
Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (6): 832-846.DOI: 10.16819/j.1001-7216.2025.240203
• Research Papers • Previous Articles Next Articles
ZHANG Lanlan1, LIU Dilin1,2, MA Xiaozhi1,2, HUO Xing1,2, KONG Le1,2, LI Jinhua1,2, FU Chongyun1,2, LIAO Yilong1,2, ZHU Manshan1,2, ZENG Xueqin1,2, LIU Wuge1,2,*(
), WANG Feng1,2,*(
)
Received:2024-02-04
Revised:2024-09-10
Online:2025-11-10
Published:2025-11-19
Contact:
LIU Wuge, WANG Feng
张兰兰1, 刘迪林1,2, 马晓智1,2, 霍兴1,2, 孔乐1,2, 李金华1,2, 付崇允1,2, 廖亦龙1,2, 朱满山1,2, 曾学勤1,2, 柳武革1,2,*(
), 王丰1,2,*(
)
通讯作者:
柳武革,王丰
基金资助:ZHANG Lanlan, LIU Dilin, MA Xiaozhi, HUO Xing, KONG Le, LI Jinhua, FU Chongyun, LIAO Yilong, ZHU Manshan, ZENG Xueqin, LIU Wuge, WANG Feng. Quality Traits Affecting Eating Quality in indica Rice Under Different Nitrogen Application Levels in Early and Late Seasons in South China[J]. Chinese Journal OF Rice Science, 2025, 39(6): 832-846.
张兰兰, 刘迪林, 马晓智, 霍兴, 孔乐, 李金华, 付崇允, 廖亦龙, 朱满山, 曾学勤, 柳武革, 王丰. 华南早晚季不同施氮水平下影响籼稻米食味的品质性状[J]. 中国水稻科学, 2025, 39(6): 832-846.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.240203
| 性状 Trait | 自由度 df | F | P | 性状 Trait | 自由度 df | F | P |
|---|---|---|---|---|---|---|---|
| 季节Season | 季节×施氮水平Growing season × nitrogen level | ||||||
| TV | 1 | 245.07** | 0.000 | TV | 3 | 5.07** | 0.002 |
| BRR | 1 | 923.39** | 0.000 | BRR | 3 | 1.84 | 0.142 |
| MRR | 1 | 787.30** | 0.000 | MRR | 3 | 2.71* | 0.046 |
| LWR | 1 | 66.93** | 0.000 | LWR | 3 | 0.95 | 0.419 |
| CGR | 1 | 708.06** | 0.000 | CGR | 3 | 16.47** | 0.000 |
| CD | 1 | 601.58** | 0.000 | CD | 3 | 5.18** | 0.002 |
| TR | 1 | 0.21 | 0.647 | TR | 3 | 1.10 | 0.349 |
| GC | 1 | 44.35** | 0.000 | GC | 3 | 6.45** | 0.000 |
| AC | 1 | 163.66** | 0.000 | AC | 3 | 1.77 | 0.155 |
| ASV | 1 | 21.34** | 0.000 | ASV | 3 | 2.06 | 0.107 |
| PC | 1 | 27.41** | 0.000 | PC | 3 | 4.74** | 0.003 |
| 施氮水平 Nitrogen level | 季节×品种 Growing season ×variety | ||||||
| TV | 3 | 37.99** | 0.000 | TV | 15 | 14.83** | 0.000 |
| BRR | 3 | 2.70* | 0.046 | BRR | 15 | 31.81** | 0.000 |
| MRR | 3 | 1.21 | 0.307 | MRR | 15 | 29.14** | 0.000 |
| LWR | 3 | 9.71** | 0.000 | LWR | 15 | 3.49** | 0.000 |
| CGR | 3 | 4.45** | 0.005 | CGR | 15 | 53.69** | 0.000 |
