
Chinese Journal OF Rice Science ›› 2026, Vol. 40 ›› Issue (1): 51-60.DOI: 10.16819/j.1001-7216.2026.250206
• Research Papers • Previous Articles Next Articles
WANG Yixin1,2, LIN Shen3, MA Liuyang2, CHEN Long2, FENG Baohua2, NI Shen2, WEI Xiangjin2, HE Jiwai1,*(
), CHEN Tianxiao2,*(
)
Received:2025-02-21
Revised:2025-03-20
Online:2026-01-10
Published:2026-01-21
Contact:
HE Jiwai, CHEN Tianxiao
王轶欣1,2, 林参3, 马刘洋2, 陈龙2, 奉保华2, 倪深2, 魏祥进2, 贺记外1,*(
), 陈天晓2,*(
)
通讯作者:
贺记外,陈天晓
基金资助:WANG Yixin, LIN Shen, MA Liuyang, CHEN Long, FENG Baohua, NI Shen, WEI Xiangjin, HE Jiwai, CHEN Tianxiao. Regulation of Nitrogen Uptake and Yield in Rice by the Alanine Aminotransferase Gene OsAlaAT4[J]. Chinese Journal OF Rice Science, 2026, 40(1): 51-60.
王轶欣, 林参, 马刘洋, 陈龙, 奉保华, 倪深, 魏祥进, 贺记外, 陈天晓. 谷丙转氨酶基因OsAlaAT4调控水稻氮素吸收和产量[J]. 中国水稻科学, 2026, 40(1): 51-60.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2026.250206
Fig. 1. Phylogenetic tree, expression analysis, and conserved domain analysis A, Phylogenetic tree analysis, with red font indicating the AlaAT family genes in rice; B, Relative expression levels of OsAlaAT4 in different tissues; DAF, Days after fertilization; C, Conserved domain analysis, with conserved amino acid sequences under the blue lines.
Fig. 2. Identification of OsAlaAT4 mutant lines A, Base types of the two mutant lines, --- indicates the deleted base sequence, and red font indicates the inserted bases; B, Sequencing results of the two mutant lines; C, Expression levels of OsAlaAT4 in the wild-type and mutant lines.
Fig. 3. Phenotype and nitrogen content of mutant seedlings A, Above-ground part of wild-type and OsAlaAT4 mutant lines after 14 days of hydroponic cultivation, bar=10 cm; B, Root length of wild-type and OsAlaAT4 mutant lines after 14 days of hydroponic cultivation, bar=10 cm; C, Seedling height of wild-type and OsAlaAT4 mutant lines; D, Dry weight of wild-type and OsAlaAT4 mutant lines; E, Fresh weight of wild-type and OsAlaAT4 mutant lines; F, Root length of wild-type and OsAlaAT4 mutant lines; G, Nitrogen content of wild-type and OsAlaAT4 mutant lines. N0, No nitrogen; N1/2, 1/2 standard nitrogen; N4, 4 times standard nitrogen; N8, 8 times standard nitrogen.
Fig. 4. Enzyme activity and related gene expression level measurement A, Alanine aminotransferase (ALT) enzyme activity; B, α-Ketoglutarate enzyme activity; C, Glutamate synthase (GOGAT) enzyme activity; D-G, Expression levels of OsAlaAT1, OsAlaAT2, OsAlaAT3, OsAlaAT5 in wild-type and mutant lines; H, Expression levels of nitrogen transport-related genes in wild-type and mutant lines.
Fig. 5. Field phenotype, nitrogen content, and yield of mutant lines A, Phenotype of wild-type and OsAlaAT4 mutant lines at maturity; B, Plant height of wild-type and OsAlaAT4 mutant lines; C, Number of tillers in wild-type and OsAlaAT4 mutant lines, n=12; D, Single-plant yield of wild-type and OsAlaAT4 mutant lines at maturity; E, Nitrogen content in leaves, stems, and panicles of wild-type and OsAlaAT4 mutant lines under low nitrogen conditions; F, Nitrogen content in leaves, stems, and panicles of wild-type and OsAlaAT4 mutant lines under high nitrogen conditions; G, Nitrogen use efficiency (NUE) of wild-type and OsAlaAT4 mutant lines. LN, Low nitrogen; HN, High nitrogen.
