50] | Liu Y, Liu B, Zhu X, Yang J, Bordeos A, Wang G, Leach J E, Leung H.Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice. Theor Appl Genet, 2013, 126(4): 985-998. |
[51] | Ma J, Lei C, Xu X, Hao K, Wang J, Cheng Z, Ma X, Ma J, Zhang X, Guo X, Wu F, Lin Q, Wang C, Zhai H, Wang H, Wan J.Pi64, encoding a Novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant Microbe Interact, 2015, 28: 558-568. |
[52] | Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B.The Magnaporthe oryzae avirulence gene AvrPizt encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact, 2009, 22: 411-420. |
[53] | Bryan G T, Wu K S, Farrall L, Jia Y, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance genePita. Plant Cell, 2000, 12: 2033-2046. |
[54] | Okuyama Y, Kanzaki H, Abe A,Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R.A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J ,2011, 66: 467-479. |
[55] | Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R.Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell, 2009, 21: 1573-1591. |
[56] | Zhang S, Wang L, Wu W, He L, Yang X, Pan Q.Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Sci Rep, 2015, 5: 11642. |
[57] | Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T.The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19: 55-64. |
[58] | Takahashi A, Hayashi N, Miyao A, Hirochika H.Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol, 2010, 10(1): 175. |
[59] | Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano S Y, Matsumoto T, Yano M, Takatsuji H.Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS- LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010, 64: 498-510. |
[60] | Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q.The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol, 2011, 189: 321-334. |
[61] | Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M.Two adjacent nucleotide- binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics, 2008, 180: 2267-2276. |
[62] | Yuan B, Zhai C, Wang W, Zeng X, Xu X, He X, Lin F, Wang L, Pan Q.The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet,2011, 122: 1017-1028. |
[63] | Shang J, Tao Y, Chen X, Liu W, Chai R, Fu Y, Zhuang J, Wu J.Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide- binding site leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics, 2009, 182: 1303-1311. |
[64] | Ribot C, Cesari S, Abidi I.The Magnaporthe oryzae effector AVR1-CO39 is translocated into rice cells independently of a fungal-derived machinery. Plant J, 2013, 74: 1-12. |
[65] | Xu X, Hayashi N, Wang C T, Fukuoka S, Kawasaki S, Takatsuji H, Jiang C.Rice blast resistance gene Pikahei-1 (t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breed, 2014, 34: 691-700. |
[66] | Lü Q, Xu X, Shang J, Jiang G, Pang Z, Zhou Z, Wang J, Liu Y, Li T, Li X, Xu J, Cheng Z, Zhao X, Li S, Zhu L.Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology, 2013, 103: 594-599. |
[67] | Das A, Soubam D, Singh P K, Thakur S, Singh NK, Sharma R.A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Func Integr Genom, 2012, 12: 215-228. |
[68] | Devanna NB, Vijayan J, Sharma TR.The blast resistance gene Pi54 of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains. Plos ONE, 2014, 9: e104840. |
[69] | Chen J, Peng P, Tian J, He Y, Zhang L, Liu Z, Yin D, Zhang Z.Pike, a rice blast resistance allele consisting of two adjacent NBS-LRR genes, was identified as a novel allele at the Pik locus. Mol Breeding, 2015, 35: 117. |
[70] | Kang S, Sweigard J A, Valent B.The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant Microbe Interact, 1995, 8(6): 939-948. |
[71] | Sweigard J A, Carroll A M, Kang S, Farrall L, Chumley F G, Valent B.Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 1995, 7: 1221-1233. |
[72] | Ray S, Singh P K, Gupta D K, Mahato A K, Sarkar C, Rathour R, Singh N K, Sharma T R.Analysis ofMagnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54. Front Plant Sci, 2016(7): 1140. |
[73] | Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R.Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J, 2012, 72(6): 894-907. |
[74] | Ortiz D, de Guillen K, Cesari S, Chalvon V, Gracy J, Padilla A, Kroi T. Recognition of the Magnaporthe oryzae effector AVR-Pia by the Decoy domain of the rice NLR immune receptor RGA5. Plant Cell, 2017, 29(1): 156-168. |
[75] | Park C H, Chen S, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal A J, Ning Y, Wang R, Bellizzi M.The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen- associated molecular pattern-triggered immunity in rice. Plant Cell, 2012, 24(11): 4748-4762. |
[76] | Park C H, Shirsekar G, Bellizzi M, Chen S, Songkumarn P, Xie X, Shi X, Ning Y, Zhou B, Suttiviriya P, Wang M, Umemura K, Wang G L.The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice. PLoS Pathog, 2016, 12(3): e1005529. |
[77] | Wang R, Ning Y, Shi X, He F, Zhang C, Fan J, Jiang N, Zhang Y, Zhang T, Hu Y, Bellizzi M, Wang G L.Immunity to rice blast disease by suppression of effector- triggered necrosis.Curr Biol, 2016, 26(18): 2399-2411. |
[78] | Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X.A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017, 170(1): 114-126. |
[79] | Wang J, Qu B, Dou S, Li L, Yin D, Pang Z, Zhou Z, Tian M, Liu G, Xie Q, Tang D, Chen X, Zhu L.The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity.BMC Plant Biol, 2015, 15(1): 49. |
[80] | Wang J, Zhou L, Shi H, Chern M, Yu H, Yi H, He M, Yin J, Zhu X, Li Y, Li W, Liu J, Wang J, Chen X, Qing H, Wang Y, Liu J, Wang W, Li P, Wu X, Zhu L, Zhou J M, Ronald P C, Li S, Li J, Chen X,.A single transcription factor promotes both yield and immunity in rice.Science, 2018, 361(6406): 1026. |
[81] | Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G.Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance.Science, 2017, 355(6328): 962-965. |
[82] | Wang Y, Wu W H.Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency.Curr Opin Plant Biol, 2015, 25: 46-52. |
[83] | Shi X, Long Y, He F, Zhang C, Wang R.The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel. PLOS Pathog, 2018, 14(1): e1006878. |
[84] | Kourelis J, van der Hoorn R A L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function.Plant Cell, 2018, 30(2): 285-299. |
[85] | 向聪, 任西明, 雷东阳, 陈英. 分子标记辅助选择改良C815S的稻瘟病抗性. 湖南农业大学学报: 自然科学版, 2018, 44(1): 62-65. |
Xiang C, Ren X M, Lei D Y, Chen Y.Improvement of rice blast resistance of C815S through molecular marker-assisted selection.J Hunan Agric Univ: Nat Sci, 2018, 44(1): 62-65. (in Chinese with English abstract) | |
[86] | 刘文强, 李小湘, 黎用朝, 潘孝武, 盛新年, 段永红. 分子标记辅助选择改良优质稻湘晚籼13号的稻瘟病抗性. 分子植物育种, 2017, 15(8): 3063-3069. |
Liu W Q, Li X X, Li Y C, Pan X W, Sheng X N, Duan Y H.Improvement of rice blast resistance of Xiangzaoxian No. 13 with high quality by molecular marker-assisted selection.Mol Plant Breed, 2017, 15(8): 3063-3069. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||