
Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (6): 789-800.DOI: 10.16819/j.1001-7216.2025.240807
• Research Papers • Previous Articles Next Articles
WANG Shilin1, WU Ting1, ZHOU Shiqi1, SONG Siming2, HU Biaolin1,*(
)
Received:2024-08-07
Revised:2024-10-14
Online:2025-11-10
Published:2025-11-19
Contact:
HU Biaolin
王世林1, 吴婷1, 周诗琪1, 宋思铭2, 胡标林1,*(
)
通讯作者:
胡标林
基金资助:WANG Shilin, WU Ting, ZHOU Shiqi, SONG Siming, HU Biaolin. Identification of QTLs for Seed Storability in Dongxiang Wild Rice by Integrating BSA-Seq and QTL Analysis[J]. Chinese Journal OF Rice Science, 2025, 39(6): 789-800.
王世林, 吴婷, 周诗琪, 宋思铭, 胡标林. 结合BSA-seq和QTL分析鉴定东乡野生稻耐储性QTL[J]. 中国水稻科学, 2025, 39(6): 789-800.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.240807
| 名称 Name | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer (5'-3') | 候选基因 Candidate gene |
|---|---|---|---|
| Fou31040 | CAGGTCAGAGGAACTCAG | GGATGCATTAGCAGATTC | LOC_Os04g31040 |
| Fou31070 | GATCTCGATGAGGAGGTG | GCAGATGGACAGGTAATTG | LOC_Os04g31070 |
| Fou31240 | GCGATATCCTATAGCCAA | CAGTCTAGCAATTCATGC | LOC_Os04g31240 |
| Sev07420 | GTGCTCGATGTGGCTTAG | CATGCATGTTGCAATGC | LOC_Os07g07420 |
| Sev07790 | CAATCACCTCATCACACAC | CATGGCACACTCAACAC | LOC_Os07g07790 |
| Sev07860 | TGAGACCAATGGAAATGG | GATTCCATCACTTCACAC | LOC_Os07g07860 |
| Sev07870 | CTGAGAGACATACATCAATC | GATACTCATCAGAAGGCATAC | LOC_Os07g07870 |
| Sev07880 | CTTTACCGAATGGAGACCAG | GGATTTACACTAGCAAGT | LOC_Os07g07880 |
| Sev07930 | CAGACACCAAGAGCATC | CGAATTCCTACACGCAC | LOC_Os07g07930 |
| Nin15800 | GACCGAGTGAGTCATCAAG | GTGAGTACTCTACATGATAC | LOC_Os09g15800 |
| Nin15810 | CACAGTATCTTCCTGCTAC | CAAGCATGGACATGCTAATC | LOC_Os09g15810 |
| Nin15835 | CTCTGGTTAGATCTTGCAC | CAATATGAATACCCTGCA | LOC_Os09g15835 |
Table 1. Primer information of amplified candidate genes
| 名称 Name | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer (5'-3') | 候选基因 Candidate gene |
|---|---|---|---|
| Fou31040 | CAGGTCAGAGGAACTCAG | GGATGCATTAGCAGATTC | LOC_Os04g31040 |
| Fou31070 | GATCTCGATGAGGAGGTG | GCAGATGGACAGGTAATTG | LOC_Os04g31070 |
| Fou31240 | GCGATATCCTATAGCCAA | CAGTCTAGCAATTCATGC | LOC_Os04g31240 |
| Sev07420 | GTGCTCGATGTGGCTTAG | CATGCATGTTGCAATGC | LOC_Os07g07420 |
| Sev07790 | CAATCACCTCATCACACAC | CATGGCACACTCAACAC | LOC_Os07g07790 |
| Sev07860 | TGAGACCAATGGAAATGG | GATTCCATCACTTCACAC | LOC_Os07g07860 |
| Sev07870 | CTGAGAGACATACATCAATC | GATACTCATCAGAAGGCATAC | LOC_Os07g07870 |
| Sev07880 | CTTTACCGAATGGAGACCAG | GGATTTACACTAGCAAGT | LOC_Os07g07880 |
| Sev07930 | CAGACACCAAGAGCATC | CGAATTCCTACACGCAC | LOC_Os07g07930 |
| Nin15800 | GACCGAGTGAGTCATCAAG | GTGAGTACTCTACATGATAC | LOC_Os09g15800 |
| Nin15810 | CACAGTATCTTCCTGCTAC | CAAGCATGGACATGCTAATC | LOC_Os09g15810 |
| Nin15835 | CTCTGGTTAGATCTTGCAC | CAATATGAATACCCTGCA | LOC_Os09g15835 |
Fig.1. Phenotypic distribution in BG population A, Distribution of germination rate in natural conditions; B, Distribution of germination rate after artificial aging treatment.