| CD | 3 | 5.43** | 0.001 | CD | 15 | 48.79** | 0.000 |
| TR | 3 | 1.55 | 0.202 | TR | 15 | 3.00** | 0.000 |
| GC | 3 | 4.75** | 0.003 | GC | 15 | 6.26** | 0.000 |
| AC | 3 | 1.57 | 0.199 | AC | 15 | 9.71** | 0.000 |
| ASV | 3 | 1.38 | 0.249 | ASV | 15 | 1.28 | 0.213 |
| PC | 3 | 200.68** | 0.000 | PC | 15 | 5.72** | 0.000 |
| 氮水平×品种 Nitrogen level × variety | 季节×氮水平×品种 Growing season × nitrogen level × variety | ||||||
| TV | 45 | 1.85** | 0.002 | TV | 45 | 0.87 | 0.704 |
| BRR | 45 | 1.76** | 0.004 | BRR | 45 | 1.86** | 0.002 |
| MRR | 45 | 1.76** | 0.004 | MRR | 45 | 1.66** | 0.009 |
| LWR | 45 | 2.01** | 0.000 | LWR | 45 | 1.11 | 0.306 |
| CGR | 45 | 8.02** | 0.000 | CGR | 45 | 8.06** | 0.000 |
| CD | 45 | 10.96** | 0.000 | CD | 45 | 10.35** | 0.000 |
| TR | 45 | 1.56* | 0.020 | TR | 45 | 1.48* | 0.036 |
| GC | 45 | 2.64** | 0.000 | GC | 45 | 2.27** | 0.000 |
| AC | 45 | 0.89 | 0.677 | AC | 45 | 0.64 | 0.963 |
| ASV | 45 | 0.57 | 0.986 | ASV | 45 | 0.60 | 0.979 |
| PC | 45 | 1.43* | 0.048 | PC | 45 | 1.91** | 0.001 |
| 品种 Variety | 品种 Variety | ||||||
| TV | 15 | 170.97** | 0.000 | TR | 15 | 26.28** | 0.000 |
| BRR | 15 | 59.93** | 0.000 | GC | 15 | 146.91** | 0.000 |
| MRR | 15 | 43.93** | 0.000 | AC | 15 | 106.22** | 0.000 |
| LWR | 15 | 1514.20** | 0.000 | ASV | 15 | 70.39** | 0.000 |
| CGR | 15 | 376.41** | 0.000 | PC | 15 | 20.07** | 0.000 |
| CD | 15 | 122.51** | 0.000 | ||||
Table 1. Three-way analysis of variance (ANOVA) for quality traits
| 性状 Trait | 自由度 df | F | P | 性状 Trait | 自由度 df | F | P |
|---|---|---|---|---|---|---|---|
| 季节Season | 季节×施氮水平Growing season × nitrogen level | ||||||
| TV | 1 | 245.07** | 0.000 | TV | 3 | 5.07** | 0.002 |
| BRR | 1 | 923.39** | 0.000 | BRR | 3 | 1.84 | 0.142 |
| MRR | 1 | 787.30** | 0.000 | MRR | 3 | 2.71* | 0.046 |
| LWR | 1 | 66.93** | 0.000 | LWR | 3 | 0.95 | 0.419 |
| CGR | 1 | 708.06** | 0.000 | CGR | 3 | 16.47** | 0.000 |
| CD | 1 | 601.58** | 0.000 | CD | 3 | 5.18** | 0.002 |
| TR | 1 | 0.21 | 0.647 | TR | 3 | 1.10 | 0.349 |
| GC | 1 | 44.35** | 0.000 | GC | 3 | 6.45** | 0.000 |
| AC | 1 | 163.66** | 0.000 | AC | 3 | 1.77 | 0.155 |
| ASV | 1 | 21.34** | 0.000 | ASV | 3 | 2.06 | 0.107 |
