中国水稻科学 ›› 2018, Vol. 32 ›› Issue (6): 538-548.DOI: 10.16819/j.1001-7216.2018.7144
李玲锋#, 熊玉毅#, 欧阳林娟, 彭小松, 陈小荣, 贺晓鹏, 傅军如, 边建民, 胡丽芳, 徐杰, 贺浩华, 孙晓棠*(), 朱昌兰*()
收稿日期:
2017-11-26
修回日期:
2017-12-29
出版日期:
2018-11-27
发布日期:
2018-11-10
通讯作者:
李玲锋,熊玉毅,孙晓棠,朱昌兰
基金资助:
Lingfeng LI#, Yuyi XIONG#, Linjuan OUYANG, Xiaosong PENG, Xiaorong CHEN, Xiaopeng HE, Junru FU, Jianmin BIAN, Lifang HU, Jie XU, Haohua HE, Xiaotang SUN*(), Changlan ZHU*()
Received:
2017-11-26
Revised:
2017-12-29
Online:
2018-11-27
Published:
2018-11-10
Contact:
Lingfeng LI, Yuyi XIONG, Xiaotang SUN, Changlan ZHU
摘要:
目的 叶色突变体是研究水稻光合作用,叶绿素生物合成和遗传发育调控机理的重要材料。发掘水稻叶色突变体,是水稻功能基因组学研究的重要遗传基础。方法 在昌恢121中发现了一份白条纹叶及抽穗期白穗突变体,经过连续多代自交能稳定遗传,暂命名为wlp6(white striped leaf and white panicle 6)。在南昌分早、中和晚3季播种wlp6与野生型种子,考查了中稻与晚稻的部分农艺性状;测定3叶期、分蘖期、抽穗期叶片及颖壳的叶绿素含量;通过电镜观察抽穗期叶肉细胞发育情况。在光照培养箱中进行温光敏感实验;将wlp6与昌恢121及02428正反交,观察F1植株表型,对F2分离群体进行卡方测验,分析突变体遗传规律;以wlp6/02428衍生的F2群体为材料,利用BSA法进行基因定位。结果 wlp6自第1片叶到成熟,叶片均呈白条纹,抽穗期颖壳及枝梗失绿,高温天气穗转绿。突变体株高、有效穗数和每穗粒数在早稻季和中稻季均显著低于野生型,晚稻季wlp6的结实率和千粒重也显著低降低。叶绿素含量测定表明,wlp6叶片叶绿素含量在不同生育期及不同季均显著低于野生型,早稻和晚稻季种植的wlp6颖壳叶绿素含量也比野生型低。电镜观察抽穗期的叶肉细胞发现,wlp6叶绿体数目减少,体积变小,没有分化出明显的片层结构。温光敏感实验表明,突变体对光照强弱钝感,叶色受温度和日照长短影响,随着温度升高和日照时间变长突变体叶绿素含量有上升趋势。遗传分析表明,该性状受隐性核基因控制,利用wlp6/02428得到的616个F2单株将WLP6定位于第6染色体短臂InDel标记R-7与R-8间,物理距离137 kb,此区间预测了21个候选基因。经候选基因分析及测序发现,其中LOC_Os06g14620编码一个核糖核酸还原酶小亚基,编码区第142和158位碱基由T替换为C,第288位插入了碱基A,碱基的插入导致翻译提前终止,因此推测LOC_Os06g14620是WLP6的候选基因。结论 LOC_Os06g14620是已经克隆的白条纹叶基因St1的候选基因,推测WLP6与St1等位,但突变位点不同,且表型也有差异。
中图分类号:
李玲锋, 熊玉毅, 欧阳林娟, 彭小松, 陈小荣, 贺晓鹏, 傅军如, 边建民, 胡丽芳, 徐杰, 贺浩华, 孙晓棠, 朱昌兰. 水稻白条纹叶及白穗突变体wlp6的鉴定与基因定位[J]. 中国水稻科学, 2018, 32(6): 538-548.
Lingfeng LI, Yuyi XIONG, Linjuan OUYANG, Xiaosong PENG, Xiaorong CHEN, Xiaopeng HE, Junru FU, Jianmin BIAN, Lifang HU, Jie XU, Haohua HE, Xiaotang SUN, Changlan ZHU. Identification and Gene Mapping of White Stripe Leaf and White Panicle Mutant wlp6 in Rice[J]. Chinese Journal OF Rice Science, 2018, 32(6): 538-548.
