
Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (6): 744-750.DOI: 10.16819/j.1001-7216.2025.250316
• Reviews and Special Topics • Previous Articles Next Articles
WANG Juan, WU Lijuan, HONG Haibo, YAO Zhiwen, WANG Lei, E Zhiguo*(
)
Received:2025-03-24
Revised:2025-09-19
Online:2025-11-10
Published:2025-11-19
Contact:
E Zhiguo
通讯作者:
鄂志国
基金资助:WANG Juan, WU Lijuan, HONG Haibo, YAO Zhiwen, WANG Lei, E Zhiguo. Research Progress on Biological Functions of Ubiquitin-conjugating Enzymes in Rice[J]. Chinese Journal OF Rice Science, 2025, 39(6): 744-750.
王娟, 吴丽娟, 洪海波, 姚志文, 王磊, 鄂志国. 水稻泛素结合酶E2的生物学功能研究进展[J]. 中国水稻科学, 2025, 39(6): 744-750.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.250316
| 基因名称 Gene name | 别名 Gene alias | 基因号 Gene ID | 染色体 Chromosome | 生物学功能 Biological function | 参考文献 Reference |
| OsUBC1 | OsSCE1 | Os10g0536000 | 10 | 影响粒重和结实率,负调控耐旱性 Negatively regulates grain weight, seed-setting rate, and drought tolerance | [ |
| OsUBC2 | OsSCE1a; OsSCE2 | Os03g0123100 | 3 | 负调控氮素利用率和光合效率,延长抽穗期 Negatively regulates nitrogen use efficiency and photosynthetic efficiency, and delays heading date | [ |
| OsUBC3 | OsSCE3 | Os04g0580400 | 4 | 正调控耐旱性 Positively regulates drought tolerance | [ |
| OsUBC7 | qMT7-3 | Os07g0166800 | 7 | 正调控籼稻幼苗的耐寒性 Positively regulates cold tolerance in indica rice seedlings | [ |
| OsUBC9 | OsRad6 | Os03g0791800 | 3 | 与SCF泛素连接酶亚基OsSGT1互作 Interacts with the SCF ubiquitin ligase subunit OsSGT1 | [ |
| OsUBC11 | Os01g0839700 | 1 | 负调控根系、节间和穗发育 Negatively regulates root, internode, and panicle development | [ | |
| OsUBC12 | Os05g0460200 | 5 | 增强粳稻的低温下发芽能力 Enhances germination ability under low temperature conditions in japonica rice | [ | |
| OsUBC13 | Os02g0120600 | 2 | 与OsPUB9互作使其稳定 Interacts with and stabilizes OsPUB9 | [ | |
| OsUBC14 | OsUBC5a | Os01g0658400 | 1 | 负调控细胞死亡和免疫反应 Negatively regulates cell death and immune responses | [ |
| OsUBC16 | Os04g0667800 | 4 | 负调控水稻籽粒大小和重量 Negatively regulates grain size and weight in rice | [ | |
| OsUBC18 | Os09g0293400 | 9 | 与OsUBR7配对催化组蛋白H2B单泛素化 Pairs with OsUBR7 to catalyze histone H2B monoubiquitination | [ | |
| OsUBC24 | Os07g0577400 | 7 | 调节水稻胚发生和类黄酮生物合成 Regulates rice embryogenesis and flavonoid biosynthesis | [ | |
| OsUBC26 | Os12g0636800 | 12 | 正调控稻瘟病抗性 Positively regulates resistance to rice blast | [ | |
| OsUBC30 | OsUEV1B | Os12g0605400 | 12 | 调节磷酸盐稳态 Regulates phosphate homeostasis | [ |
| OsUBC35 | LTN1; OsPHO2 | Os05g0557700 | 5 | 调节磷酸盐稳态 Regulates phosphate homeostasis | [ |
| OsUBC45 | SMG3 | Os03g0308000 | 3 | 调控穗和籽粒发育 Regulates panicle and grain development | [ |
| OsUBC47 | OsUBC13 | Os01g0673600 | 1 | 负调控稻瘟病和白叶枯病抗性 Negatively regulates resistance to rice blast and bacterial blight | [ |
Table 1. Overview of biological functions of OsUBC genes in rice
| 基因名称 Gene name | 别名 Gene alias | 基因号 Gene ID | 染色体 Chromosome | 生物学功能 Biological function | 参考文献 Reference |
