Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (5): 601-614.DOI: 10.16819/j.1001-7216.2025.241206
• Reviews and Special Topics • Previous Articles Next Articles
WU Wanting1, XU Qian1, LIU Dantong1,
ZHU Changjin1, DU Haotian1, JU Haoran1, HUO Zhongyang1,2,
DAI Qigen1,2, LI Guohui1,2, XU Ke1,2,*
Received:
2024-12-12
Revised:
2025-03-06
Online:
2025-09-10
Published:
2025-09-10
Contact:
XU Ke
吴婉婷1 徐倩1 刘丹彤1 朱昌进1 都昊田1 居浩然1 霍中洋1,2 戴其根1,2
李国辉1,2 许轲1,2,*
通讯作者:
许轲
基金资助:
国家自然科学基金资助项目(32272200);江苏省重点研发计划资助项目(BE2021361);江苏省碳达峰碳中和科技创新专项资金资助项目(BE2022425);江苏省高校优势学科建设工程资助项目(PAPD)。
WU Wanting, XU Qian, LIU Dantong, ZHU Changjin, DU Haotian, JU Haoran, HUO Zhongyang, DAI Qigen, LI Guohui, XU Ke. Research Progress in Regulation of Anthocyanin Accumulation in Colored Rice[J]. Chinese Journal OF Rice Science, 2025, 39(5): 601-614.
吴婉婷, 徐倩, 刘丹彤, 朱昌进, 都昊田, 居浩然, 霍中洋, 戴其根, 李国辉, 许轲. 有色稻花青素积累调控研究进展[J]. 中国水稻科学, 2025, 39(5): 601-614.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.241206
[1] Zhao M C, Zhai L N, Tang Q J, Ren J F, Zhou S Z, Wang H J, Yun Y, Yang Q W, Yan X W, Xing F N, Qiao W H. Comparative metabolic profiling of different colored rice grains reveals the distribution of major active compounds and key secondary metabolites in green rice[J]. Foods, 2024, 13(12): 1899. [2] 韩磊, 汪旭东, 徐建第, 汪秀志, 张红宇. 有色稻米研究现状分析[J]. 中国稻米, 2003(5): 5-8. Han L, Wang X D, Xu J, Wang X, Zhang H. Analysis of research status of colored rice[J]. China Rice, 2003(5): 5-8. (in Chinese with English abstract) [3] 刘传光, 周新桥, 陈达刚, 郭洁, 陈平丽, 陈可, 李逸翔, 陈友订. 功能性水稻研究进展及前景展望[J]. 广东农业科学, 2021, 48(10): 87-99. Liu C G, Zhou X Q, Chen D G, Guo J, Chen P L, Chen K, Li Y X, Chen Y D. Progress and prospect of functional rice research[J]. Guangdong Agricultural Sciences, 2021, 48(10): 87-99. (in Chinese with English abstract) [4] 王彩霞, 舒庆尧. 水稻紫色种皮基因Pb的精细定位与候选基因分析[J]. 科学通报, 2007, 11(52): 2517-2523. Wang C X, Shu Q Y. Fine mapping and candidate gene analysis of purple seed coat gene Pb in rice[J]. Science Bulletin, 2007, 11(52): 2517-2523. (in Chinese with English abstract) [5] 鄢珊. 色稻的色素成分分析及品质评价[D]. 武汉:武汉轻工大学, 2024: 1-126. Yan S. Analysis of pigment components and quality evaluation of colored rice [D]. Wuhan: Wuhan Polytechnic University, 2024: 1-126. (in Chinese with English abstract) [6] 赵成章, 戚秀芳, 杨长登, 关连武. 应用细胞工程技术培育“黑珍米” 的研究[J]. 农业生物技术学报, 1993, 1(1): 104-109. Zhao C Z, Qi X F, Yang C D, Guan L W. Study on the application of cell engineering technology to cultivate ‘black rice’[J]. Journal of Agricultural Biotechnology, 1993, 1(1): 104-109. (in Chinese with English abstract) [7] 赖来展, 王志坚, 陈春洪, 许秀珍, 李娘辉. 黑米稻 DNA 分子育种技术研究[J]. 广东农业科学, 1993(5): 29-3l. Lai L Z, Wang Z J, Xu X Z, Li N H. Study on DNA molecular breeding technology of black rice[J]. Guangdong Agricultural Sciences, 1993(5): 29-3l. (in Chinese with English abstract) [8] Fongfon S, Prom-U-Thai C, Pusadee T, Jamjod S. Responses of purple rice genotypes to nitrogen and zinc fertilizer application on grain yield, nitrogen, zinc, and anthocyanin concentration[J]. Plants, 2021, 10(8): 1717. [9] Sedeek K, Zuccolo A, Fornasiero A, Weber A M, Sanikommu K, Sampathkumar S, Rivera L F, Butt H, Mussurova S, Alhabsi A, Nurmansyah N, Ryan E P, Wing R A, Mahfouz M M. Multi-omics resources for targeted agronomic improvement of pigmented rice[J]. Nature Food, 2023, 4(5): 366-371. [10] 熊杨苏, 龚加顺, 郭应忠. 云南墨江紫米安全指标评价[J]. 安徽农业科学, 2016, 44(24): 75-77. Xiong Y S,Gong J S,Guo Y Z. Security Index Evaluation of Purple Rice in Mojiang County of Yunnan Province[J]. Journal of Anhui Agricultarl Science. 2016, 44(24): 75-77. (in Chinese with English abstract) [11] 周国彬, 张杰. 功能性特种稻紫黑米的营养价值及开发利用探讨[J]. 