农艺性状 Agronomic trait | 中季 Middle season | 晚季Late season | |||||
---|---|---|---|---|---|---|---|
突变体Mutant | 野生型WT | 突变型Mutant | 野生型WT | ||||
生育期 Growth duration / d | 116.0±3.7 | 121.0 | ±1.6 | 135.0±2.3 | 132.0 | ±3.6 | |
株高 Plant height / cm | 137.4±6.6 | 149.2 | ±5.2* | 118.0±4.7 | 134.6 | ±3.0** | |
剑叶长 Length of flag leaf / cm | 28.2±1.4 | 36.6 | ±3.3** | 31.1±3.9 | 34.8 | ±2.2 | |
剑叶宽 Width of flag leaf / cm | 1.8±0.1 | 2.0 | ±0.0 | 1.8±0.2 | 1.9 | ±0.1 | |
有效穗数 No.of Effective panicle per plant | 7.6±1.1 | 10.2 | ±2.4* | 7.4±0.9 | 10.8 | ±1.6** | |
穗长 Panicle length / cm | 26.2±1.8 | 27.7 | ±1.0 | 24.2±0.5 | 27.2 | ±1.2** | |
穗粒数 Grain number per panicle | 147.1±19.9 | 190.9 | ±13.7* | 142.8±5.9 | 204.4 | ±20.8** | |
结实率 Seed-setting rate / % | 89.0±4.7 | 89.3 | ±2.8 | 60.7±1.1 | 74.1 | ±5.9** | |
千粒重 1000-grain weight / g | 24.3±0.3 | 23.6 | ±0.3 | 22.1±1.6 | 24.5 | ±1.1** |
表1 wlp6与野生型部分农艺性状
Table 1 Part agronomic traits of wlp6 and its wild type(WT).
农艺性状 Agronomic trait | 中季 Middle season | 晚季Late season | |||||
---|---|---|---|---|---|---|---|
突变体Mutant | 野生型WT | 突变型Mutant | 野生型WT | ||||
生育期 Growth duration / d | 116.0±3.7 | 121.0 | ±1.6 | 135.0±2.3 | 132.0 | ±3.6 | |
株高 Plant height / cm | 137.4±6.6 | 149.2 | ±5.2* | 118.0±4.7 | 134.6 | ±3.0** | |
剑叶长 Length of flag leaf / cm | 28.2±1.4 | 36.6 | ±3.3** | 31.1±3.9 | 34.8 | ±2.2 | |
剑叶宽 Width of flag leaf / cm | 1.8±0.1 | 2.0 | ±0.0 | 1.8±0.2 | 1.9 | ±0.1 | |
有效穗数 No.of Effective panicle per plant | 7.6±1.1 | 10.2 | ±2.4* | 7.4±0.9 | 10.8 | ±1.6** | |
穗长 Panicle length / cm | 26.2±1.8 | 27.7 | ±1.0 | 24.2±0.5 | 27.2 | ±1.2** | |
穗粒数 Grain number per panicle | 147.1±19.9 | 190.9 | ±13.7* | 142.8±5.9 | 204.4 | ±20.8** | |
结实率 Seed-setting rate / % | 89.0±4.7 | 89.3 | ±2.8 | 60.7±1.1 | 74.1 | ±5.9** | |
千粒重 1000-grain weight / g | 24.3±0.3 | 23.6 | ±0.3 | 22.1±1.6 | 24.5 | ±1.1** |
图1 wlp6与野生型表型 ^ A—3叶期;B—分蘖期;C—抽穗期;D—穗的颜色对比;E—抽穗期剑叶对比;F—成熟时籽粒。
Fig. 1. Phenotype of wlp6 and its wild type. ^ A, 3-leaf stage; B, Tillering stage; C, Heading stage; D, Panicle color; E, Flag leaf at heading; F, Mature grains.