| OsUBC1 | OsSCE1 | Os10g0536000 | 10 | 影响粒重和结实率,负调控耐旱性 Negatively regulates grain weight, seed-setting rate, and drought tolerance | [ |
| OsUBC2 | OsSCE1a; OsSCE2 | Os03g0123100 | 3 | 负调控氮素利用率和光合效率,延长抽穗期 Negatively regulates nitrogen use efficiency and photosynthetic efficiency, and delays heading date | [ |
| OsUBC3 | OsSCE3 | Os04g0580400 | 4 | 正调控耐旱性 Positively regulates drought tolerance | [ |
| OsUBC7 | qMT7-3 | Os07g0166800 | 7 | 正调控籼稻幼苗的耐寒性 Positively regulates cold tolerance in indica rice seedlings | [ |
| OsUBC9 | OsRad6 | Os03g0791800 | 3 | 与SCF泛素连接酶亚基OsSGT1互作 Interacts with the SCF ubiquitin ligase subunit OsSGT1 | [ |
| OsUBC11 | Os01g0839700 | 1 | 负调控根系、节间和穗发育 Negatively regulates root, internode, and panicle development | [ | |
| OsUBC12 | Os05g0460200 | 5 | 增强粳稻的低温下发芽能力 Enhances germination ability under low temperature conditions in japonica rice | [ | |
| OsUBC13 | Os02g0120600 | 2 | 与OsPUB9互作使其稳定 Interacts with and stabilizes OsPUB9 | [ | |
| OsUBC14 | OsUBC5a | Os01g0658400 | 1 | 负调控细胞死亡和免疫反应 Negatively regulates cell death and immune responses | [ |
| OsUBC16 | Os04g0667800 | 4 | 负调控水稻籽粒大小和重量 Negatively regulates grain size and weight in rice | [ | |
| OsUBC18 | Os09g0293400 | 9 | 与OsUBR7配对催化组蛋白H2B单泛素化 Pairs with OsUBR7 to catalyze histone H2B monoubiquitination | [ | |
| OsUBC24 | Os07g0577400 | 7 | 调节水稻胚发生和类黄酮生物合成 Regulates rice embryogenesis and flavonoid biosynthesis | [ | |
| OsUBC26 | Os12g0636800 | 12 | 正调控稻瘟病抗性 Positively regulates resistance to rice blast | [ | |
| OsUBC30 | OsUEV1B | Os12g0605400 | 12 | 调节磷酸盐稳态 Regulates phosphate homeostasis | [ |
| OsUBC35 | LTN1; OsPHO2 | Os05g0557700 | 5 | 调节磷酸盐稳态 Regulates phosphate homeostasis | [ |
| OsUBC45 | SMG3 | Os03g0308000 | 3 | 调控穗和籽粒发育 Regulates panicle and grain development | [ |
| OsUBC47 | OsUBC13 | Os01g0673600 | 1 | 负调控稻瘟病和白叶枯病抗性 Negatively regulates resistance to rice blast and bacterial blight | [ |
| [1] | Wang J, Jiang J, Oard J H. Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L.)[J]. Plant Science, 2000, 156(2): 201-211. |
| [2] | Morreale F E, Walden H. Types of ubiquitin ligases[J]. Cell, 2016, 165(1): 248-248.e1. |
| [3] | Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: Styles, structures and functions[J]. Molecular Biomedicine, 2021, 2(1): 23. |
| [4] | Mevissen T E T, Hospenthal M K, Geurink P P, Elliott P R, Akutsu M, Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El Oualid F, Freund S M V, Ovaa H, Komander D. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis[J]. Cell, 2013, 154(1): 169-184. |
| [5] | Zhang Y, Li T, Wang L, Zhao H. Characterization of the ubiquitin-conjugating enzyme gene family in rice and evaluation of expression profiles under abiotic stresses and hormone treatments[J]. PLoS One, 2015, 10(4): e0122621. |