Fig. 6. Impact of OsAlaAT4 mutation on protein and grain shape A, Protein content; B, Thousand-grain weight; C-E, Grain length, grain width, grain thickness.
| [1] | Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418(6898): 671-677. |
| [2] | Fukushima A, Kusano M. A network perspective on nitrogen metabolism from model to crop plants using integrated ‘omics’ approaches[J]. Journal of Experimental Botany, 2014, 65(19): 5619-5630. |
| [3] | Wang Q, Nian J, Xie X, Yu H, Zhang J, Bai J, Dong G, Hu J, Bai B, Chen L, Xie Q, Feng J, Yang X, Peng J, Chen F, Qian Q, Li J, Zuo J. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice[J]. Nature Communications, 2018, 9: 735. |
| [4] | Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q, Zhang Q, Guo S, Ren J, Li S, Ye Y, Wang Z, Huang J, Tang Q, Sun Y, Peng X, Zhang J, He M, Zhu Y, Xue J, Wang G, Wu L, An N, Wu L, Ma L, Zhang W, Zhang F. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486-489. |
| [5] | Cai S, Zhao X, Pittelkow C M, Fan M, Zhang X, Yan X. Optimal nitrogen rate strategy for sustainable rice production in China[J]. Nature, 2023, 615(7950): 73-79. |
| [6] | Raun W R, Solie J B, Johnson G V, Stone M L, Mullen R W, Freeman K W, Thomason W E, Lukina E V. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application[J]. Agronomy Journal, 2002, 94(4): 815-820. |
| [7] | Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. |
| [8] | Kusano M, Fukushima A, Redestig H, Saito K. Metabolomic approaches toward understanding nitrogen metabolism in plants[J]. Journal of Experimental Botany, 2011, 62(4): 1439-1453. |
| [9] | Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture[J]. Annals of Botany, 2010, 105(7): 1141-1157. |
| [10] | Wang W, Hu B, Yuan D, Liu Y, Che R, Hu Y, Ou S, Liu Y, Zhang Z, Wang H, Li H, Jiang Z, Zhang Z, Gao X, Qiu Y, Meng X, Liu Y, Bai Y, Liang Y, Wang Y, Zhang L, Li L, Jing H, Li J, Chu C. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice[J]. The Plant Cell, 2018, 30(3): 638-651. |
| [11] | Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics, 2015, 47(7): 834-838. |
| [12] | Wu W, Dong X, Chen G, Lin Z, Chi W, Tang W, Yu J, Wang S, Jiang X, Liu X, Wu Y, Wang C, Cheng X, Zhang W, Xuan W, Terzaghi W, Ronald P C, Wang H, Wang C, Wan J. The elite haplotype OsGATA8-H coordinates nitrogen uptake and productive tiller formation in rice[J]. Nature Genetics, 2024, 56(7): 1516-1526. |
| [13] | Kumar A, Silim S N, Okamoto M, Siddiqi M Y, Glass A D M. Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of Oryza sativa subspecies indica[J]. Plant, Cell & Environment, 2003, 26(6): 907-914. |
| [14] | Yu J, Xuan W, Tian Y, Fan L, Sun J, Tang W, Chen G, Wang B, Liu Y, Wu W, Liu X, Jiang X, Zhou C, Dai Z, Xu D, Wang C, Wan J. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice[J]. Plant Biotechnology Journal, 2021, 19(1): 167-176. |
| [15] | Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, Harberd N P, Fu X. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560(7720): 595-600. |
| [16] | Wu K, Wang S, Song W, Zhang J, Wang Y, Liu Q, Yu J, Ye Y, Li S, Chen J, Zhao Y, Wang J, Wu X, Wang M, Zhang Y, Liu B, Wu Y, Harberd N P, Fu X. Enhanced sustainable green revolution yield via nitrogen- responsive chromatin modulation in rice[J]. Science, 2020, 367(6478): eaaz2046. |
| [17] | Liu Y, Wang H, Jiang Z, Wang W, Xu R, Wang Q, Zhang Z, Li A, Liang Y, Ou S, Liu X, Cao S, Tong H, Wang Y, Zhou F, Liao H, Hu B, Chu C. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature, 2021, 590(7847): 600-605. |
| [18] | Igarashi D, Miwa T, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Ohsumi C. Identification of photorespiratory glutamate: Glyoxylate aminotransferase (GGAT) gene in Arabidopsis[J]. The Plant Journal, 2003, 33(6): 975-987. |