图2 早、中、晚3季wlp6与野生型在3叶期、分蘖期和抽穗期的叶片及颖壳的叶绿素含量比较^**表示突变体与野生型间差异达0.01显著水平(双尾t检验)。
Fig. 2. Comparison of chlorophyll contents of the leaves and glume between wlp6 and wild-type in early, middle and late seasons at the three-leaf stage, tillering stage and heading stage.^ **Difference between the mutant and WT was significant at 0.01 level, respectively(two-tailed t test).
图3 wlp6与野生型叶肉细胞超微结构 ^ A和B表示wlp6叶肉细胞; C和D表示野生型叶肉细胞。
Fig. 3. Ultrastructure of mesophyll cells in wlp6 and its wild type. ^ A and B represent mesophyll cells of wlp6; C and D represent wild-type mesophyll cells.
图4 不同温度下生长的wlp6(左)和野生型(右)^ A、B、C、D和E分别表示20℃、25℃、28℃、30℃和32℃下2叶期的幼苗。
Fig. 4. wlp6(left) and its wild type(right) at different temperatures. ^ A, B, C, D and E represent the 2-leaf stage seedlings at 20℃, 25℃, 28℃, 30℃ and 32℃, respectively.
图5 不同温度下生长的幼苗叶片叶绿素含量^**表示突变体与野生型间差异达0.01显著水平(双尾t检验)。
Fig. 5. Leaf chlorophyll contents at various temperatures.^ **Difference between the mutant and WT was significant at 0.01 level, respectively(two-tailed t test).
图6 不同光照时间下生长的幼苗叶绿素含量^**表示突变体与野生型间差异达0.01显著水平(双尾t检验)。
Fig. 6. Chlorophyll contents of seedlings grown under different photoperiods.^ **Difference between the mutant and WT was significant at 0.01 level, respectively(two-tailed t test).
图7 不同光照强度下wlp6与野生型幼苗的株高、可溶性糖含量、叶绿素含量及叶绿素a/b比值^**表示突变体与野生型间差异达0.01显著水平(双尾t检验)。
Fig. 7. Plant height, soluble sugar content, chlorophyll contents and chlorophyll a/b ratio of wlp6 and wild-type seedlings under different light intensities.^ **Difference between the mutant and WT was significant at 0.01 level, respectively(two-tailed t test).
杂交组合 Cross-combination | 白条纹 White striped plants | 正常株 Normal plants | 分离比 Ratio of segregation | 卡方值 χ2 |
---|---|---|---|---|
wlp6/昌恢121 wlp6/Changhui 121 | 838 | 2 546 | 1∶3.04 | 0.09 |
wlp6/02428 | 457 | 1 412 | 1∶3.09 | 0.27 |
表2 白条纹株与正常株在两个F2群体中的分离比
Table 2 .Separation ratio of white stripe and normal plants in two F2 populations.
杂交组合 Cross-combination | 白条纹 White striped plants | 正常株 Normal plants | 分离比 Ratio of segregation | 卡方值 χ2 |
---|---|---|---|---|
wlp6/昌恢121 wlp6/Changhui 121 | 838 | 2 546 | 1∶3.04 | 0.09 |
wlp6/02428 | 457 | 1 412 | 1∶3.09 | 0.27 |
标记 Marker | 正向引物序列 Forward primer | 反向引物序列 Reverse primer | 物理距离 Physical distance / kb |
---|---|---|---|
RM19715 | CCAATCTAAATTACGCCGCTAGG | GCCAGCTGTTGTTTGTAGTTTCG | 7 869 |
RM19765 | GCTCCACAGAAAAGCAAAGC | TGCAACAGTAGCTGTAGCCG | 8 931 |
R-9 | TTTTCATATGGCGACCAAGC | CATAAAATTTGGCTCAGTACAGC | 8 363 |
R-8 | CTCGGAGTAAGCCCAAATCA | CTGGTTGGCTTTTGCTGTG | 8 325 |
R-7 | GCTGATTTGTTTGGTCCGGG | TCTTTCCGGCATCCCATGTC | 8 188 |
R-6 | GTTTAGGCTGTCAGCAAGGC | TCAGTGACGACTCGCTCTTC | 8 180 |
表3 定位基因用到的重要引物
Table 3 Some important primers used for gene mapping.