| PC | 1 | 27.41** | 0.000 | PC | 3 | 4.74** | 0.003 |
| 施氮水平 Nitrogen level | 季节×品种 Growing season ×variety | ||||||
| TV | 3 | 37.99** | 0.000 | TV | 15 | 14.83** | 0.000 |
| BRR | 3 | 2.70* | 0.046 | BRR | 15 | 31.81** | 0.000 |
| MRR | 3 | 1.21 | 0.307 | MRR | 15 | 29.14** | 0.000 |
| LWR | 3 | 9.71** | 0.000 | LWR | 15 | 3.49** | 0.000 |
| CGR | 3 | 4.45** | 0.005 | CGR | 15 | 53.69** | 0.000 |
| CD | 3 | 5.43** | 0.001 | CD | 15 | 48.79** | 0.000 |
| TR | 3 | 1.55 | 0.202 | TR | 15 | 3.00** | 0.000 |
| GC | 3 | 4.75** | 0.003 | GC | 15 | 6.26** | 0.000 |
| AC | 3 | 1.57 | 0.199 | AC | 15 | 9.71** | 0.000 |
| ASV | 3 | 1.38 | 0.249 | ASV | 15 | 1.28 | 0.213 |
| PC | 3 | 200.68** | 0.000 | PC | 15 | 5.72** | 0.000 |
| 氮水平×品种 Nitrogen level × variety | 季节×氮水平×品种 Growing season × nitrogen level × variety | ||||||
| TV | 45 | 1.85** | 0.002 | TV | 45 | 0.87 | 0.704 |
| BRR | 45 | 1.76** | 0.004 | BRR | 45 | 1.86** | 0.002 |
| MRR | 45 | 1.76** | 0.004 | MRR | 45 | 1.66** | 0.009 |
| LWR | 45 | 2.01** | 0.000 | LWR | 45 | 1.11 | 0.306 |
| CGR | 45 | 8.02** | 0.000 | CGR | 45 | 8.06** | 0.000 |
| CD | 45 | 10.96** | 0.000 | CD | 45 | 10.35** | 0.000 |
| TR | 45 | 1.56* | 0.020 | TR | 45 | 1.48* | 0.036 |
| GC | 45 | 2.64** | 0.000 | GC | 45 | 2.27** | 0.000 |
| AC | 45 | 0.89 | 0.677 | AC | 45 | 0.64 | 0.963 |
| ASV | 45 | 0.57 | 0.986 | ASV | 45 | 0.60 | 0.979 |
| PC | 45 | 1.43* | 0.048 | PC | 45 | 1.91** | 0.001 |
| 品种 Variety | 品种 Variety | ||||||
| TV | 15 | 170.97** | 0.000 | TR | 15 | 26.28** | 0.000 |
| BRR | 15 | 59.93** | 0.000 | GC | 15 | 146.91** | 0.000 |
| MRR | 15 | 43.93** | 0.000 | AC | 15 | 106.22** | 0.000 |
| LWR | 15 | 1514.20** | 0.000 | ASV | 15 | 70.39** | 0.000 |
| CGR | 15 | 376.41** | 0.000 | PC | 15 | 20.07** | 0.000 |
| CD | 15 | 122.51** | 0.000 | ||||
| 性状(代号) Traits(Code) | N0 | N1 | N2 | N3 | ||||
|---|---|---|---|---|---|---|---|---|
| 偏回归系数 PRC | P | 偏回归系数PRC | P | 偏回归系数PRC | P | 偏回归系数PRC | P | |
| 糙米率 BRR (X1) | 1.495 | 0.582 | 0.222 | 0.786 | 1.151 | 0.088 | 0.261 | 0.685 |
| 精米率 MRR (X2) | −0.279 | 0.871 | −0.104 | 0.816 | −0.877* | 0.025 | −0.030 | 0.940 |
| 米粒长宽比 LWR (X4) | 3.620 | 0.331 | 2.104 | 0.280 | 2.405 | 0.167 | 1.725 | 0.188 |