| [19] | Rech J, Crouzet J. Partial purification and initial studies of the tomato l-alanine: 2-oxoglutarate aminotransferase[J]. Biochimica et Biophysica Acta, 1974, 350(2): 392-399. |
| [20] | Kikuchi H, Hirose S, Toki S, Akama K, Takaiwa F. Molecular characterization of a gene for alanine aminotransferase from rice (Oryza sativa)[J]. Plant Molecular Biology, 1999, 39(1): 149-159. |
| [21] | Ricoult C, Echeverria L O, Cliquet J B, Limami A M. Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula[J]. Journal of Experimental Botany, 2006, 57(12): 3079-3089. |
| [22] | Liepman A H, Olsen L J. Alanine aminotransferase homologs catalyze the glutamate: Glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis[J]. Plant Physiology, 2003, 131(1): 215-227. |
| [23] | Good A G, Johnson S J, De Pauw M, Carroll R T, Savidov N, Vidmar J, Lu Z, Taylor G, Stroeher V. Engineering nitrogen use efficiency with alanine aminotransferase[J]. Canadian Journal of Botany, 2007, 85(3): 252-262. |
| [24] | 段迎辉, 郭军, 王淑娟. 小麦丙氨酸氨基转移酶基因TaAlaAT1的克隆及表达特征分析[J]. 植物病理学报, 2009, 39(2): 139-146. |
| Duan Y H, Guo J, Wang S J. Cloning and expression characteristics analysis of the wheat alanine aminotransferase gene TaAlaAT1[J]. Journal of Plant Pathology, 2009, 39(2): 139-146. (in Chinese with English abstract) | |
| [25] | 谢月兰, 崔欢, 王长龙. 水稻种子总RNA提取质量问题的探究[J]. 中国农学通报, 2020, 36(29): 37-46. |
| Xie Y L, Cui H, Wang C L. Investigation on the quality issues of total RNA extraction from rice seeds[J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 37-46. (in Chinese with English abstract) | |
| [26] | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method[J]. Methods, 2001, 25(4): 402-408. |
| [27] | Yang J, Kim S R, Lee S K, Choi H, Jeon J S, An G. Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm[J]. Plant Science, 2015, 240: 79-89. |
| [28] | McAllister C H, Good A G. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana[J]. PLoS One, 2015, 10(4): e0121830. |
| [29] | Zhong M, Liu X, Liu F, Ren Y, Wang Y, Zhu J, Teng X, Duan E, Wang F, Zhang H, Wu M, Hao Y, Zhu X, Jing R, Guo X, Jiang L, Wang Y, Wan J. FLOURY ENDOSPERM12 encoding alanine aminotransferase 1 regulates carbon and nitrogen metabolism in rice[J]. Journal of Plant Biology, 2019, 62(1): 61-73. |
| [30] | Fang L, Ma L, Zhao S, Cao R, Jiao G, Hu P, Wei X. Alanine aminotransferase (OsAlaAT1) modulates nitrogen utilization, grain yield, and quality in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 510-513. |
| [31] | 鲁丝琼. OsNLP基因家族在水稻不同生育期表达分析研究[D]. 长沙: 湖南农业大学, 2022. |
| Lu S Q. Expression analysis of the OsNLP gene family in rice at different growth stages[D]. Changsha: Hunan Agricultural University, 2022. (in Chinese with English abstract) | |
| [32] | Tian Q, Chen F, Zhang F, Mi G. Possible involvement of cytokinin in nitrate-mediated root growth in maize[J]. Plant and Soil, 2005, 277(1): 185-196. |
| [33] | 姜苏育. 低氮营养对小麦幼苗根系生长与氮素吸收利用的影响及其生理机制[D]. 南京: 南京农业大学, 2018. |
| Jiang S Y. Effects of low nitrogen nutrition on root growth and nitrogen uptake and utilization in wheat seedlings and their physiological mechanisms[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese with English abstract) | |
| [34] | 谢桂先, 荣湘民, 刘强. 肥料不同配比对水稻产量与蛋白质含量的影响[J]. 湖南农业大学学报(自然科学版), 2004(5): 405-410. |
| Xie G X, Rong X M, Liu Q. Effects of different fertilizer ratios on rice yield and protein content[J]. Journal of Hunan Agricultural University (Natural Science Edition), 2004(5): 405-410. (in Chinese with English abstract) | |
| [35] | 余文. 水稻OsHXK6克隆表达和催化特性研究[D]. 武汉: 华中师范大学, 2015. |
| Yu W. Research on cloning, expression, and catalytic properties of rice OsHXK6[D]. Wuhan: Central China Normal University, 2015. (in Chinese with English abstract) |