标记 Marker | 正向引物序列 Forward primer | 反向引物序列 Reverse primer | 物理距离 Physical distance / kb |
---|---|---|---|
RM19715 | CCAATCTAAATTACGCCGCTAGG | GCCAGCTGTTGTTTGTAGTTTCG | 7 869 |
RM19765 | GCTCCACAGAAAAGCAAAGC | TGCAACAGTAGCTGTAGCCG | 8 931 |
R-9 | TTTTCATATGGCGACCAAGC | CATAAAATTTGGCTCAGTACAGC | 8 363 |
R-8 | CTCGGAGTAAGCCCAAATCA | CTGGTTGGCTTTTGCTGTG | 8 325 |
R-7 | GCTGATTTGTTTGGTCCGGG | TCTTTCCGGCATCCCATGTC | 8 188 |
R-6 | GTTTAGGCTGTCAGCAAGGC | TCAGTGACGACTCGCTCTTC | 8 180 |
图8 WLP6的定位(A、B)及突变位点(C)^ A—WLP6的初定位;B—WLP6的精细定位;C—候选基因,粗箭头处表示发生突变的位置。
Fig. 8. Location of WLP6(A, B) and mutation site(C).^ A, The initial location of WLP6; B, Fine mapping of WLP6; C, Candidate gene, thick arrow indicating location of mutation.
[1] | von Caemmerer S, Quick W P, Furbank R T. The development of C4 rice: Current progress and future challenges.Science, 2012, 336(6089): 1671-1672. |
[2] | Leister D.Chloroplast research in the genomic age.Trends Genet, 2003, 19(1): 47-56. |
[3] | 张洪征, 程治军, 万建民. 水稻白化突变体研究进展. 生物技术通报, 2013, 1(11): 1-7. |
Zhang H Z, Cheng Z J, Wan J M.Progresses on the studying of rice leaf albino.Biotechnol Bull, 2013, 1(11): 1-7. (in Chinese with English abstract) | |
[4] | Awan M A, Konzak C F, Rutger J N, Nilan R A.Mutagenic effect of sodium azide in rice.Crop Sci, 1980, 20(5): 663-668. |
[5] | 孙亚利, 李万昌, 姬生栋. 水稻苗期叶色失绿基因的研究概况. 湖北农业科学, 2015, 54(11): 2564-2568. |
Sun W J, Li W C, Ji S D.Research overview on the rice seeding leaf chlorosis genes.Hubei Agric Sci, 2015, 54(11): 2564-2568. (in Chinese) | |
[6] | 陈叶平, 翟哲, 杨文君, 孙健, 舒小丽, 吴殿星. 水稻条白叶和白穗突变基因St-wp的遗传分析与精细定位. 核农学报, 2015, 29(7): 1246-1252. |
Chen Y P, Zhai Z, Yang W J, Sun J, Shu X L, Wu D X.Genetic analysis and fine mapping of St-wp gene in mutant rice with stripe white leaf and white panicle. J Nucl Agric Sci, 2015, 29(7): 1246-1252. (in Chinese with English abstract) | |
[7] | Kusumi K, Mizutani A, Nishimura M, Lba K.A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J, 1997, 12(6): 1241-1250. |
[8] | 孙林鹤. 水稻白化转绿突变体v13的表型分析及精细定位. 南京: 南京农业大学, 2011. |
Sun L H.Phenotypic analysis of a rice virescent mutant v13 and fine mapping of the gene causing mutation. Nanjing: Nanjing Agricultural University, 2011. (in Chinese with English abstract) | |
[9] | Sanchez A C, Khush G S.Chromosomal location of some marker genes in rice using the primary trisomics.J Hered, 1994, 85(4): 297-300. |
[10] | 李红昌, 钱前, 王赟, 李晓波, 朱丽煌, 徐吉臣. 水稻白穗突变体基因的鉴定和染色体定位. 科学通报, 2003, 25(3): 461-466. |
Li H C, Qian Q, Wang Y, Li X B, Zhu L H, Xu J C.Identification and chromosomal localization of rice white panicle.Chin Sci Bull, 2003, 25(3): 461-466. (in Chinese with English abstract) | |
[11] | 朱小燕, 徐芳芳, 桑贤春, 蒋钰东, 代高猛, 王楠, 张长伟, 何光华. 水稻叶脉白化突变体wpsm的遗传分析与基因定位. 作物学报, 2013, 39(8): 1409-1415. |