| [6] | Bae H, Kim W T. Classification and interaction modes of 40 rice E 2 ubiquitin-conjugating enzymes with 17 rice ARM-U-box E3 ubiquitin ligases[J]. Biochemical and Biophysical Research Communications, 2014, 444(4): 575-580. |
| [7] | Zang Y, Wang Q, Xue C, Li M, Wen R, Xiao W. Rice UBC13 a candidate housekeeping gene, is required for K63-linked polyubiquitination and tolerance to DNA damage[J]. Rice, 2012, 5(1): 24. |
| [8] | Wang Q, Zang Y, Zhou X, Xiao W. Characterization of four rice UEV1 genes required for Lys63-linked polyubiquitination and distinct functions[J]. BMC Plant Biology, 2017, 17(1): 126. |
| [9] | Wang F, Deng M, Chen J, He Q, Jia X, Guo H, Xu J, Liu Y, Zhang S, Shou H, Mao C. CASEIN KINASE2-dependent phosphorylation of PHOSPHATE2 fine-tunes phosphate homeostasis in rice[J]. Plant Physiology, 2020, 183(1): 250-262. |
| [10] | Wang R, You X, Zhang C, Fang H, Wang M, Zhang F, Kang H, Xu X, Liu Z, Wang J, Zhao Q, Wang X, Hao Z, He F, Tao H, Wang D, Wang J, Fang L, Qin M, Zhao T, Zhang P, Xing H, Xiao Y, Liu W, Xie Q, Wang G L, Ning Y. An ORFeome of rice E3 ubiquitin ligases for global analysis of the ubiquitination interactome[J]. Genome Biology, 2022, 23(1): 154. |
| [11] | Liu H, Liu S, Yu H, Huang X, Wang Y, Jiang L, Meng X, Liu G, Chen M, Jing Y, Yu F, Wang B, Li J. An engineered platform for reconstituting functional multisubunit SCF E3 ligase in vitro[J]. Molecular Plant, 2022, 15(8): 1285-1299. |
| [12] | Swatek K N, Komander D. Ubiquitin modifications[J]. Cell Research, 2016, 26(4): 399-422. |
| [13] | Han Y, Zhang C, Sha H, Wang X, Yu Y, Liu J, Zhao G, Wang J, Qiu G, Xu X, Fang J. Ubiquitin-conjugating enzyme OsUBC11 affects the development of roots via auxin pathway[J]. Rice, 2023, 16(1): 9. |
| [14] | Zhang C, Wang H, Tian X, Lin X, Han Y, Han Z, Sha H, Liu J, Liu J, Zhang J, Bu Q, Fang J. A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during japonica rice germination[J]. Nature Communications, 2024, 15(1): 2211 |
| [15] | Li J, Zhang B, Duan P, Yan L, Yu H, Zhang L, Li N, Zheng L, Chai T, Xu R, Li Y. An endoplasmic reticulum-associated degradation-related E2-E3 enzyme pair controls grain size and weight through the brassinosteroid signaling pathway in rice[J]. The Plant Cell, 2023, 35(3): 1076-1091. |
| [16] | Zheng Y, Zhang S, Luo Y, Li F, Tan J, Wang B, Zhao Z, Lin H, Zhang T, Liu J, Liu X, Guo J, Xie X, Chen L, Liu Y G, Chu Z. Rice OsUBR7 modulates plant height by regulating histone H2B monoubiquitination and cell proliferation[J]. Plant Communications, 2022, 3(6): 100412. |
| [17] | Liu J, Liao W, Nie B, Zhang J, Xu W. OsUEV1B, an Ubc enzyme variant protein, is required for phosphate homeostasis in rice[J]. The Plant Journal, 2021, 106(3): 706-719. |
| [18] | Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation pesponses in rice[J]. Plant Physiology, 2011, 156(3): 1101-1115. |