现代农业科技, 2012(24): 69-70. Zhou G B, Zhang J. Study on nutritive value and development and utilization of functional type special rice Purple-black milled rice[J]. Modern Agricultural Sciences and Technology, 2012(24): 69-70. (in Chinese with English abstract) [12] Lu Y, Zuo Z H, Yang Z F. Toward breeding pigmented rice balancing nutrition and yield[J]. Trends in Plant Science, 2024, 29(5): 504-506. [13] 周云, 张守文. “特种稻米”功能特性及其开发利用[J]. 粮食与油脂, 2002(7): 36-38. Zhou Y, Zhang S W. Functional characteristics of ‘special rice’ and its development and utilization[J]. Cereals and Oils, 2002(7): 36-38. (in Chinese) [14] Peng B, Lou A Q, Luo X D, Wang R, Tu S, Xue Z Y, Qiu J, Tian X Y, Yang F, Zhang Y M, Huang Y Q, Sun Y Y, Chen P L, Zhou W, Wang Q X. The nutritional value and application of black rice: A review[J]. Journal of Biotechnology Research, 2021(74): 63-72. [15] Sangkitikomol W, Tencomnao T, Rocejanasaroj A. Effects of Thai black sticky rice extract on oxidative stress and lipid metabolism gene expression in HepG2 cells[J]. Genetics and Molecular Research, 2010, 9(4): 2086-2095. [16] 赵腾芳. 黑糯稻品种资源的考察 [J]. 云南农业科技, 1985(1): 29-31+27. Zhao T F. Investigation on black glutinous rice variety resources[J]. Yunnan Agricultural Science and Technology, 1985(1): 29-31+27. (in Chinese) [17] 曾盔, 黄斌, 王洁, 秦丹, 彭忠魁, 刘仲华. 黑米黑色素的提取与精制[J]. 食品科学, 2006(12): 304-307. Zeng K, Huang B, Wang J, Qin D, Peng Z K, Liu Z H. Extraction and refinement of melanin from black kerneled rice[J]. Food Science, 2006(12): 304-307. (in Chinese with English abstract) [18] Poosri S, Thilavech T, Pasukamonset P, Suparpprom C, Adisakwattana S. Studies on Riceberry rice (Oryza sativa L.) extract on the key steps related to carbohydrate and lipid digestion and absorption: A new source of natural bioactive substances[J]. NFS Journal, 2019, 17: 17-23. [19] 张名位, 郭宝江, 池建伟, 魏振承, 徐志宏. 黑米皮提取物的体外抗氧化作用与成分分析[J]. 中国粮油学报, 2005, 20(6): 49-54. Zhang M G, Guo B J, Chi J W, Wei Z C, Xu Z H. In vitro antioxidant effect and component analysis of black rice husk extract[J]. Journal of the Chinese Cereals and Oils Association, 2005, 20(6): 49-54. (in Chinese with English abstract) [20] Zhu J, Wang R, Zhang Y, Lu Y, Cai S, Xiong Q. Metabolomics reveals antioxidant metabolites in colored rice grains[J]. Metabolites, 2024, 14(2): 120. [21] 秦玉, 凌文华. 黑米花色苷提取物胶囊对高血脂症病人的降血脂作用[J]. 食品科学, 2008, 29(10): 540-542. Qin Y,Ling W H. Effect of anthocyanin-rich exact from black rice on patients with hyperlipidemia[J]. Food Science, 2008, 29(10): 540-542. (in Chinese with English abstract) [22] 张名位, 郭宝江, 池建伟, 魏振承, 徐志宏, 张雁, 张瑞芬. 黑米皮抗氧化活性物质的提取与分离工艺研究[J]. 农业工程学报, 2005, 21(6): 135-139. Zhang M W, Guo B J, Chi J W, Wei Z C, Xu Z H, Zhang Y, Zhang R F. Technology for extraction and separation of antioxidative substances from black rice pericarp[J]. Transactions of the CSAE, 2005, 21(6): 135-139. (in Chinese with English abstract) [23] Sompong R, Siebenhandl-Ehn S, Linsberger-Martin G, Berghofer E. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka[J]. Food Chemistry, 2011, 124(1): 132-140. [24] Chen M H, McClung A M, Bergman C J. Phenolic content, anthocyanins and antiradical capacity of diverse purple bran rice genotypes as compared to other bran colors[J]. Journal of Cereal Science, 2017, 77: 110-119. [25] Jamjod S, Yimyam N, Lordkaew S, Prom-u-thai C, Rerkasem B. Characterization of on-farm rice germplasm in an area of the crop’s center of diversity[J]. Chiang Mai University Journal of Natural Sciences, 2017, 16(2): 85-98. [26] Faiz A, Hanafi M M, Hakim M A, Rafi M Y, Akmar Abdullah S N. Micronutrients, antioxidant activity, and tocochromanol contents of selected pigmented upland rice genotypes[J]. International Journal of Agriculture and Biology, 2015, 17(4): 741-747. [27] Pramai P, Jiamyangyuen S. Chemometric classification of pigmented rice varieties based on antioxidative properties in relation to color[J]. Songklanakarin Journal of Science & Technology, 2016, 38(5). [28] Murdifin M, Pakki E, Rahim A, Syaiful S A, Ismail, Evary Y M, Bahar M A. Physicochemical properties of Indonesian pigmented rice (Oryza sativa Linn.) varieties from south Sulawesi[J]. Asian Journal of Plant Sciences, 2015, 14(2): 59-65. [29] 陈凌华, 程祖锌, 许明. 