| 染色体 Chromosome | QTL | 区间 Interval | 位置 Position | LOD值 LOD | 加性效应 A | 贡献率 R2(%) | 已克隆基因 Cloned genes |
|---|---|---|---|---|---|---|---|
| 1 | qSS1.1 | chr1-204.9-chr1-216.3 | 36,735,178-40,016,503 | 2.55 | 13.77 | 1.64 | |
| 1 | qSS1.2 | chr1-216.3-chr1-230.0 | 40,016,503-41,198,359 | 3.07 | 9.19 | 2.23 | |
| 2 | qSS2.1 | chr2-84.6-chr2-101.9 | 27,538,266-28,417,539 | 6.77 | 13.54 | 4.78 | |
| 2 | qSS2.2 | chr2-101.9-chr2-123.4 | 28,417,539-33,682,808 | 7.97 | 13.40 | 4.79 | OsbZIP23 |
| 3 | qSS3 | chr3-111.7-chr3-121.4 | 30,677,202-33,003,423 | 2.56 | 14.09 | 1.60 | OsLOX2 |
| 6 | qSS6 | chr6-34.7-chr6-50.0 | 17,953,681-24,234,137 | 10.29 | −24.17 | 7.70 | |
| 7 | qSS7 | chr7-21.1-chr7-25.2 | 3,146,214-5,200,751 | 8.82 | −30.51 | 6.24 | |
| 9 | qSS9.1 | chr9-69.2-chr9-78.9 | 13,164,222-14,567,027 | 3.33 | 10.01 | 2.09 | |
| 11 | qSS11 | chr11-37.6-chr11-48.2 | 8,990,534-9,368,443 | 17.36 | 23.81 | 17.82 |
Table 2. Detected QTLs for seed storability in BG population
| 染色体 Chromosome | QTL | 区间 Interval | 位置 Position | LOD值 LOD | 加性效应 A | 贡献率 R2(%) | 已克隆基因 Cloned genes |
|---|---|---|---|---|---|---|---|
| 1 | qSS1.1 | chr1-204.9-chr1-216.3 | 36,735,178-40,016,503 | 2.55 | 13.77 | 1.64 | |
| 1 | qSS1.2 | chr1-216.3-chr1-230.0 | 40,016,503-41,198,359 | 3.07 | 9.19 | 2.23 | |
| 2 | qSS2.1 | chr2-84.6-chr2-101.9 | 27,538,266-28,417,539 | 6.77 | 13.54 | 4.78 | |
| 2 | qSS2.2 | chr2-101.9-chr2-123.4 | 28,417,539-33,682,808 | 7.97 | 13.40 | 4.79 | OsbZIP23 |
| 3 | qSS3 | chr3-111.7-chr3-121.4 | 30,677,202-33,003,423 | 2.56 | 14.09 | 1.60 | OsLOX2 |
| 6 | qSS6 | chr6-34.7-chr6-50.0 | 17,953,681-24,234,137 | 10.29 | −24.17 | 7.70 | |
| 7 | qSS7 | chr7-21.1-chr7-25.2 | 3,146,214-5,200,751 | 8.82 | −30.51 | 6.24 | |
| 9 | qSS9.1 | chr9-69.2-chr9-78.9 | 13,164,222-14,567,027 | 3.33 | 10.01 | 2.09 | |
| 11 | qSS11 | chr11-37.6-chr11-48.2 | 8,990,534-9,368,443 | 17.36 | 23.81 | 17.82 |
| 样品 Sample | 原始数据 Raw base (bp) | 过滤后的有效数据 Clean base (bp) | 比对率 Mapping ratio (%) | 平均测序深度 Average depth (×) | 大于或等于30的碱基所占百分比 Clean Q30 (%) |
|---|---|---|---|---|---|
| R974 | 11,531,262,900 | 10,612,006,654 | 99.04 | 30.41 | 88.59 |
| 东野80 Dongye 80 | 12,730,838,700 | 12,019,467,219 | 98.55 | 32.58 | 94.20 |
| S池S-bulk | 11,921,866,200 | 11,435,986,027 | 97.44 | 31.16 | 92.52 |
| W池W-bulk | 11,710,934,400 | 11,116,889,747 | 97.73 | 30.00 | 93.70 |
Table 3. Summary of sequencing data for BSA-seq analysis
| 样品 Sample | 原始数据 Raw base (bp) | 过滤后的有效数据 Clean base (bp) | 比对率 Mapping ratio (%) | 平均测序深度 Average depth (×) | 大于或等于30的碱基所占百分比 Clean Q30 (%) |
|---|---|---|---|---|---|
| R974 | 11,531,262,900 | 10,612,006,654 | 99.04 | 30.41 | 88.59 |
| 东野80 Dongye 80 | 12,730,838,700 | 12,019,467,219 | 98.55 | 32.58 | 94.20 |
| S池S-bulk | 11,921,866,200 | 11,435,986,027 | 97.44 | 31.16 | 92.52 |
| W池W-bulk | 11,710,934,400 | 11,116,889,747 | 97.73 | 30.00 | 93.70 |
| 染色体 Chromosome | 起始位置 Start position (bp) | 终止位置 Stop position (bp) | 长度 Length (bp) | 基因数量 Gene number | 已克隆基因 Cloned gene |
|---|---|---|---|---|---|
| 2 | 23,101,936 | 23,699,539 | 597,604 | 89 | |
| 2 | 24,250,015 | 24,598,471 | 348,457 | 51 | |
| 2 | 25,600,427 | 25,999,871 | 399,445 | 64 | |
| 4 | 2,500,027 | 3,032,263 | 532,237 | 17 | |
| 4 | 3,377,104 | 3,848,072 | 470,969 | 26 | |
| 4 | 4,650,046 | 4,697,640 | 47,595 | 4 | |
| 4 | 6,202,257 | 6,499,011 | 296,755 | 20 | |
| 4 | 6,557,412 | 6,599,738 | 42,327 | 4 | |
| 4 | 12,653,023 | 12,699,529 | 46,507 | 3 | |