| 垩白粒率 CGR (X5) | 0.028 | 0.879 | 0.005 | 0.924 | −0.088 | 0.168 | −0.086 | 0.165 |
| 垩白度 CD (X6) | 0.124 | 0.731 | −0.027 | 0.815 | 0.239* | 0.023 | 0.245* | 0.016 |
| 透明度 TR (X7) | −2.085 | 0.494 | 0.058 | 0.965 | −1.856 | 0.091 | −0.430 | 0.657 |
| 胶稠度 GC (X8) | 0.045 | 0.614 | 0.016 | 0.793 | −0.058 | 0.210 | −0.062 | 0.339 |
| 直链淀粉含量AC(X9) | −1.600* | 0.021 | −1.431** | 0.000 | −1.663** | 0.000 | −1.608** | 0.000 |
| 碱消值 ASV (X10) | 1.287 | 0.515 | 0.409 | 0.422 | −0.244 | 0.630 | −0.167 | 0.722 |
| 蛋白质 PC (X11) | −4.112 | 0.276 | −5.706** | 0.000 | −4.832** | 0.001 | −4.889** | 0.000 |
Table 2. Partial regression coefficients between quality traits and taste value of cooked rice under four nitrogen application levels in early season
| 性状(代号) Traits(Code) | N0 | N1 | N2 | N3 | ||||
|---|---|---|---|---|---|---|---|---|
| 偏回归系数 PRC | P | 偏回归系数PRC | P | 偏回归系数PRC | P | 偏回归系数PRC | P | |
| 糙米率 BRR (X1) | 1.495 | 0.582 | 0.222 | 0.786 | 1.151 | 0.088 | 0.261 | 0.685 |
| 精米率 MRR (X2) | −0.279 | 0.871 | −0.104 | 0.816 | −0.877* | 0.025 | −0.030 | 0.940 |
| 米粒长宽比 LWR (X4) | 3.620 | 0.331 | 2.104 | 0.280 | 2.405 | 0.167 | 1.725 | 0.188 |
| 垩白粒率 CGR (X5) | 0.028 | 0.879 | 0.005 | 0.924 | −0.088 | 0.168 | −0.086 | 0.165 |
| 垩白度 CD (X6) | 0.124 | 0.731 | −0.027 | 0.815 | 0.239* | 0.023 | 0.245* | 0.016 |
| 透明度 TR (X7) | −2.085 | 0.494 | 0.058 | 0.965 | −1.856 | 0.091 | −0.430 | 0.657 |
| 胶稠度 GC (X8) | 0.045 | 0.614 | 0.016 | 0.793 | −0.058 | 0.210 | −0.062 | 0.339 |
| 直链淀粉含量AC(X9) | −1.600* | 0.021 | −1.431** | 0.000 | −1.663** | 0.000 | −1.608** | 0.000 |
| 碱消值 ASV (X10) | 1.287 | 0.515 | 0.409 | 0.422 | −0.244 | 0.630 | −0.167 | 0.722 |
| 蛋白质 PC (X11) | −4.112 | 0.276 | −5.706** | 0.000 | −4.832** | 0.001 | −4.889** | 0.000 |
| 处理 Treatment | 性状 Trait | 直链淀粉含量 AC | 蛋白质含量 PC | 总体效应 Overall effect |
|---|---|---|---|---|
| N0 | 直链淀粉含量 AC | −0.850 | — | −0.850 |
| N1 | 直链淀粉含量 AC | −0.768 | −0.025 | −0.793 |
| 蛋白质含量 PC | −0.050 | −0.388 | −0.438 | |
| N2 | 直链淀粉含量 AC | −0.786 | 0.035 | −0.751 |
| 蛋白质含量 PC | 0.073 | −0.380 | −0.307 | |
| N3 | 直链淀粉含量 AC | −0.817 | 0.006 | −0.811 |
| 蛋白质含量 PC | 0.013 | −0.389 | −0.376 |