Zhu X Y, Xu F F, Sang X C, JiangY D, Dai G M, Wang N, Zhang C W, He G H. Genetic analysis and gene mapping of a rice white midrib mutantwpsm. Acta Agron Sin, 2013, 39(8): 1409-1415. (in Chinese with English abstract) | |
[12] | 李娜, 储黄伟, 文铁桥, 张大兵. 水稻白色中脉Oswm突变体的遗传分析与基因定位. 上海农业学报, 2007, 23(1): 1-4. |
Li N, Chu H W, Wen T Q, Zhang D B.Genetic analysis and mapping of the rice white midrib mutantOswm. Acta Agric Shanghai, 2007, 23(1): 1-4. (in Chinese with English abstract) | |
[13] | 胡景涛, 张甲, 李园园, 付宠允, 郑静, 陈家彬, 胡燕, 李仕贵. 水稻白色中脉Oswm2的遗传分析与分子标记定位. 遗传, 2008, 30(9): 1201-1206. |
Hu J T, Zhang J, Li Y Y, Fu C Y, Zheng J, Chen J B, Hu Y, Li S G.Genetic analysis and mapping of a rice white midrib mutantOswm2. Hereditas, 2008, 31(9): 1201-1206. (in Chinese with English abstract) | |
[14] | 金怡, 刘合芹, 汪得凯, 陶跃之. 一个水稻苗期白条纹叶及抽穗期白穗突变体的鉴定和基因定位. 中国水稻科学, 2011, 25(5): 461-466. |
Jin Y, Liu H Q, Wang D K, Tao Y Z.Genetic analysis and gene mapping of a white striped leaf and white panicle mutant.Chin J Rice Sci, 2011, 25(5): 161-166. (in Chinese with English abstract) | |
[15] | Yoo S C, Cho S H, Sugimoto H, Li J J, Kusumi K, Koh H J, Koh I, Paek N C.Rice virescerrt 3 and stripe l encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development.Plant Physiol, 2009, 150(1): 388-401. |
[16] | Nagao S.Genie analysis and linkage relationship of characters in rice.Adv Genet, 1951, 4(4): 181-212. |
[17] | Iwata N, Satoh H, Omura T.Linkage studies in rice new genes belonging to the 11th linkage group.Jpn J Breed, 1979, 29(2): 182-183. |
[18] | Maekawa M.Studies on genetical difference between distantly related rice varieties.Mem Facul Agric Hokk Univ, 1982, 13(2): 146-177. |
[19] | Maekawa M.A new leaf stripe gene st-5 its linkage with d-2 and the location of gene P in the second linkage group. Rice Genet Newsl, 1988, 5(21): 85-87. |
[20] | Maekawa M, Inukai T, Shinbashi N.A new gene for leaf stripe(st-6) found in linkage group 3. Rice Genet Newsl, 1990, 7(11): 108-109. |
[21] | Stern D B, Hanson M R, Barkan A.Genetics and genomics of chloroplast biogenesis: Maize as a model system.Trends Plant Sci, 2004, 9(6): 293-301. |
[22] | 刘少奎, 张启军, 漆庆明,赖东, 廖慧敏, 颜文飞, 张斌, 吕川根. 水稻白条纹新基因st9(t)的初步定位. 江苏农业学报, 2012, 28(5): 928-932. |
Liu S K, Zhang Q J, Qi Q M, Lai D, Liao H M, Yan W F, Zhang B, Lu C G.Mapping a novel rice white stripe gene,st9(t). Jiangsu J Agric Sci, 2012, 28(5): 928-932. (in Chinese with English abstract) | |
[23] | 何颖红, 邹国兴, 饶玉春, 胡江, 刘坚, 高振宇, 郭龙彪, 朱丽, 钱前. 水稻白条叶突变体(st10)的遗传分析与基因定位. 分子植物育种, 2011, 9(2): 136-142. |
He Y H, Zou G X, Rao Y C, Hu J, Liu J, Gao Z Y, Guo L B, Zhu L, Qian Q.Genetic analysis and molecular mapping of a white-stripe leaf mutation in rice.Mol Plant Breed, 2011, 9(2): 136-142. (in Chinese with English abstract) | |
[24] | 成钦淑, 叶邦全, 袁灿, 李伟滔, 尹俊杰, 王静, 贺闽, 汪吉春, 王玉平, 李仕贵, 陈学伟. 水稻白条纹叶突变体st11的遗传分析与基因定位. 中国水稻科学, 2015, 29(01):14-21. |