| 4 | 17,550,918 | 17,973,774 | 422,857 | 20 | |
| 4 | 18,501,088 | 18,749,740 | 248,653 | 33 | |
| 5 | 2,360,354 | 2,498,194 | 137,841 | 18 | |
| 5 | 2,834,017 | 3,530,935 | 696,919 | 104 | |
| 5 | 6,000,030 | 6,433,133 | 433,104 | 36 | |
| 5 | 12,220,484 | 12,675,873 | 455,390 | 12 | |
| 5 | 16,703,352 | 16,798,240 | 94,889 | 6 | |
| 6 | 3,956,957 | 3,993,286 | 36,330 | 10 | |
| 6 | 4,308,227 | 4,920,955 | 612,729 | 101 | |
| 6 | 5,108,294 | 5,390,250 | 281,957 | 38 | OsbZIP46 |
| 7 | 450,272 | 547,103 | 96,832 | 16 | |
| 7 | 3,657,270 | 4,137,319 | 480,050 | 75 | |
| 7 | 25,802,892 | 25,965,970 | 163,079 | 22 | |
| 7 | 26,080,904 | 26,992,642 | 911,739 | 153 | OsPER1A |
| 7 | 27,404,044 | 28,395,518 | 991,475 | 183 | |
| 7 | 28,650,196 | 29,672,511 | 1,022,316 | 193 | |
| 8 | 2,500,187 | 3,047,703 | 547,517 | 41 | |
| 8 | 24,509,072 | 24,645,822 | 136,751 | 21 | |
| 8 | 24,702,479 | 24,749,260 | 46,782 | 11 | |
| 9 | 9,602,172 | 9,849,880 | 247,709 | 27 | |
| 9 | 9,910,243 | 10,029,893 | 119,651 | 9 | |
| 9 | 11,421,565 | 11,635,435 | 213,871 | 14 | |
| 11 | 13,750,043 | 14,348,927 | 598,885 | 49 | |
| 11 | 16,650,014 | 17,099,579 | 449,566 | 36 | |
| 11 | 20,419,176 | 20,649,984 | 230,809 | 23 | |
| 11 | 20,750,146 | 20,799,935 | 49,790 | 5 | |
| 11 | 22,500,104 | 22,599,573 | 99,470 | 18 | |
| 11 | 22,650,021 | 22,799,987 | 149,967 | 14 |
Table 4. Candidate regions detected by BSA-seq analysis
| 染色体 Chromosome | 起始位置 Start position (bp) | 终止位置 Stop position (bp) | 长度 Length (bp) | 基因数量 Gene number | 已克隆基因 Cloned gene |
|---|---|---|---|---|---|
| 2 | 23,101,936 | 23,699,539 | 597,604 | 89 | |
| 2 | 24,250,015 | 24,598,471 | 348,457 | 51 | |
| 2 | 25,600,427 | 25,999,871 | 399,445 | 64 | |
| 4 | 2,500,027 | 3,032,263 | 532,237 | 17 | |
| 4 | 3,377,104 | 3,848,072 | 470,969 | 26 | |
| 4 | 4,650,046 | 4,697,640 | 47,595 | 4 | |
| 4 | 6,202,257 | 6,499,011 | 296,755 | 20 | |
| 4 | 6,557,412 | 6,599,738 | 42,327 | 4 | |
| 4 | 12,653,023 | 12,699,529 | 46,507 | 3 | |
| 4 | 17,550,918 | 17,973,774 | 422,857 | 20 | |
| 4 | 18,501,088 | 18,749,740 | 248,653 | 33 | |
| 5 | 2,360,354 | 2,498,194 | 137,841 | 18 | |
| 5 | 2,834,017 | 3,530,935 | 696,919 | 104 | |
| 5 | 6,000,030 | 6,433,133 | 433,104 | 36 | |
| 5 | 12,220,484 | 12,675,873 | 455,390 | 12 | |
| 5 | 16,703,352 | 16,798,240 | 94,889 | 6 | |
| 6 | 3,956,957 | 3,993,286 | 36,330 | 10 | |
| 6 | 4,308,227 | 4,920,955 | 612,729 | 101 | |
| 6 | 5,108,294 | 5,390,250 | 281,957 | 38 | OsbZIP46 |
| 7 | 450,272 | 547,103 | 96,832 | 16 | |
| 7 | 3,657,270 | 4,137,319 | 480,050 | 75 | |
| 7 | 25,802,892 | 25,965,970 | 163,079 | 22 | |
| 7 | 26,080,904 | 26,992,642 | 911,739 | 153 | OsPER1A |
| 7 | 27,404,044 | 28,395,518 | 991,475 | 183 | |
| 7 | 28,650,196 | 29,672,511 | 1,022,316 | 193 | |
| 8 | 2,500,187 | 3,047,703 | 547,517 | 41 | |
| 8 | 24,509,072 | 24,645,822 | 136,751 | 21 | |
| 8 | 24,702,479 | 24,749,260 | 46,782 | 11 | |
| 9 | 9,602,172 | 9,849,880 | 247,709 | 27 | |
| 9 | 9,910,243 | 10,029,893 | 119,651 | 9 | |
| 9 | 11,421,565 | 11,635,435 | 213,871 | 14 | |
| 11 | 13,750,043 | 14,348,927 | 598,885 | 49 | |
| 11 | 16,650,014 | 17,099,579 | 449,566 | 36 | |
| 11 | 20,419,176 | 20,649,984 | 230,809 | 23 | |
| 11 | 20,750,146 | 20,799,935 | 49,790 | 5 | |
| 11 | 22,500,104 | 22,599,573 | 99,470 | 18 | |
| 11 | 22,650,021 | 22,799,987 | 149,967 | 14 |
| QTL | 候选基因 Candidate gene | 位置 Position(bp) | 注释信息 Annotation information | GO |