Table 3. Path coefficients of quality traits on taste value of cooked rice under four nitrogen application levels in early season
| 处理 Treatment | 性状 Trait | 直链淀粉含量 AC | 蛋白质含量 PC | 总体效应 Overall effect |
|---|---|---|---|---|
| N0 | 直链淀粉含量 AC | −0.850 | — | −0.850 |
| N1 | 直链淀粉含量 AC | −0.768 | −0.025 | −0.793 |
| 蛋白质含量 PC | −0.050 | −0.388 | −0.438 | |
| N2 | 直链淀粉含量 AC | −0.786 | 0.035 | −0.751 |
| 蛋白质含量 PC | 0.073 | −0.380 | −0.307 | |
| N3 | 直链淀粉含量 AC | −0.817 | 0.006 | −0.811 |
| 蛋白质含量 PC | 0.013 | −0.389 | −0.376 |
| 性状(代号) Traits(Code) | N0 | N1 | N2 | N3 | ||||
|---|---|---|---|---|---|---|---|---|
| 偏回归系数PRC | P | 偏回归系数 PRC | P | 偏回归系数 PRC | P | 偏回归系数 PRC | P | |
| 糙米率 BRR (X1) | 3.420** | 0.000 | 0.193 | 0.796 | 2.171** | 0.008 | 0.727 | 0.336 |
| 精米率 MRR (X2) | −3.565** | 0.000 | −0.266 | 0.751 | −2.325* | 0.011 | −0.868 | 0.347 |
| 整精米率 HRR (X3) | −0.494** | 0.010 | −0.021 | 0.894 | −0.531* | 0.044 | −0.067 | 0.782 |
| 米粒长宽比 LWR (X4) | −0.032 | 0.981 | 1.815 | 0.051 | 1.375 | 0.320 | 1.470 | 0.151 |
| 垩白粒率 CGR (X5) | −0.375* | 0.019 | −0.009 | 0.948 | −0.235 | 0.177 | −0.199* | 0.026 |
| 垩白度 CD (X6) | 0.783 | 0.226 | 0.157 | 0.764 | 0.505 | 0.502 | 0.514 | 0.107 |
| 透明度 TR (X7) | −2.977** | 0.008 | −0.459 | 0.600 | −1.746 | 0.162 | −0.787 | 0.240 |
| 胶稠度 GC (X8) | 0.186** | 0.002 | 0.187** | 0.000 | 0.140** | 0.010 | 0.193* * | 0.000 |
| 直链淀粉含量AC (X9) | 0.134 | 0.695 | −0.418* | 0.037 | −0.376 | 0.190 | 0.085 | 0.616 |
| 碱消值 ASV (X10) | 0.857* | 0.025 | 0.555 | 0.116 | 0.357 | 0.340 | −0.012 | 0.963 |
| 蛋白质 PC (X11) | −1.176 | 0.282 | −4.034** | 0.000 | −7.060** | 0.000 | −4.863** | 0.000 |
Table 4. Partial regression coefficients between taste value of cooked rice and quality traits under four nitrogen application levels in late season
| 性状(代号) Traits(Code) | N0 | N1 | N2 | N3 | ||||
|---|---|---|---|---|---|---|---|---|
| 偏回归系数PRC | P | 偏回归系数 PRC | P | 偏回归系数 PRC | P | 偏回归系数 PRC | P | |
| 糙米率 BRR (X1) | 3.420** | 0.000 | 0.193 | 0.796 | 2.171** | 0.008 | 0.727 | 0.336 |
| 精米率 MRR (X2) | −3.565** | 0.000 | −0.266 | 0.751 | −2.325* | 0.011 | −0.868 | 0.347 |
| 整精米率 HRR (X3) | −0.494** | 0.010 | −0.021 | 0.894 | −0.531* | 0.044 | −0.067 | 0.782 |