| [1] | LI Xingyi, CHEN Ling, SHAO Jiantao, XIAO Suqin, LI Jinlu, FU Huixian, YIN Fuyou, ZHANG Jianhong, CHENG Zaiquan, LIU Li. Progress in Molecular Genetic Research on Co-regulation of Grain Yield and Starch Quality in Rice [J]. Chinese Journal OF Rice Science, 2026, 40(1): 1-17. |
| [2] | MIAO Zhening, CHEN Jijin, LI Ziming, LIU Yi, LUO Lijun. Advances and Prospects in Breeding Bacterial Blight-resistant Rice in South China [J]. Chinese Journal OF Rice Science, 2026, 40(1): 18-26. |
| [3] | YUE Xuanyu, XIE Wenya, FENG Zhiming, CHEN Zongxiang, HU Keming, ZUO Shimin. Function of OsERF93 in Regulating Resistance to Sheath Blight in Rice [J]. Chinese Journal OF Rice Science, 2026, 40(1): 37-50. |
| [4] | HUANG Qina, JIANG Hongrui, YANG Jie, YU Kunyu, YANG Changdeng, LIANG Yan. Bioinformatics Analysis, Development and Application of Molecular Markers for Seed Dormancy Gene Sdr4 in Rice [J]. Chinese Journal OF Rice Science, 2026, 40(1): 61-71. |
| [5] | CHENG Zhaoping, HE Niqing, BAI Kangcheng, LIN Shaojun, HUANG Fenghuang, LIU Junhua, CHENG Zuxin, HUANG Chengzhi, YANG Dewei. Breeding and Utilization of the Three-Line Male Sterile Line Fumeng A with Pyramided Rice Blast Resistance Genes Pigm-1 and Pid2 [J]. Chinese Journal OF Rice Science, 2026, 40(1): 72-84. |
| [6] | LIU Yaping, DONG Yici, ZHENG Junyan, QIU Xuan, LIU Pengcheng, YE Yafeng, LIU Binmei, CHEN Xifeng, MA Bojun. Phenotypic Identification and Gene Fine Mapping of the Lesion Mimic and Early Senescence Mutant lmes7 in Rice [J]. Chinese Journal OF Rice Science, 2026, 40(1): 85-94. |
| [7] | LIAO Zhengming, GUO Liang, PAN Xiaowu, LI Yongchao, DONG Zheng, LI Xiaoxiang. Identification of Genes for Rice Seed Storability and Transcriptome Analysis Under Different Aging Conditions [J]. Chinese Journal OF Rice Science, 2026, 40(1): 95-105. |
| [8] | ZHANG Cheng, SHAO Guojun, ZHANG Xue, TIAN Shujun, SUN Chi, GUO Yanying, ZHOU Ran, HAN Yong, ZHENG Wenjing, SUN Lianping. QTL Mapping and Pyramiding Effect Analysis of Diurnal Floret Opening Time Traits in japonica Rice [J]. Chinese Journal OF Rice Science, 2026, 40(1): 106-117. |
| [9] | XIAO Wuwei, ZHANG Yuqing, ZHU Chenguang, TIAN Guisheng, CAI Yuehong, WANG Fei, XIONG Dongliang, HUANG Jianliang, PENG Shaobing, CUI Kehui. Effects of Application Time and Rate of Bud-promoting Fertilizer on Main Crop Quality and Annual Yield of Ratoon Rice [J]. Chinese Journal OF Rice Science, 2026, 40(1): 118-130. |
| [10] | XIE Shimin, ZHOU Yuzhu, XUE Xiaodi, ZHU Guangfei, SUN Liang, CHEN Jianneng. Design and Experiment of an Integrated Picking and Planting Mechanism for Rice Pot Seedlings [J]. Chinese Journal OF Rice Science, 2026, 40(1): 131-144. |
| [11] | CHEN Ling, LIN Wenying, LIANG Limei, OUYANG Younan, YE Shenghai, JI Zhijuan. Flowering Habits of Rice and Its Application in Breeding japonica Cytoplasmic Male Sterile Lines [J]. Chinese Journal OF Rice Science, 2025, 39(6): 731-743. |
| [12] | WANG Juan, WU Lijuan, HONG Haibo, YAO Zhiwen, WANG Lei, E Zhiguo. Research Progress on Biological Functions of Ubiquitin-conjugating Enzymes in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(6): 744-750. |
| [13] | TAO Shibo, XU Na, XU Zhengjin, LIU Chang, XU Quan. Cloning of Cold6 Conferring Cold Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(6): 751-759. |
| [14] | CHEN Wei, YE Yuanmei, ZHAO Jianhua, FENG Zhiming, CHEN Zongxiang, HU Keming, ZUO Shimin. Modifying Heading Date of Nanjing 46 via CRISPR/Cas9-mediated Genome Editing [J]. Chinese Journal OF Rice Science, 2025, 39(6): 760-770. |
| [15] | HOU Guihua, ZHOU Liguo, LEI Jianguo, CHEN Hong, NIE Yuanyuan. Preliminary Analysis of Function and Mechanism of OsRDR5 Gene in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(6): 779-788. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||