灌浆期黑米花色苷含量研究[J]. 农业开发与装备, 2017(10): 83-84. Chen L H, Cheng Z X, Xu M. Study on anthocyanin content of black rice at filling stage[J]. Agricultural Development and Equipments, 2017(10): 83-84. (in Chinese with English abstract) [30] 张庆田,艾军,李昌禹,许培磊,赵滢,张晓英.果实花色苷的生物合成及调控[J]. 特产研究, 2010, 32(4): 65-67. Zhang Q T, Ai J, Li C Y, Xu P L, Zhao Y, Zhang X Y. Research on biosynthesis and regulation of fruit anthocyanin[J]. Special Wild Economic Animal and Plant Research, 2010, 32(4): 65-67. (in Chinese with English abstract) [31] 曹正男. 不同果皮颜色杂草稻色素积累特性及抗氧化性的研究[D]. 沈阳: 沈阳农业大学, 2016: 1-52. Cao Z N. Research on accumulation characteristics of pigment and antioxidant activity of different colored pericarp of weedy rice[D]. Shenyang: Shenyang Agricultural University, 2016: 1-52. (in Chinese with English abstract) [32] Bhat F M, Sommano S R, Riar C S, Seesuriyachan P, Chaiyaso T, Prom-u-Thai C. Status of bioactive compounds from bran of pigmented traditional rice varieties and their scope in production of medicinal food with nutraceutical importance[J]. Agronomy, 2020, 10(11): 1817. [33] 韩磊, 吴先军, 张红宇, 姜华, 李云, 汪旭东. 黑米果皮花色素沉积过程的研究[J]. 中国水稻科学, 2006, 20(4): 384-388. Han L, Wu X J, Zhang H Y, Jiang H, Li Y, Wang X D. Study on the pigmentation of anthocyanidin in pericarp of black rice[J]. Chinese Journal Rice Science, 2006, 20(4): 384-388. (in Chinese with English abstract) [34] 顾蕴洁, 杨忠, 陈娟, 赵国勇. 水稻果皮的结构与功能[J]. 作物学报, 2002, 28(4): 439-444. Gu Y J, Wang Z, Chen J, Zhao G Y. The structure and function of pericarp in rice[J]. Acta Agronomica Sinica, 2002, 28(4): 439-444. (in Chinese with English abstract) [35] Yamuangmorn S, Dell B, Rerkasem B, Prom-u-thai C. Applying nitrogen fertilizer increased anthocyanin in vegetative shoots but not in grain of purple rice genotypes[J]. Journal of the Science of Food and Agriculture, 2018, 98(12): 4527-4532. [36] Sun X, Zhang Z, Chen C, Wu W, Ren N, Jiang C, Yu J, Zhao Y, Zheng X, Yang Q, Zhang H, Li J, Li Z. The C-S-a gene system regulates hull pigmentation and reveals evolution of anthocyanin biosynthesis pathway in rice[J]. Journal of Experimental Botany, 2018, 69(7): 1485-1498. [37] 庄维兵, 刘天宇, 束晓春, 渠慎春, 翟恒华, 王涛, 张凤娇, 王忠. 植物体内花青素苷生物合成及呈色的分子调控机制[J]. 植物生理学报, 2018, 54 (11): 1630-1644. Zhuang W B, Liu T Y, Shu X C, Qu S C, Zhai H H, Wang T, Zhang F J, Wang Z. Molecular regulation mechanism of anthocyanin biosynthesis and coloration in plants [J]. Plant Physiology Journal, 2018, 54 (11): 1630-1644. (in Chinese with English abstract) [38] 周玉峰, 谢慧芳, 孙宇轩, 姜朔, 吴殿星, 舒小丽. 水稻花青素和原花青素的生物合成及其对稻米品质的影响综述[J]. 浙江大学学报: 农业与生命科学版, 2024, 50(3): 339-352. Zhou Y F, Xie H F, Sun Y X, Jiang S, Wu D X, Shu X L. Review on the biosynthesis of anthocyanidins and proanthocyanidins in rice and their impact on rice quality [J]. Journal of Zhejiang University: Agriculture & Life Science, 2024, 50(3): 339-352. (in Chinese with English abstract) [39] 李昌文, 张丽华, 纵伟. 黑米色素的提取工艺及生物活性研究进展[J]. 