| 米粒长宽比 LWR (X4) | −0.032 | 0.981 | 1.815 | 0.051 | 1.375 | 0.320 | 1.470 | 0.151 |
| 垩白粒率 CGR (X5) | −0.375* | 0.019 | −0.009 | 0.948 | −0.235 | 0.177 | −0.199* | 0.026 |
| 垩白度 CD (X6) | 0.783 | 0.226 | 0.157 | 0.764 | 0.505 | 0.502 | 0.514 | 0.107 |
| 透明度 TR (X7) | −2.977** | 0.008 | −0.459 | 0.600 | −1.746 | 0.162 | −0.787 | 0.240 |
| 胶稠度 GC (X8) | 0.186** | 0.002 | 0.187** | 0.000 | 0.140** | 0.010 | 0.193* * | 0.000 |
| 直链淀粉含量AC (X9) | 0.134 | 0.695 | −0.418* | 0.037 | −0.376 | 0.190 | 0.085 | 0.616 |
| 碱消值 ASV (X10) | 0.857* | 0.025 | 0.555 | 0.116 | 0.357 | 0.340 | −0.012 | 0.963 |
| 蛋白质 PC (X11) | −1.176 | 0.282 | −4.034** | 0.000 | −7.060** | 0.000 | −4.863** | 0.000 |
| 处理 Treatment | 性状 Trait | 糙米率 BRR | 精米率 MRR | 整精米率 HRR | 垩白粒率 CGR | 透明度 TR | 胶稠度 GC | 碱消值 ASV | 总体效应 Overall effect |
|---|---|---|---|---|---|---|---|---|---|
| N0 | 糙米率 BRR | 4.668 | −3.999 | −0.455 | −0.261 | −0.109 | 0.113 | −0.127 | −0.170 |
| 精米率 MRR | 4.645 | −4.019 | −0.473 | −0.237 | −0.104 | 0.092 | −0.111 | −0.207 | |
| 整精米率 HRR | 3.823 | −3.420 | −0.556 | −0.061 | −0.046 | 0.024 | −0.021 | −0.257 | |
| 垩白粒率 CGR | 1.989 | −1.555 | −0.056 | −0.613 | −0.109 | −0.129 | −0.035 | −0.508 | |
| 透明度 TR | 2.301 | −1.885 | −0.116 | −0.301 | −0.222 | 0.043 | −0.143 | −0.323 | |
| 胶稠度 GC | 1.032 | −0.723 | −0.026 | 0.154 | −0.019 | 0.510 | −0.246 | 0.682 | |
| 碱消值 ASV | −1.736 | 1.310 | 0.034 | 0.063 | 0.093 | −0.367 | 0.342 | −0.261 | |
| 处理 Treatment | 性状 Trait | 胶稠度 GC | 直链淀粉含量 AC | 蛋白质含量 PC | 总体效应 Overall effect | ||||
| N1 | 胶稠度GC | 0.418 | 0.335 | −0.003 | 0.750 | ||||
| 直链淀粉含量AC | −0.336 | −0.417 | 0.073 | −0.680 | |||||
| 蛋白质含量PC | 0.003 | 0.076 | −0.400 | −0.321 | |||||
| 处理 Treatment | 性状 Trait | 胶稠度 GC | 蛋白质含量 PC | 总体效应 Overall effect | |||||
| N2 | 胶稠度GC | 0.741 | −0.072 | 0.669 | |||||
| 蛋白质含量PC | 0.182 | −0.294 | −0.112 | ||||||
| 处理 Treatment | 性状 Trait | 垩白粒率 CGR | 胶稠度 GC | 蛋白质含量 PC | 总体效应 Overall effect | ||||
| N3 | 垩白粒率CGR | −0.278 | −0.073 | −0.053 | −0.404 | ||||
| 胶稠度GC | 0.030 | 0.666 | 0.082 | 0.778 | |||||
| 蛋白质含量PC | −0.040 | −0.149 | −0.368 | −0.557 | |||||
Table 5. Path coefficients of quality traits on taste value of cooked rice in late season