|---|---|---|---|---|
| qSS4 | LOC_Os04g31040 | 18,553,801−18,551,238 | 紫黄质脱环氧化酶 Violaxanthin de-epoxidase | 细胞脂质代谢过程 Cellular lipid metabolic process |
| LOC_Os04g31070 | 18,564,417−18,560,177 | 酰基去饱和酶 Acyl-desaturase | 氧化还原酶活性 Oxidoreductase activity | |
| LOC_Os04g31240 | 18,690,646−18,694,747 | 水解酶 Hydrolase | 脂质稳态 Lipid homeostasis | |
| qSS7 | LOC_Os07g07420 | 3,702,287−3,705,030 | 赤霉素20氧化酶1-B Gibberellin 20 oxidase 1-B | 赤霉素生物合成过程 Gibberellin biosynthetic process |
| LOC_Os07g07790 | 3,910,568−3,911,638 | 脂质转运蛋白家族蛋白前体75 LTPL75: Lipid transfer protein family protein precursor | 脂质结合 Lipid binding | |
| LOC_Os07g07860 | 3,949,371−3,947,968 | 脂质转运蛋白家族蛋白前体76 LTPL76: Lipid transfer protein family protein precursor | 脂质结合 Lipid binding | |
| LOC_Os07g07870 | 3,950,800−3,951,581 | 脂质转运蛋白家族蛋白前体77 LTPL77: Lipid transfer protein family protein precursor | 脂质结合 Lipid binding | |
| LOC_Os07g07880 | 3,954,894−3,952,981 | 色氨酸阻遏蛋白 Trp repressor | 组蛋白甲基转移酶复合体 Histone methyltransferase complex | |
| LOC_Os07g07930 | 3,980,211−3,981,284 | 脂质转运蛋白家族蛋白前体78 LTPL78: Lipid transfer protein family protein precursor | 脂质结合 Lipid binding | |
| qSS9.2 | LOC_Os09g15800 | 9,650,347−9,647,717 | 四肽样螺旋蛋白 Tetratricopeptide-like helical | 种子寿命的获得 Acquisition of seed longevity |
| LOC_Os09g15810 | 9,652,178−9,654,972 | 双功能蛋白folD Bifunctional protein folD | 氧化还原酶活性 Oxidoreductase activity | |
| LOC_Os09g15835 | 9,665,794−9,663,456 | OBP32pep | 茉莉酸生物合成过程 Jasmonic acid biosynthetic process |
Table 5. Annotation information of candidate genes
| QTL | 候选基因 Candidate gene | 位置 Position(bp) | 注释信息 Annotation information | GO |
|---|---|---|---|---|
| qSS4 | LOC_Os04g31040 | 18,553,801−18,551,238 | 紫黄质脱环氧化酶 Violaxanthin de-epoxidase | 细胞脂质代谢过程 Cellular lipid metabolic process |
| LOC_Os04g31070 | 18,564,417−18,560,177 | 酰基去饱和酶 Acyl-desaturase | 氧化还原酶活性 Oxidoreductase activity | |
| LOC_Os04g31240 | 18,690,646−18,694,747 | 水解酶 Hydrolase | 脂质稳态 Lipid homeostasis | |
| qSS7 | LOC_Os07g07420 | 3,702,287−3,705,030 | 赤霉素20氧化酶1-B Gibberellin 20 oxidase 1-B | 赤霉素生物合成过程 Gibberellin biosynthetic process |
| LOC_Os07g07790 | 3,910,568−3,911,638 | 脂质转运蛋白家族蛋白前体75 LTPL75: Lipid transfer protein family protein precursor | 脂质结合 Lipid binding | |
| LOC_Os07g07860 | 3,949,371−3,947,968 | 脂质转运蛋白家族蛋白前体76 LTPL76: Lipid transfer protein family protein precursor | 脂质结合 Lipid binding | |
| LOC_Os07g07870 | 3,950,800−3,951,581 | 脂质转运蛋白家族蛋白前体77 LTPL77: Lipid transfer protein family protein precursor | 脂质结合 Lipid binding | |
| LOC_Os07g07880 | 3,954,894−3,952,981 | 色氨酸阻遏蛋白 Trp repressor | 组蛋白甲基转移酶复合体 Histone methyltransferase complex | |
| LOC_Os07g07930 | 3,980,211−3,981,284 | 脂质转运蛋白家族蛋白前体78 LTPL78: Lipid transfer protein family protein precursor | 脂质结合 Lipid binding | |
| qSS9.2 | LOC_Os09g15800 | 9,650,347−9,647,717 | 四肽样螺旋蛋白 Tetratricopeptide-like helical | 种子寿命的获得 Acquisition of seed longevity |
| LOC_Os09g15810 | 9,652,178−9,654,972 | 双功能蛋白folD Bifunctional protein folD | 氧化还原酶活性 Oxidoreductase activity | |
| LOC_Os09g15835 | 9,665,794−9,663,456 | OBP32pep | 茉莉酸生物合成过程 Jasmonic acid biosynthetic process |
Fig. 4. Results of GO enrichment analysis for annotated genes A, Results of GO enrichment analysis for annotated genes in the interval of qSS4; B, Results of GO enrichment analysis for annotated genes in the interval of qSS7; C, Results of GO enrichment analysis for annotated genes in the interval of qSS9.2.