| [19] | Cao Y, Yan Y, Zhang F, Wang H D, Gu M, Wu X N, Sun S B, Xu G H. Fine characterization of OsPHO2 knockout mutants reveals its key role in Pi utilization in rice[J]. Journal of Plant Physiology, 2014, 171(3-4): 340-348. |
| [20] | Hu B, Wang W, Deng K, Li H, Zhang Z, Zhang L, Chu C. MicroRNA399 is involved in multiple nutrient starvation responses in rice[J]. Frontiers in Plant Science, 2015, 6: 188. |
| [21] | Yamamoto T, Mori Y, Ishibashi T, Uchiyama Y, Sakaguchi N, Furukawa T, Hashimoto J, Kimura S, Sakaguchi K. Characterization of Rad 6 from a higher plant, rice (Oryza sativa L.) and its interaction with Sgt1, a subunit of the SCF ubiquitin ligase complex[J]. Biochemical and Biophysical Research Communications, 2004, 314(2): 434-439. |
| [22] | Zang G, Zou H, Zhang Y, Xiang Z, Huang J, Luo L, Wang C, Lei K, Li X, Song D, Din A U, Wang G. The de-etiolated 1 homolog of Arabidopsis modulates the ABA signaling pathway and ABA biosynthesis in rice[J]. Plant Physiology, 2016, 171(2): 1259-1276. |
| [23] | Kim B, Lee Y, Nam J Y, Lee G, Seo J, Lee D, Cho Y H, Kwon S W, Koh H J. Mutations in OsDET1, OsCOP10, and OsDDB1 confer embryonic lethality and alter flavonoid accumulation in rice (Oryza sativa L.) seed[J]. Frontiers in Plant Science, 2022, 13: 952856. |
| [24] | Wei Z, Zhang Y, Yuan Y, Li L, Li T, Guan Y, Wang D, Gao Y, Gao Q, Ji J, Nguyen T, Liu X. Ubiquitin-conjugated enzyme OsUBC16 negatively regulates grain size and grain weight in rice[J]. Journal of Plant Biology, 2024, 67(5): 409-418. |
| [25] | Xie Y, Fan Z, Liang X, Teng K, Huang Z, Huang M, Zhao H, Xu K, Li J. OsPUB9 modulates leaf angle and grain size through the brassinosteroid signaling pathway in rice[J]. The Plant Journal, 2025, 121(3): e17230. |
| [26] | Ma J, Wang Y, Ma X, Meng L, Jing R, Wang F, Wang S, Cheng Z, Zhang X, Jiang L, Wang J, Wang J, Zhao Z, Guo X, Lin Q, Wu F, Zhu S, Wu C, Ren Y, Lei C, Zhai H, Wan J. Disruption of gene SPL35 encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice[J]. Plant Biotechnology Journal, 2019, 17(8): 1679-1693. |
| [27] | Takai R, Matsuda N, Nakano A, Hasegawa K, Akimoto C, Shibuya N, Minami E. EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b[J]. The Plant Journal, 2002, 30(4): 447-455. |
| [28] | Liu J, Nie B, Yu B, Xu F, Zhang Q, Wang Y, Xu W. Rice ubiquitin-conjugating enzyme OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a[J]. Plant Biotechnology Journal, 2023, 21(8): 1590-1610. |
| [29] | Filipe O, De Vleesschauwer D, Haeck A, Demeestere K, Höfte M. The energy sensor OsSnRK1a confers broad-spectrum disease resistance in rice[J]. Scientific Reports, 2018, 8(1): 3864. |
| [30] | Cao Y, Lu M, Chen J, Li W, Wang M, Chen F. Identification of Ossnrk1a-1 regulated genes associated with rice immunity and seed set[J]. Plants, 2024, 13(5): 596. |
| [31] | Liu X, Song L, Zhang H, Lin Y, Shen X, Guo J, Su M, Shi G, Wang Z, Lu G D. Rice ubiquitin-conjugating enzyme OsUBC26 is essential for immunity to the blast fungus Magnaporthe oryzae[J]. Molecular Plant Pathology, 2021, 22(12): 1613-1623. |