Cheng Q S, Ye B Q, Yuan C, Li W T, Yin J J, Wang J, He M, Wang J C, Wang Y P, Li S G, Cheng X W.Genetic analysis and gene mapping of white stripe leaf mutantst11 in rice. Chin J Rice Sci, 2015, 29(1): 14-21. (in Chinese with English abstract) | |
[25] | 叶卫军. 水稻白条纹叶突变体st12的精细定位. 金华: 浙江师范大学, 2013. |
Ye W J.Fine mapping of a white stripe leaf mutant st12 in rice. Jinhua: Zhejiang Normal University, 2013. (in Chinese with English abstract) | |
[26] | 桑贤春, 徐芳芳, 凌英华, 赵芳明, 杨正林, 唐彦强, 田晓庆, 李云峰, 何光华. 水稻条斑花叶突变体st(t)的鉴定与遗传定位. 作物学报, 2010, 36(2): 211-216. |
Sang X C, Xu F F, Ling Y H, Zhao F M, Yang Z L, Tang Y Q, Tian X Q, Li Y F, He G H.Identification and molecular mapping of stripe leaf mutantst(t) in rice, 2010, 36(2): 211-216. (in Chinese with English abstract) | |
[27] | 邝小林. 水稻白条纹叶突变体基因st(k)的遗传分析及基因定位. 成都: 四川农业大学, 2013. |
Kuang X L.Genetic analysis and molecular mapping of a white stripe leaf gene st(k) in rice. Chengdu: Sichuan Agricultural University, 2013. (in Chinese with English abstract) | |
[28] | 王新华. 水稻白条纹叶突变体B38的表型分析及突变基因的精细定位. 南京: 南京农业大学, 2013. |
Wang X H.Phenotypic analysis of rice green-white-stripe mutant B38 and fine mapping of the underlying gene. Nanjing: Nanjing Agricultural University, 2013. (in Chinese with English abstract) | |
[29] | 许凤华,程治军,王久林, 吴自明, 孙伟, 张欣, 雷财林, 王洁, 吴赴清, 郭秀平, 刘玲珑, 万建民. 水稻白条纹叶Gws基因的精细定位与遗传分析. 作物学报, 2010, 36(5): 713-720. |
Xu F H, Cheng Z J, Wang J L, Wu Z M, Sun W, Zhang X, Lei C L, Wang J, Wu F Q, Guo X P, Liu L L, Wan J M.Genetic analysis and fine-mapping ofGws gene using green-white-stripe rice mutant. Acta Agron Sin, 2010, 36(5): 713-720. (in Chinese with English abstract) | |
[30] | 辛龙. 水稻白条纹叶突变体wgl58的遗传分析与基因定位. 成都: 四川农业大学, 2013. |
Xin L.Genetic analysis and gene mapping of a White-stripe-leaf mutant wgl58 in rice. Chengdu: Sichuan Agricultural University, 2013. (in Chinese with English abstract) | |
[31] | 廖婷婷. 水稻白化基因AL5942的遗传鉴定及早衰基因D475的图位克隆. 成都: 四川农业大学, 2015. |
Liao T T.Genetic analysis and map-based cloning of the albino mutant al5942 and the early senescence mutant d475 in rice. Chengdu: Sichuan Agricultural University, 2015. (in Chinese with English abstract) | |
[32] | 宋桂云, 徐正进, 苏慧, 王翠花, 宫雅琴, 孙海燕. 不同穗型的两个水稻品种株型的研究. 内蒙古民族大学学报: 自然科学版, 2006, 21(3): 294-299. |
Song G Y, Xu Z J, Su H, Wang C, Gong Y Q, Sun H Y.The study on plant shape of different panicle rice varieties.J Inn Mong Univ Nat, 2006, 21(3): 294-299. (in Chinese with English abstract) | |
[33] | 左维维. 水稻白条纹叶白穗突变体基因WP4的图位克隆. 杭州: 浙江农林大学, 2016. |
Zuo W W.Map-based cloning of a rice utant gene wp4 controlling white stripe leaf and panicle. Hangzhou: Zhejiang A&F University, 2016. (in Chinese with English abstract) | |