| [1] | 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264. |
| Huang Y W, Sun B, Cheng C, Niu F A, Zhou J H, Zhang A P, Tu R J, Li Y, Yao Y. QTL mapping of seed storage tolerance in rice[J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264. (in Chinese with English abstract) | |
| [2] | Xu H W, Zhu Y, Lian L, Zhang J. Antisense suppression of lox3 gene in endosperm enhances seed longevity[J]. Plant Biotechnology Journal, 2015, 13(4): 526-539. |
| [3] | 费月新, 曹玉洁, 吴敏, 吴洪恺. 稻米储藏品质劣变机制研究进展与展望[J]. 中国稻米, 2018, 24(5): 22-26. |
| Fei Y X, Cao Y J, Wu M, Wu H K. Research progress and prospect on the mechanism of rice grain storage quality deterioration[J]. China Rice, 2018, 24(5): 22-26. (in Chinese with English abstract) | |
| [4] | 黄上志, 傅家瑞. 贮藏温度和相对湿度对杂交水稻种子耐藏性影响[J]. 植物生理学通讯, 1986, 11(6): 38-41. |
| Huang S Z, Fu J R. Effect of storage temperature and relative humidity on the storability of hybrid rice seeds[J]. Plant Physiology Communications, 1986, 11(6): 38-41. (in Chinese with English abstract) | |
| [5] | 黄祎雯, 张维谊, 王霞, 王敏, 沈斯文, 高猛峰, 梅博, 汪弘康, 童金蓉, 曹黎明, 丰东升, 孙滨. 33份不同基因型水稻耐储性比较[J/OL]. 分子植物育种, 2024, https://link.cnki.net/urlid/46.1068.S.20240202.1646.010. |
| Huang Y W, Zhang W Y, Wang X, Wang M, Shen S W, Gao M F, Mei B, Wang H K, Tong J R, Cao L M, Feng D S, Sun B. Comparison of storage tolerance among 33 different genotypes of rice[J/OL]. Molecular Plant Breeding, 2024, https://link.cnki.net/urlid/46.1068.S.20240202.1646.010. (in Chinese with English abstract) | |
| [6] | Dong X Y, Fan S X, Liu J, Wang Q, Li M R, Jiang X, Liu Z Y, Yin Y C, Wang J Y. Identification of QTLs for seed storability in rice under natural aging conditions using two RILs with the same parent Shennong 265[J]. Journal of Integrative Agriculture, 2017, 16(5):1084-1092. |
| [7] | Jin J, Long W, Wang L, Liu X, Pan G, Xiang W, Li N, Li S. QTL mapping of seed vigor of backcross inbred lines derived from Oryza longistaminata under artificial aging[J]. Frontiers in Plant Science, 2018, 9: 1909. |
| [8] | Miura K, Lin Y, Yano M, Nagamine T. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2002, 104(6): 981-986. |
| [9] | Sasaki K, Takeuchi Y, Miura K, Yamaguchi T, Ando T, Ebitani T, Higashitani A, Yamaya T, Yano M, Sato T. Fine mapping of a major quantitative trait locus, qLG-9, that controls seed longevity in rice [J]. Theoretical and Applied Genetics, 2015, 128(4): 769-778. |
| [10] | Sasaki K, Fukuta K, Sato T. Mapping of quantitative trait loci controlling seed longevity of rice after various periods of seed storage[J]. Plant Breeding, 2005, 124(4): 361-366. |
| [11] | Xue Y, Zhang S Q, Yao Q H, Peng R H, Xiong A S, Li X, Zhu W M, Zhu Y Y, Zha D S. Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.)[J]. Euphytica, 2008, 164(3): 739-744. |
| [12] | Jiang W, Lee J, Jin T M, Qiao Y, Piao R H, Jang S M, Woo M O, Kwon S W, Liu X H, Pan H Y, Du X, Kon H J. Identification of QTLs for seed germination capability after various storage periods using two RIL populations in rice[J]. Molecules and Cells, 2011, 31(4): 385-392. |
| [13] | Yuan Z, Fan K, Xia L, Ding X. Genetic dissection of seed storability and validation of candidate gene associated with antioxidant capability[J]. International Journal of Molecular Sciences, 2019, 20(18): 4442. |
| [14] | Yuan Z Y, Fan K, Wang Y T, Tian L, Zhang C P, Sun W Q, He H Z. OsGRETCHENHAGEN3-2 modulates rice seed storability via accumulation of abscisic acid[J]. Plant Physiology, 2021, 186(1): 469-482. |
| [15] | Zheng X H, Yuan Z Y, Yu Y Y, Yu S B, He H Z. OsCSD2 and OsCSD3 enhance seed storability by modulating antioxidant enzymes and abscisic acid in rice[J]. Plants, 2024, 13(2): 310. |
| [16] | 闫蕴韬, 何兮, 张海清, 贺记外. 水稻种子耐贮性研究进展[J]. 中国农学通报, 2022, 38(5): 1-8. |
| Yan Y T, He X, Zhang H Q, He J W. Advances in research on the storability of rice seeds[J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 1-8. (in Chinese with English abstract) | |