中国调味品, 2019, 44(7): 168-175. Li C W, Zhang L H, Zong W. Research Progress on Extraction Technology and Biological Activity of Black Rice Pigment[J]. China Condiment, 2019, 44(7): 168-175. (in Chinese with English abstract) [40] Lu N, Rao X, Li Y, Jun J H, Dixon R A. Dissecting the transcriptional regulation of proanthocyanidin and anthocyanin biosynthesis in soybean (Glycine max)[J]. Plant Biotechnology Journal, 2021, 19(7): 1429-1442. [41] Duan A Q, Deng Y J, Tan S S, Xu Z S, Xiong A S. A MYB activator, DcMYB11c, regulates carrot anthocyanins accumulation in petiole but not taproot[J]. Plant, Cell & Environment, 2023, 46(9): 2794-2809. [42] Frangedakis E, Yelina N E, Billakurthi K, Hua L, Schreier T, Dickinson P J, Tomaselli M, Haseloff J, Hibberd J M. MYB-related transcription factors control chloroplast biogenesis[J]. Cell, 2024, 187(18): 4859-4876.e22. [43] Qin J, Zhao C, Wang S, Gao N, Wang X, Na X, Wang X, Bi Y. PIF4-PAP1 interaction affects MYB-bHLH-WD40 complex formation and anthocyanin accumulation in Arabidopsis[J]. Journal of Plant Physiology, 2022, 268: 153558. [44] Chin H S, Wu Y P, Hour A L, Hong C Y, Lin Y R. Genetic and evolutionary analysis of purple leaf sheath in rice[J]. Rice, 2016, 9(1): 8. [45] Akhter D, Qin R, Nath U K, Eshag J, Jin X, Shi C. A rice gene, OsPL, encoding a MYB family transcription factor confers anthocyanin synthesis, heat stress response and hormonal signaling[J]. Gene, 2019, 699: 62-72. [46] Li G, Zhao J, Qin B, Yin Y, An W, Mu Z, Cao Y. ABA mediates development-dependent anthocyanin biosynthesis and fruit coloration in Lycium plants[J]. BMC Plant Biology, 2019, 19(1): 317. [47] Maeda H, Yamaguchi T, Omoteno M, Takarada T, Fujita K, Murata K, Iyama Y, Kojima Y, Morikawa M, Ozaki H, Mukaino N, Kidani Y, Ebitani T. Genetic dissection of black grain rice by the development of a near isogenic line[J]. Breeding Science, 2014, 64: 134-141. [48] Sakamoto W, Ohmori T, Kageyama K, Miyazaki C, Saito A, Murata M, Noda K, Maekawa M. The purple leaf (pl) locus of rice: The pl(w) allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis[J]. Plant & Cell Physiology, 2001, 42(9): 982-991. [49] Sweeney M T, Thomson M J, Pfeil B E, McCouch S. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice[J]. The Plant Cell, 2006, 18(2): 283-294. [50] Kim D H, Yang J, Ha S H, Kim J K, Lee J Y, Lim S H. An OsKala3, R2R3 MYB TF, is a common key player for black rice pericarp as main partner of an OsKala4, bHLH TF[J]. Frontiers in Plant Science, 2021, 12: 765049. [51] Yang X, Wang J, Xia X, Zhang Z, He J, Nong B, Luo T, Feng R, Wu Y, Pan Y, Xiong F, Zeng Y, Chen C, Guo H, Xu Z, Li D, Deng G. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice[J]. The Plant Journal, 2021, 107(1): 198-214. [52] Du S, Wang Z, Chen Y, Tan Y, Li X, Zhu W, He G, Lei K, Guo L, Zhang Y. Coleoptile purple line regulated by A-P gene system is a valuable marker trait for seed purity identification in hybrid rice[J]. Rice Science, 2022, 29(5): 451-461. [53] LaFountain A M, Yuan Y W. Repressors of anthocyanin biosynthesis[J]. New Phytologist, 2021, 231(3): 933-949. [54] Liu Y, Hou H, Jiang X, Wang P, Dai X, Chen W, Gao L, Xia T. A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB⁻bHLH⁻WD40 ternary complexes[J]. International Journal of Molecular Sciences, 2018, 19(6): 1686. [55] Zheng J, Wu H, Zhu H, Huang C, Liu C, Chang Y, Kong Z, Zhou Z, Wang G, Lin Y, Chen H. Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves[J]. New Phytologist, 2019, 223(2): 705-721. [56] Liu Y, Tikunov Y, Schouten R E, Marcelis L F M, Visser R G F, Bovy A. Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: A review[J]. Frontiers in Chemistry, 2018, 6: 52. [57] Li D, Zhang X, Xu Y, Li L, Aghdam M S, Luo Z. Effect of exogenous sucrose on anthocyanin synthesis in postharvest strawberry fruit[J]. Food Chemistry, 2019, 289: 112-120. [58] Tang B, Li L, Hu Z, Chen Y, Tan T, Jia Y, Xie Q, Chen G. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple pepper[J]. Journal of Agricultural and Food Chemistry, 2020, 68(43): 12152-12163. [59] Hulse-Kemp A M, Maheshwari S, Stoffel K, Hill T A, Jaffe D, Williams S R, Weisenfeld N, Ramakrishnan S, Kumar V, Shah P, Schatz M C, Church D M, van Deynze A. Reference quality assembly of the 3.5-Gb genome of Capsicum annuum from a single linked-read library[J]. Horticulture Research, 2018, 5: 4. [60] Zhang Y, Hu Z, Chu G, Huang C, Tian S, Zhao Z, Chen G. Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (Solanum melongena L.)[J]. Journal of Agricultural and Food Chemistry, 2014, 62(13): 2906-2912. [61] Colanero S, Perata P, Gonzali S. The atroviolacea gene encodes an R3-MYB protein repressing anthocyanin synthesis in tomato plants[J]. Frontiers in Plant Science, 2018, 9: 830. [62] Ithal N, Reddy A R. Rice flavonoid pathway genes, OsDfr and OsAns, are induced by dehydration, high salt and ABA and contain stress responsive promoter elements that interact with the transcription activator, OsC1-MYB[J]. Plant Science, 2004, 166(6): 1505-1513. [63] Tominaga-Wada R, Ota K, Hayashi N, Yamada K, Sano R, Wada T. Expression and protein localization analyses of Arabidopsis GLABRA3 (GL3) in tomato (Solanum lycopersicum) root epidermis[J]. Plant Biotechnology, 2017, 34(2): 115-117. [64] Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García J F, Bilbao-Castro J R, Robertson D L. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae[J]. Plant Physiology, 2010, 153(3): 1398-1412. [65] Oikawa T, Maeda H, Oguchi T, Yamaguchi T, Tanabe N, Ebana K, Yano M, Ebitani T, Izawa T. The birth of a black rice gene and its local spread by introgression[J]. The Plant Cell, 2015, 27(9): 2401-2414. [66] Xia D, Zhou H, Wang Y, Li P, Fu P, Wu B, He Y. How rice organs are colored: The genetic basis of anthocyanin biosynthesis in rice[J]. The Crop Journal, 2021, 9(3): 598-608. [67] Shao Y, Jin L, Zhang G, Lu Y, Shen Y, Bao J. Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice[J]. Theoretical and Applied Genetics, 2011, 122(5): 1005-1016. [68] Wang J, Deng Q, Li Y, Yu Y, Liu X, Han Y, Luo X, Wu X, Ju L, Sun J, Liu A, Fang J. Transcription factors rc and OsVP1 coordinately regulate preharvest sprouting tolerance in red pericarp rice[J]. Journal of Agricultural and Food Chemistry, 2020, 68(50): 14748-14757. [69] 李霞, 杜娟, 杨晓梦, 普晓英, 杨加珍, 杨涛, 李玉萍, 曾亚文. 红米‘rm257’种皮颜色遗传模式分析及Rc基因功能标记开发[J]. 西南农业学报, 2022, 35(5): 1010-1015. Li X, Du J, Yang X M, Pu X Y, Yang J Z, Yang T, Li Y P, Zeng Y W. Genetic analysis of pericarp color and functional markers development for Rc gene of red rice germplasm‘rm257’[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(5): 1010-1015. (in Chinese with English abstract) [70] Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K I. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp[J]. The Plant Journal, 2007, 49(1): 91-102. [71] Zeng D, Qin R, Tang L, Jing C, Wen J, He P, Zhang J. Enrichment of rice endosperm with anthocyanins by endosperm-specific expression of rice endogenous genes[J]. Plant Physiology and Biochemistry, 2025, 219: 109428. [72] Borevitz J O, Xia Y, Blount J, Dixon R A, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J]. The Plant Cell, 2000, 12(12): 2383-2394. [73] Carey C C, Strahle J T, Selinger D A, Chandler V L. Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana[J]. The Plant Cell, 2004, 16(2): 450-464. [74] Aguilar-Barragán A, Ochoa-Alejo N. Virus-induced silencing of MYB and WD40 transcription factor genes affects the accumulation of anthocyanins in chilli pepper fruit[J]. Biologia Plantarum, 2014, 58(3): 567-574. [75] Yuan F, Leng B, Zhang H, Wang X, Han G, Wang B. A WD40-repeat protein from the recretohalophyte Limonium bicolor enhances trichome formation and salt tolerance in Arabidopsis[J]. Frontiers in Plant Science, 2019, 10: 1456. [76] Wei Z, Cheng Y, Zhou C, Li D, Gao X, Zhang S, Chen M. Genome-wide identification of direct targets of the TTG1-bHLH-MYB complex in regulating trichome formation and flavonoid accumulation in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2019, 20(20): 5014. [77] Gutierrez N, Torres A M. Characterization and diagnostic marker for TTG1 regulating tannin and anthocyanin biosynthesis in faba bean[J]. Scientific Reports, 2019, 9: 16174. [78] Zhu Q, Yu S, Zeng D, Liu H, Wang H, Yang Z, Xie X, Shen R, Tan J, Li H, Zhao X, Zhang Q, Chen Y, Guo J, Chen L, Liu Y G. Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system[J]. Molecular Plant, 2017, 10(7): 918-929. [79] Ding L, Wang S, Song Z T, Jiang Y, Han J J, Lu S J, Li L, Liu J X. Two B-box domain proteins, BBX18 and BBX23, interact with ELF3 and regulate thermomorphogenesis in Arabidopsis[J]. Cell Reports, 2018, 25(7): 1718-1728.e4. [80] 强琴琴. 紫粒小麦中光诱导花青素合成相关调控基因的筛选及其功能研究[D]. 杨凌: 西北农林科技大学, 2023: 1-112. Identification and Functional Analysis of Light-induced Genes Involved in Anthocyanin Biosynthesis in Purple Grain Wheat[D].Yangling: Northwest A & F University, 2023: 1-112. (in Chinese with English abstract) [81] 张书瑜, 杨锐铛, 刘榛, 吴涵, 陈雅芝. 黑米黑色素的稳定性研究[J]. 云南大学学报: 自然科学版, 2019, 41(S1): 72-75. Zhang S Y, Yang R D, Liu Z, Wu H, Chen Y Z. Study on the stability of black rice melanin [J]. Journal of Yunnan University, 2019, 41(S1): 72-75. (in Chinese with English abstract) [82] 刘炜.遮阴处理对美国红栌叶片色素含量的影响[J]. 山西林业科技, 2017, 46(2): 37-39. Liu W. Effects of shading treatment on leaf pigment content in cotinus coggygria ‘Royal Purple’[J]. Shan Xi Forestry Science and Technology, 2017, 46(2): 37-39. (in Chinese with English abstract) [83] Sivankalyani V, Feygenberg O, Diskin S, Wright B, Alkan N. Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance[J]. Postharvest Biology and Technology, 2016, 111: 132-139. [84] Yang L, Zhang D, Qiu S, Gong Z, Shen H. Effects of environmental factors on seedling growth and anthocyanin content in Betula ‘Royal Frost’ leaves[J]. Journal of Forestry Research, 2017, 28(6): 1147-1155. [85] 汪越, 易慧琳, 刘楠, 罗建, 徐翊. 光强和施肥对杜鹃红山茶成花品质的影响[J]. 生态科学, 2016, 35(6): 41-45. Wang Y, YI H L, Liu N, Luo J, Xu Y, Ren H, Zeng Z X. Effect of light intensity and fertilization on the flowering quality of Camellia azalea[J]. Ecological Science, 2016, 35(6): 41-45. (in Chinese with English abstract) [86] Zhu H, Li X, Zhai W, Liu Y, Gao Q, Liu J, Ren L, Chen H, Zhu Y. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino)[J]. PLoS One, 2017, 12(6): e0179305. [87] 赵夏陆. 遮阴对地被菊花色苷和类黄酮糖基转移酶基因CmUFGT表达的影响[D]. 太原: 山西农业大学, 2015: 1-53. Zhao X L. Shading on the ground-cover chrysanthemum anthocyanin and flavonoid 3-O-glucosyltransferase gene CmUFGT expression[D]. Taiyuan: Shanxi Agricultural University, 2015: 1-53. (in Chinese with English abstract) [88] 贾真真, 王春英, 胡超, 王二伟. 不同光质对番茄幼苗花色素苷积累的影响[J]. 黑龙江农业科学, 2018(1): 66-67. Jia Z Z, Wang C Y, Hu C, Wang E W. Effects of different light quality on anthocyanin accumulation in tomato seedlings[J]. Heilongjiang Agricultural Sciences, 2018(1): 66-67. (in Chinese with English abstract) [89] Zhang Y, Jiang L, Li Y, Chen Q, Ye Y, Zhang Y, Luo Y, Sun B, Wang X, Tang H. Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria × Ananassa)[J]. Molecules, 2018, 23(4): 820. [90] 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. Chen T T, Fu W M, Yu J, Feng B H, Li G Y, Fu G F, Tao L X. The Photosynthesis characteristics of colored rice leaves and its relation with antioxidant capacity and anthocyanin content[J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478. (in Chinese with English abstract) [91] 吴娟, 陈建民. 黑米色素的稳定性分析[J]. 杂交水稻, 2014, 29(5): 74-76. Wu J, Chen J M. Stability analysis of black rice pigment[J]. Hybrid Rice, 2014, 29(5): 74-76. (in Chinese with English abstract) [92] 曹小勇, 李新生. 