| [32] | Phan H, Schläppi M. The RAD6-like ubiquitin conjugase gene OsUBC7 has a positive role in the early cold stress tolerance response of rice[J]. Genes, 2025, 16(1): 66. |
| [33] | Pathak B, Maurya C, Faria M C, Alizada Z, Nandy S, Zhao S, Jamsheer K M, Srivastava V. Targeting TOR and SnRK1 genes in rice with CRISPR/Cas9[J]. Plants, 2022, 11(11): 1453. |
| [34] | Ghimire S, Tang X, Liu W, Fu X, Zhang H, Zhang N, Si H. SUMO conjugating enzyme: A vital player of SUMO pathway in plants[J]. Physiology and Molecular Biology of Plants, 2021, 27(10): 2421-2431. |
| [35] | Joo J, Choi D H, Lee Y H, Seo H S, Song S I. The rice SUMO conjugating enzymes OsSCE1 and OsSCE3 have opposing effects on drought stress[J]. Journal of Plant Physiology, 2019, 240 : 152993. |
| [36] | Nurdiani D, Widyajayantie D, Nugroho S. OsSCE1 encoding SUMO E2-conjugating enzyme involves in drought stress response of Oryza sativa[J]. Rice Science, 2018, 25(2): 73-81. |
| [37] | Nigam N, Singh A, Sahi C, Chandramouli A, Grover A. SUMO-conjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes: Genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response[J]. Molecular Genetics and Genomics, 2008, 279(4): 371-383. |
| [38] | Yuan X, Luan Y, Liu D, Wang J, Peng J, Zhao J, Li L, Su J, Xiao Y, Li Y, Ma X, Zhu X, Tan L, Liu F, Sun H, Gu P, Xu R, Zhang P, Zhu Z, Sun C, Fu Y, Zhang K. The SUMO-conjugating enzyme OsSCE1a from wild rice regulates the functional stay-green trait in rice[J]. Plant Biotechnology Journal, 2025, 23(2): 615-631. |
| [1] | CHEN Ling, LIN Wenying, LIANG Limei, OUYANG Younan, YE Shenghai, JI Zhijuan. Flowering Habits of Rice and Its Application in Breeding japonica Cytoplasmic Male Sterile Lines [J]. Chinese Journal OF Rice Science, 2025, 39(6): 731-743. |
| [2] | TAO Shibo, XU Na, XU Zhengjin, LIU Chang, XU Quan. Cloning of Cold6 Conferring Cold Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(6): 751-759. |
| [3] | CHEN Wei, YE Yuanmei, ZHAO Jianhua, FENG Zhiming, CHEN Zongxiang, HU Keming, ZUO Shimin. Modifying Heading Date of Nanjing 46 via CRISPR/Cas9-mediated Genome Editing [J]. Chinese Journal OF Rice Science, 2025, 39(6): 760-770. |
| [4] | HOU Guihua, ZHOU Liguo, LEI Jianguo, CHEN Hong, NIE Yuanyuan. Preliminary Analysis of Function and Mechanism of OsRDR5 Gene in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(6): 779-788. |
| [5] | WANG Shilin, WU Ting, ZHOU Shiqi, SONG Siming, HU Biaolin. Identification of QTLs for Seed Storability in Dongxiang Wild Rice by Integrating BSA-Seq and QTL Analysis [J]. Chinese Journal OF Rice Science, 2025, 39(6): 789-800. |