| [17] | Xu H B, Wei Y D, Zhu Y S, Lian L, Xie H G, Cai Q H, Chen Q S, Lin Z P, Wang Z H, Xie H A, Zhang J F. Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity[J]. Plant Biotechnology Journal, 2015, 13(4): 526-539. |
| [18] | Wang F X, Xu H B, Zhang L, Shi Y R, Song Y, Wang X Y, Cai Q H, He W, Xie H A, Zhang J F. The lipoxygenase OsLOX10 affects seed longevity and resistance to saline-alkaline stress during rice seedlings[J]. Plant Molecular Biology, 2023, 111(4): 415-428. |
| [19] | Wei Y, Xu H, Diao L, Zhu Y S, Xie H G, Cai Q H, Wu F X, Wang Z H, Zhang J F, Xie H A. Protein repair L-isoaspartyl methyltransferase 1 in rice improves seed longevity by preserving embryo vigor and viability[J]. Plant Molecular Biology, 2015, 89(5): 475-492. |
| [20] | Wang W Q, Xu D Y, Sui Y P, Ding X H, Song X J. A multiomic study uncovers a bZIP23-PER1A-mediated detoxification pathway to enhance seed vigor in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(9): e2026355119. |
| [21] | 江川, 李书柯, 李清华, 王金英. 水稻耐储藏性研究进展[J]. 江西农业学报, 2011, 23(10): 39-43. |
| Jiang C, Li S K, Li Q H, Wang J Y. Research progress in storability of rice[J]. Acta Agriculturae Jiangxi, 2011, 23(10): 39-43. (in Chinese with English abstract) | |
| [22] | Wang Y, Zhang Y J, Sun X X, He X T, Yang J L, Chen X F, Shi Z H, Song X L, Qiang S, Dai W M. Weedy rice de-domesticated from cultivated rice has evolved strong resistance to seed ageing[J]. Weed Research, 2021, 61(4): 396-405. |
| [23] | Zhou H, Li S, Liu J, Hu J, Le S, Li M. Identification and analysis of the genetic integrity of different types of rice resources through SSR markers[J]. Scientific Reports, 2023, 13:2428. |
| [24] | Ding G, Hu B, Zhou Y, Yang W, Zhao M, Xie J, Zhang F. Development and characterization of chromosome segment substitution lines derived from Oryza rufipogon in the background of the Oryza sativa indica restorer line R974[J]. Genes, 2022, 13(5): 735. |
| [25] | Zhou S Q, Huang K R, Zhou Y, Hu Y Q, Xiao Y C, Chen T, Yin M Q, Liu Y, Xu M L, Jiang X C. Degradome sequencing reveals an integrative miRNA-mediated gene interaction network regulating rice seed vigor[J]. BMC Plant Biology, 2022, 22: 269. |
| [26] | Meng L, Li H, Zhang L, Wang J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal, 2015, 3: 269-283. |
| [27] | McCouch S R CGSNL. Gene nomenclature system for rice[J]. Rice, 2008, 1(1): 72-84. |
| [28] | Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): 884-890. |
| [29] | Jung Y, Han D. BWA-MEME: BWA-MEM emulated with a machine learning approach[J]. Bioinformatics. 2022, 38(9): 2404-2413. |
| [30] | McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9): 1297-1303. |
| [31] | Cingolani P, Platts A, Wang L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila Melanogaster strain w1118; iso-2; iso-3[J]. Fly (Austin), 2012, 6(2): 80-92. |
| [32] | Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq[J]. Genome Research, 2013, 23(4): 687-697. |
| [33] | Zhao M M, Hu B L, Fan Y W, Ding G M, Yang W L, Chen Y, Chen Y H, Xie J K, Zhang F T. Identification, analysis, and confirmation of seed storability-related loci in Dongxiang wild rice (Oryza rufipogon Griff.)[J]. Genes, 2021, 12: 1831. |
| [34] | Choudhary P, Pramitha L, Aggarwal P R, Rana S, Vetriventhan M, Muthamilarasan M. Biotechnological interventions for improving the seed longevity in cereal crops: Progress and prospects[J]. Critical Reviews in Biotechnology, 2023, 43(2): 309-325. |
| [35] | 刘慧敏, 周杰强, 胡远艺, 田妍, 雷斌, 李建武, 魏中伟, 唐文帮. 水稻小粒不育系新组合卓两优1126的高产特征[J]. 中国水稻科学, 2024, 38(2): 160-171. |
| Liu H M, Zhou J Q, Hu Y Y, Tian Y, Lei B, Li J W, Wei Z W, Tang W B. Super-high yield characteristics of two-line hybrid rice Zhuoliangyou 1126[J]. Chinese Journal of Rice Science, 2024, 38(2): 160-171. (in Chinese with English abstract) | |