黑米花色素苷类色素研究现状及展望[J]. 氨基酸和生物资源, 2002, 24(1): 3-6. Cao X Y, Li X S. Research status and prospect of black rice anthocyanin pigments[J]. Amino Acids &Biotic Resources, 2002, 24(1): 3-6. (in Chinese with English abstract) [93] 柳敏, 王忠, 顾蕴洁. 有色稻颖果的发育和色素沉积[J]. 中国水稻科学, 2011, 25(4): 392-398. Liu M, Wang Z, Gu Y J. Caryopsis development and anthocyanidin accumulation of colored rice[J]. Chinese Journal of Rice Science, 2011, 25(4): 392-398. (in Chinese with English abstract) [94] 赵廷丞. 有机肥替代无机肥对有色稻产量、氮素利用效率和花色苷含量的影响[D] 海口: 海南大学, 2022: 1-50. Zhao T C. Effects of organic fertilizer replacing inorganic fertilizer on grain yield, nitrogen use efficiency and anthocyanin content of colored rice (Oryza sativa L.)[D]. Haikou: Hainan University, 2022: 1-50. (in Chinese with English abstract) [95] 柳敏. 关于色米发育进程中形态结构变化及色素沉积的研究[D]. 扬州: 扬州大学, 2005: 1-32. Liu M. Study on configuration, microstructure and anthocyanin accumulation during caryopses development of colored rice[D]. Yangzhou: Yangzhou University, 2005: 1-32. (in Chinese with English abstract) [96] Kim B G, Kim J H, Min S Y, Shin K H, Kim J H, Kim H Y, Ryu S N, Ahn J H. Anthocyanin content in rice is related to expression levels of anthocyanin biosynthetic genes[J]. Journal of Plant Biology, 2007, 50(2): 156-160. [97] Zhu C L, Yang X H, Chen W W, Xia X Z, Zhang Z Q, Qing D J, Nong B X, Li J C, Liang S H, Luo S S, Zhou W Y, Yan Y, Dai G X, Li D T, Deng G F. WD40 protein OsTTG1 promotes anthocyanin accumulation and CBF transcription factor-dependent pathways for rice cold tolerance[J]. Plant Physiology, 2025, 197(1): kiae604. [98] Sun Y, Zheng Y, Wang W, Yao H, Ali Z, Xiao M, Ma Z, Li J, Zhou W, Cui J, Yu K, Liu Y. VvFHY3 links auxin and endoplasmic reticulum stress to regulate grape anthocyanin biosynthesis at high temperatures[J]. The Plant Cell, 2024, 37(1): koae303. [99] Jin Z, Tao Y, Yue R, Ma Z, Cheng S, Khan M N, Nie L. Trade-off between grain yield and bioactive substance content of colored rice under coupled water and nitrogen conditions[J]. Field Crops Research, 2024, 309: 109312. [100] 孔令瑶. 干旱胁迫对黒稻产量及花青素-3-葡萄糖苷含量的影响[J]. 科技资讯, 2012, (34): 145-146. Kong Lingyao. Effects of drought stress on yield and anthocyanin-3-glucoside content of black rice[J]. Technology Information, 2012, (34): 145-146. (in Chinese with English abstract) [101] Jaksomsak P, Rerkasem B, Prom-U-Thai C. Variation in nutritional quality of pigmented rice varieties under different water regimes[J]. Plant Production Science, 2021, 24(2): 244-255. [102] 何亚飞, 许梦洁, 李霞. 干旱条件下DCMU对高表达转C4-pepc水稻的花青素合成基因及其相关信号的影响[J]. 中国生态农业学报, 2018, 26(3): 409-421. He Y F, Xu M J, LI X. Effects of DCMU on anthocyanin synthesis genes and its related signals in C4-pepc gene overexpressed rice under drought conditions[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3): 409-421. (in Chinese with English abstract) [103] Dwivedi A K, Singh V, Anwar K, Pareek A, Jain M. Integrated transcriptome, proteome and metabolome analyses revealed secondary metabolites and auxiliary carbohydrate metabolism augmenting drought tolerance in rice[J]. Plant Physiology and Biochemistry, 2023, 201: 107849. [104] Keller M, Hrazdina G. Interaction of nitrogen availability during bloom and light intensity during veraison. II. effects on anthocyanin and phenolic development during grape ripening[J]. American Journal of Enology and Viticulture, 1998, 49(3): 341-349. [105] Koh H J, Won Y J, Wan G W. Varietal variation of pigmentation and some nutritive characteristics in colored rices[J]. Korean Journal of Crop Science, 1996, 41(5): 600-607. [106] Liu D, Zhao D, Li X, Zeng Y. AtGLK2, an Arabidopsis GOLDEN2-LIKE transcription factor, positively