| [6] | LU Shuai, TAO Tao, LIU Ran, ZHOU Wenyu, CAO Lei, YANG Qingqing, ZHANG Mingqiu, REN Xinzhe, YANG Zhidi, XU Fuxiang, HUAN Haidong, GONG Yuanhang, ZHANG Haocheng, JIN Sukui, CAI Xiuling, GAO Jiping, LENG Yujia. Identification and Gene Cloning of a Long Sterile Lemma and Small Grain Mutant lsg8 in Rice (Oryza sativa L.) [J]. Chinese Journal OF Rice Science, 2025, 39(6): 813-824. |
| [7] | DENG Huan, LIU Yapei, WANG Chunlian, GUO Wei, CHEN Xifeng, JI Zhiyuan. Mapping Analysis of a New Bacterial Blight Resistance Gene Xa49(t) in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(6): 825-831. |
| [8] | ZHANG Lanlan, LIU Dilin, MA Xiaozhi, HUO Xing, KONG Le, LI Jinhua, FU Chongyun, LIAO Yilong, ZHU Manshan, ZENG Xueqin, LIU Wuge, WANG Feng. Quality Traits Affecting Eating Quality in indica Rice Under Different Nitrogen Application Levels in Early and Late Seasons in South China [J]. Chinese Journal OF Rice Science, 2025, 39(6): 832-846. |
| [9] | BIAN Jinlong, REN Gaolei, QIU Shi, XU Fangfu, HU Zhonglei, ZHANG Hongcheng, WEI Haiyan. Effect of Application Methods of Mixed Controlled-release Nitrogen Fertilizer on Yield and Nitrogen Utilization of Good Taste Quality japonica Rice Under Different Mechanical Transplanting Methods in the Huaibei Region [J]. Chinese Journal OF Rice Science, 2025, 39(6): 847-862. |
| [10] | LI Xing, ZHANG Ruichun, CHEN Ge, XIE Jiaxin, XIAO Zhengwu, CAO Fangbo, CHEN Jiana, HUANG Min. Yield Formation and Photosynthetic Characteristics of Machine-transplanted Late-season Rice with Short Growth Duration [J]. Chinese Journal OF Rice Science, 2025, 39(6): 863-872. |
| [11] | LUO Zizi, ZHANG Dejun, CHEN Dongdong, BI Miao, ZHU Yuhan, HAN Xu, WU Qiang, LI Yuechen. Characteristics of Spatiotemporal Evolution of Thermal Resources in Ratoon Rice at Heading and Grain-filling Stages in Sichuan Basin in 1981−2022 [J]. Chinese Journal OF Rice Science, 2025, 39(6): 873-886. |
| [12] | HAO Wenqian, CAI Xingjing, YANG Haidong, WU Yuyang, TENG Xuan, XUE Chao, GONG Zhiyun. Advances in Roles of Different Types of Histone Modifications in Responses of Rice to Abiotic Stresses [J]. Chinese Journal OF Rice Science, 2025, 39(5): 575-585. |
| [13] | LU Tingting, YAN Wenhui, SU Xinquan, ZENG Luohua, HUA Liqin, CHEN Jianghua, FENG Baohua, WANG Yuexing, HU Jiang, FU Guanfu. Research Progress on Physiological and Ecological Mechanisms and Regulation Pathways of Yield, Quality and Stress Resistance Response in Perennial Rice [J]. Chinese Journal OF Rice Science, 2025, 39(5): 586-600. |
| [14] | WU Wanting, XU Qian, LIU Dantong, ZHU Changjin, DU Haotian, JU Haoran, HUO Zhongyang, DAI Qigen, LI Guohui, XU Ke. Research Progress in Regulation of Anthocyanin Accumulation in Colored Rice [J]. Chinese Journal OF Rice Science, 2025, 39(5): 601-614. |
| [15] | WANG Jingbo, SU Chang, FENG Jing, JIANG Sixu, XU Hai, CUI Zhibo, ZHAO Minghui. Functional Study on Aluminum Tolerance of OsAlR1 Gene in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(5): 615-623. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||