| [36] | Li C S, Shao G S, Wang L, Wang Z F, Mao Y J, Wang X Q, Zhang X H, Liu S T, Zhang H S. QTL identification and fine mapping for seed storability in rice (Oryza sativa L.)[J]. Euphytica, 2017, 213: 127. |
| [37] | Liu F Z, Li N N, Yu Y Y, Chen W, Yu S B, He H Z. Insights into the regulation of rice seed storability by seed tissue-specific transcriptomic and metabolic profiling[J]. Plants, 2022, 11(12): 1570. |
| [38] | Lin Q Y, Wang W Y, Ren Y K, Jiang Y M, Sun A L, Qian Y, Zhang Y F, He N Q, Hang N T, Liu Z, Li L F, Liu L L, Jiang L, Wan J M. Genetic dissection of seed storability using two different populations with a same parent rice cultivar N22[J]. Breeding Science, 2015, 65: 411-419. |
| [39] | Hang N T, Lin Q Y, Liu L L, Liu X, Liu S J, Wang W Y, Li L F, He N Q, Liu Z, Jiang L, Wan J M. Mapping QTLs related to rice seed storability under natural and artificial aging storage conditions[J]. Euphytica, 2015, 203: 673-681. |
| [40] | Wang W Q, Xu D Y, Sui Y P, Ding X H, Song X J. A multiomic study uncovers a bZIP23-PER1A-mediated detoxification pathway to enhance seed vigor in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(9): e2026355119. |
| [41] | Huang J X, Cai M H, Long Q Z, Liu L L, Lin Q Y, Jiang L, Chen S H, Wan J M. OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity[J]. Transgenic Research, 2014, 23(4): 643-655. |
| [42] | 刘进, 姚晓云, 余丽琴, 李慧, 周慧颖, 王嘉宇, 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 464-473. |
| Liu J, Yao X Y, Yu L Q, Li H, Zhou H Y, Wang J Y, Li M M. Detection and analysis of dynamic quantitative trait loci at three years for seed storability in rice (Oryza sativa)[J]. Chinese Bulletin of Botany, 2019, 54(4): 464-473. (in Chinese with English abstract) | |
| [43] | Wang X, Ren P, Ji L, Zhu B, Xie G. OsVDE, a xanthophyll cycle key enzyme, mediates abscisic acid biosynthesis and negatively regulates salinity tolerance in rice[J]. Planta, 2021, 255: 6. |
| [44] | Ali F, Qanmber G, Li F, Wang Z. Updated role of ABA in seed maturation, dormancy, and germination[J]. Journal of Advanced Research, 2022, 35: 199-214. |
| [45] | Zheng J, Chen F Y, Wang Z, Cao H, Li X Y, Deng X, Soppe W J, Li Y, Liu Y X. A novel role for histone methyltransferase KYP⁄SUVH4 in the control of Arabidopsis primary seed dormancy[J]. New Phytologist, 2012, 193: 605-616. |
| [46] | Wang X, Zhou W, Lu Z H, Ouyang Y D, Yao J L. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice[J]. Plant Science, 2015, 239: 200-208. |
| [47] | Li Y Y, Guo L N, Cui Y, Yan X, Ouyang J X, Li S B. Lipid transfer protein, OsLTPL18, is essential for grain weight and seed germination in rice[J]. Gene, 2023, 883:147671. |
| [48] | Wang Y, Hou Y, Qiu J, Wang H, Wang S, Tang L, Tong X, Zhang J. Abscisic acid promotes jasmonic acid biosynthesis via a SAPK10-bZIP72-AOC pathway to synergistically inhibit seed germination in rice (Oryza sativa)[J]. New Phytologist, 2020, 228: 1336-1353. |
| [49] | Zhou T S, Yu D, Wu L B, Xu Y S, Dun M J, Yuan D Y. Seed storability in rice: physiological bases, molecular mechanisms, and application to breeding[J]. Rice Science, 2024, 31(3): 1-16. |
| [50] | Chen B, Fu H, Gao J, Zhang Y, Huang W, Chen Z, Zhang Q, Yan S, Liu J. Identification of metabolomic biomarkers of seed vigor and aging in hybrid rice[J]. Rice, 2022, 15: 7. |
| [51] | Suzuki Y, Higo K, Hagiwara K, Ohtsubo K, Kobayashi A, Nozu Y. Production and use of monoclonal antibodies against rice embryo lipoxygenase-3[J]. Bioscience Biotechnology and Biochemistry, 1992, 56(4): 678-679. |
| [52] | Suzuki Y, Miura K, Shigemune A, Sasahara H, Ohta H, Uehara Y, Ishikawa T, Hamada S, Shirasawa K. Marker-assisted breeding of a LOX-3-null rice line with improved storability and resistance to preharvest sprouting[J]. Theoretical and Applied Genetics, 2015, 128(7): 1421-1430. |
| [53] | Lin Q Y, Jiang Y M, Sun A L, Cao P H, Li L F, Liu X, Tian Y L, HeJ, Liu S J. Fine mapping of qSS-9, a major and stable quantitative trait locus, for seed storability in rice[J]. Plant Breeding, 2015, 134(3): 293-299. |