regulates anthocyanin biosynthesis via AtHY5-mediated light signaling[J]. Plant Growth Regulation, 2022, 96(1): 79-90. [107] Liao H S, Yang C C, Hsieh M H. Nitrogen deficiency- and sucrose-induced anthocyanin biosynthesis is modulated by HISTONE DEACETYLASE15 in Arabidopsis[J]. Journal of Experimental Botany, 2022, 73(11): 3726-3742. [108] Khampuang K, Rerkasem B, Lordkaew S, Prom-u-thai C. Nitrogen fertilizer increases grain zinc along with yield in high yield rice varieties initially low in grain zinc concentration[J]. Plant and Soil, 2021, 467(1): 239-252. [109] Yamuangmorn S, Rinsinjoy R, Lordkaew S, Dell B, Prom-u-thai C. Responses of grain yield and nutrient content to combined zinc and nitrogen fertilizer in upland and wetland rice varieties grown in waterlogged and well-drained condition[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(4): 2112-2122. [110] Samart S, Chutipaijit S. Growth of pigmented rice (Oryza sativa L. cv. Riceberry) exposed to ZnO nanoparticles[J]. Materials Today: Proceedings, 2019, 17: 1987-1994. [111] Li J, Lü R H, Zhao A C, Wang X L, Liu C Y, Zhang Q Y, Wang X H, Umuhoza D, Jin X Y, Lu C, Li Z G, Yu M D. Isolation and expression analysis of anthocyanin biosynthetic genes in Morus alba L[J]. Biologia Plantarum, 2014, 58(4): 618-626. [112] El-Kereamy A, Chervin C, Roustan J P, Cheynier V, Souquet J M, Moutounet M, Raynal J, Ford C, Latché A, Pech J C, Bouzayen M. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries[J]. Physiologia Plantarum, 2003, 119(2): 175-182. [113] Pang L, Wu Y, Pan Y, Ban Z, Li L, Li X. Insights into exogenous melatonin associated with phenylalanine metabolism in postharvest strawberry[J]. Postharvest Biology and Technology, 2020, 168: 111244. [114] 何梓彬. 外源锌、铁、磷叶片喷施对有色稻籽粒矿质营养及其生物有效性的影响[D]. 福州: 福建农林大学, 2020: 1-97. He Z B. Effects of zinc, iron and phosphorus leave spray on mineral nutrition and their bioavailability in pigmented rice grains[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020: 1-97. (in Chinese with English abstract) [115] 杜雪丽, 柯璐瑶, 柳展, 代明珠, 周宇, 李剑兴, 徐玖亮. 叶面喷施镁对紫米产质量、花青素及代谢物含量的影响[J]. 河南农业科学, 2024, 53(2): 28-36. Du X L, Ke L Y, Liu Z, Dai M Z, Zhou Y, Li J X, Xu J L. Effects of foliar magnesium on yield,quality and contents of anthocyanin and metabolites of purple rice[J]. Journal of Henan Agricultural Sciences, 2024, 53(2): 28‐36. (in Chinese with English abstract) |
[1] | Wenjian SONG, Zhong MEI, Yu LI, Wenhua XIA, Xiaoli SHU, Dianxing WU, Shufang MEI. Current Status on Research and Utilization of Colored Rice [J]. Chinese Journal OF Rice Science, 2020, 34(3): 191-207. |
[2] | Ping CHEN, Liwen WU, Zhongwei WANG, Yu ZHANG, Longbiao GUO. Nicotinamide Adenine Dinucleotide(NAD) Biosynthesis Pathway and Leaf Senescence in Rice [J]. Chinese Journal OF Rice Science, 2017, 31(5): 447-456. |
[3] | Hai-ping NI, Qiu-fang XU, Ying LAN, Qing-qing CHEN, Jin-feng ZHANG, Yi-jun ZHOU. Effect of RBSDV Infection on Transcriptional Expression of Abscisic Acid Metabolism Related Genes in Rice [J]. Chinese Journal OF Rice Science, 2015, 29(3): 319-326. |
[4] | ZHAO Jie1,2, ZHOU Jinjun2, GU Jianwei2, QIAN Fengqin2, XIE Xianzhi1,2,*. Phytochrome B Positively Regulates Chlorophyll Biosynthesis and Chloroplast Development in Rice [J]. Chinese Journal of Rice Science, 2012, 26(6): 637-642. |
[5] | LIU Min, WANG Zhong*, GU Yun-Jie. Caryopsis Development and Anthocyanidin Accumulation of Colored Rice [J]. Chinese Journal of Rice Science, 2011, 25(4): 392-398. |
[6] | Zhang Chuan-qing,Zhou Ming-guo,Xue Na. Sensitivity Test Method and Resistance Risk Assessment of Magnaporthe grisea to Tricyclazole [J]. Chinese Journal of Rice Science, 2005, 19(1): 79-84 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||