[34] | Wang Y, Wang C, Zheng M, Lyu J, Xu Y, Li X, Niu M, Long W, Wang D, Wang H, Terzaghi W, Wang Y, Wan J.WHITE PANICLE 1, a Val-tRNA synthetase regulating chloroplast ribosome biogenesis in rice, is essential for early chloroplast development.Plant Physiol, 2016, 170(4): 2110. |
[35] | 王晓雯, 蒋钰东, 廖红香, 杨波, 邹帅宇, 朱小燕, 何光华, 桑贤春. 水稻白穗突变体wp4的鉴定与基因精细定位. 作物学报, 2015, 41(6): 838-844. |
Wang X W, Jiang Y D, Liao H X, Yang B, Zou S Y, Zhu X Y, He G H, Sang X C.Identification and gene fine mapping of white panicle mutantwp4 in Oryza sativa. Acta Agron Sin, 2015, 41(6): 838-844. (in Chinese with English abstract) | |
[36] | Song J, Wei X, Shao G N, Sheng Z H, Chen D B, Liu C L, Jiao G A, Xie L H, Tang S Q, Hu P S.The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Mol Biol, 2014, 84(3): 301-314. |
[37] | 陈德西, 李婷, 曲广林, 黄文娟, 何忠全, 李仕贵. 水稻条斑和颖花异常突变体st-fon的鉴定与遗传分析. 中国水稻科学, 2012, 26(6): 677-685. |
Chen D X, Li T, Qu G L, Huang W J, He Z Q, Li S G.Characterization and genetic analysis of a streaked and abnormal glumous flower mutantst-fon. Chin J Rice Sci, 2012, 26(6): 677-685. (in Chinese with English abstract) | |
[38] | Zhang Z G, Cui X A, Wang Y W, Wu J X, Gu X F, Lu T G.The RNA editing actor WSP1 is essential for chloroplast development in rice. Mol Plant, 2017, 10(1): 86-98. |
[39] | 宋建. 水稻白叶白穗突变体基因wlpl的图位克隆与功能分析. 北京: 中国农业科学院, 2013. |
Song J.Map-based cloning and functional study of rice mutant gene wlpl gene controlling white leaf and panicle. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese with English abstract) | |
[40] | Rogers S O, Bendich A J.Extraction of DNA from plant tissues.Plant Mol Biol Manual, 1988, 6(1): 1-10. |
[41] | Panand O, Chen X, McCouch S R.Development microsatel lite markers characterization of simple sequence length polymorphism (SSLPs) in rice (Oryza sativa L). Mol Gen Genet, 1996, 252(5): 597-607. |
[42] | Iba K, Takamiya K I, Yoshihiro T.Formation of functionally active chloroplast is determined at a limited stage of leaf development in vi-rescent mutant of rice.Dev Genet, 1991, 12: 342-348. |
[43] | 夏冰, 阳树英, 刘清波. 生态因子对水稻叶片光合生理功能的影响综述. 作物研究, 2008(2): 140-142. |
Xia B, Yang S Y, Liu Q B.Effects of ecological factors on photosynthetic physiological functions of rice leaves.Crop Res, 2008(2): 140-142. (in Chinese with English abstract) | |
[44] | 陈晓远, 凌木生, 高志红. 水分胁迫对水稻叶片可溶性糖和游离脯氨酸含量的影响. 河南农业科学, 2006(12): 26-30. |
Chen X Y, Ling M S, Gao Z H.Effects of water stress on soluble sugars and free proline content in leaves of rice.J Henan Agric Sci, 2006(12): 26-30. (in Chinese with English abstract) | |
[45] | 杨东, 段留生, 谢华安, 黄庭旭. 水稻幼苗生长对弱光胁迫的响应及相关分析. 中国农学通报, 2011, 27(5): 70-79. |
Yang D, Duan L S, Xie H A, Huang T X.The response and correlation analysis of rice seedlings growth to low-light stress.Chin Agric Sci Bull, 2011, 27(5): 70-79. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||