| [1] | DU Yanxiu, SUN Wenyu, YUAN Zeke, ZHANG Qianqian, LI Fuhao, LI Junzhou, SUN Hongzheng. Mapping of qChalk8 Controlling Chalky Rice Rate in japonica Rice by Combining QTL-Seq with Molecular Markers [J]. Chinese Journal OF Rice Science, 2024, 38(6): 665-671. |
| [2] | HOU Benfu, YANG Chuanming, ZHANG Xijuan, YANG Xianli, WANG Lizhi, WANG Jiayu, LI Hongyu, JIANG Shukun. Mapping of Grain Shape QTLs Using RIL Population from Longdao 5/Zhongyouzao 8 [J]. Chinese Journal OF Rice Science, 2024, 38(1): 13-24. |
| [3] | HU Jiaxiao, LIU Jin, CUI Di, LE Si, ZHOU Huiying, HAN Bing, MENG Bingxin, YU Liqin, HAN Longzhi, MA Xiaoding, LI Maomao. Mapping Major QTLs for Panicle Traits Using CSSLs of Dongxiang Wild Rice (Oryza rufipogon Griff.) [J]. Chinese Journal OF Rice Science, 2023, 37(6): 597-608. |
| [4] | YAO Xiaoyun, CHEN Chunlian, XIONG Yunhua, HUANG Yongping, PENG Zhiqing, LIU Jin, YIN Jianhua. Identification of QTL for Milling and Appearance Quality Traits in Rice (Oryza sativa L.) [J]. Chinese Journal OF Rice Science, 2023, 37(5): 507-517. |
| [5] | Jie LI, Rongrong TIAN, Tianliang BAI, Chunyan ZHU, Jiawei SONG, Lei TIAN, Shuaiguo MA, Jiandong LÜ, Hui HU, Zhenyu WANG, Chengke LUO, Yinxia ZHANG, Peifu LI. Comprehensive Evaluation and QTL Analysis for Flag Leaf Traits Using a Backcross Population in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(6): 573-585. |
| [6] | Xina CHEN, Zeke YUAN, Zhenzhen HU, Quanzhi ZHAO, Hongzheng SUN. QTL-Seq Mapping of Head Rice Rate QTLs in japonica Rice [J]. Chinese Journal OF Rice Science, 2021, 35(5): 449-454. |
| [7] | Zhijuan JI, Yuxiang ZENG, Yan LIANG, YANGChangdeng. Research and Progress of Bakanae Disease Resistance in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(1): 1-10. |
| [8] | Ting WU, Xia LI, Derun HUANG, Fenglin HUANG, Yulong XIAO, Biaolin HU. QTL Analysis for Yield Traits Related to Low Nitrogen Tolerance Using Backcrossing Recombinant Inbred Lines Derived from Dongxiang Wild Rice (Oryza rufipogon Griff.) [J]. Chinese Journal OF Rice Science, 2020, 34(6): 499-511. |
| [9] | Anpeng ZHANG, Qian QIAN, Zhenyu GAO. Research Advances on Rice Seed Vigor [J]. Chinese Journal OF Rice Science, 2018, 32(3): 296-303. |
| [10] | Biaolin HU, Derun HUANG, Yeqing XIAO, Qiangsheng HE, Yong WAN, Yeyang FAN. QTL Analysis for Mineral Contents in Brown Rice Using a BC2F4:5 Population Derived from Dongxiang Wild Rice (Oryza rufipogon Griff.) [J]. Chinese Journal OF Rice Science, 2018, 32(1): 43-50. |
| [11] | Wei LI, Zhonghua SHENG, Ziliang ZHU, Xiangjin WEI, Lei SHI, Yawen WU, Shaoqing TANG, Jianlong WANG, Peisong HU. QTL Mapping of japonica Rice Stigma Exsertion Rate [J]. Chinese Journal OF Rice Science, 2017, 31(1): 23-30. |
| [12] | Zhong-hua SHENG, Zi-liang ZHU, Ning MA, Wei LI, Ji-wai HE, Xiang-jin WEI, Gao-neng SHAO, Jian-long WANG, Pei-song HU, Shao-qing TANG. QTL Mapping of Yield Related Traits in Super Rice Variety Zhongjiazao 17 [J]. Chinese Journal OF Rice Science, 2016, 30(1): 35-43. |
| [13] | QU Lijun1,2, ZHANG Hongjun2, XIANG Chao2, WANG Hui3, XIA Jiafa3, LI Zefu3, GAO Yongming2,*, SHI Yingyao1,*. Study on the Genetic Basis for Abnormal Heading in Hybrid Rice [J]. Chinese Journal of Rice Science, 2013, 27(6): 559-568. |
| [14] | JIANG Jianhua1, ZHANG Wanxia1, LIU Xiaoli1, LIU Qiangming1, LU Chao1, DANG Xiaojing1, ZHAO Qibing2, HONG Delin1,*. QTL Dissection of Plant Height at Different Growth Stages Under MultiEnvironments in japonica Rice [J]. Chinese Journal of Rice Science, 2012, 26(1): 55-64. |
| [15] | XU Jianjun1,2, ZHAO Qiang3, ZHAO Yuanfeng1, ZHU Lei1, XU Chenwu1, GU Minghong1, HAN Bin3, LIANG Guohua1,*. Mapping of QTLs for Flag Leaf Shape Using WholeGenome Resequenced Chromosome Segment Substitution Lines in Rice [J]. Chinese Journal of Rice Science, 2011, 25(5): 483-487. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||