| 处理 Treatment | 性状 Trait | 糙米率 BRR | 精米率 MRR | 整精米率 HRR | 垩白粒率 CGR | 透明度 TR | 胶稠度 GC | 碱消值 ASV | 总体效应 Overall effect |
|---|---|---|---|---|---|---|---|---|---|
| N0 | 糙米率 BRR | 4.668 | −3.999 | −0.455 | −0.261 | −0.109 | 0.113 | −0.127 | −0.170 |
| 精米率 MRR | 4.645 | −4.019 | −0.473 | −0.237 | −0.104 | 0.092 | −0.111 | −0.207 | |
| 整精米率 HRR | 3.823 | −3.420 | −0.556 | −0.061 | −0.046 | 0.024 | −0.021 | −0.257 | |
| 垩白粒率 CGR | 1.989 | −1.555 | −0.056 | −0.613 | −0.109 | −0.129 | −0.035 | −0.508 | |
| 透明度 TR | 2.301 | −1.885 | −0.116 | −0.301 | −0.222 | 0.043 | −0.143 | −0.323 | |
| 胶稠度 GC | 1.032 | −0.723 | −0.026 | 0.154 | −0.019 | 0.510 | −0.246 | 0.682 | |
| 碱消值 ASV | −1.736 | 1.310 | 0.034 | 0.063 | 0.093 | −0.367 | 0.342 | −0.261 | |
| 处理 Treatment | 性状 Trait | 胶稠度 GC | 直链淀粉含量 AC | 蛋白质含量 PC | 总体效应 Overall effect | ||||
| N1 | 胶稠度GC | 0.418 | 0.335 | −0.003 | 0.750 | ||||
| 直链淀粉含量AC | −0.336 | −0.417 | 0.073 | −0.680 | |||||
| 蛋白质含量PC | 0.003 | 0.076 | −0.400 | −0.321 | |||||
| 处理 Treatment | 性状 Trait | 胶稠度 GC | 蛋白质含量 PC | 总体效应 Overall effect | |||||
| N2 | 胶稠度GC | 0.741 | −0.072 | 0.669 | |||||
| 蛋白质含量PC | 0.182 | −0.294 | −0.112 | ||||||
| 处理 Treatment | 性状 Trait | 垩白粒率 CGR | 胶稠度 GC | 蛋白质含量 PC | 总体效应 Overall effect | ||||
| N3 | 垩白粒率CGR | −0.278 | −0.073 | −0.053 | −0.404 | ||||
| 胶稠度GC | 0.030 | 0.666 | 0.082 | 0.778 | |||||
| 蛋白质含量PC | −0.040 | −0.149 | −0.368 | −0.557 | |||||
| 性状(代号) Traits(Code) | N0 | N1 | N2 | N3 | ||||
|---|---|---|---|---|---|---|---|---|
| 偏回归系数Partial regression coefficient | 显著性 P | 偏回归系数Partial regression coefficient | 显著性 P | 偏回归系数Partial regression coefficient | 显著性 P | 偏回归系数Partial regression coefficient | 显著性 P | |
| 糙米率 BRR (X1) | 1.151 | 0.152 | −0.328 | 0.298 | 0.519 | 0.122 | 0.008 | 0.979 |
| 精米率 MRR (X2) | −1.543 | 0.081 | 0.190 | 0.581 | −0.979* | 0.011 | −0.223 | 0.537 |
| 米粒长宽比 LWR (X4) | −0.993 | 0.523 | 1.007 | 0.248 | 0.440 | 0.660 | 1.653* | 0.045 |
| 垩白粒率 CGR (X5) | 0.002 | 0.979 | 0.039 | 0.329 | −0.157** | 0.004 | −0.102* | 0.031 |
| 垩白度 CD (X6) | −0.227 | 0.263 | −0.199* | 0.012 | 0.201* | 0.041 | 0.203* | 0.023 |
| 透明度 TR (X7) | −3.322* | 0.014 | 0.230 | 0.775 | −1.273 | 0.093 | 0.137 | 0.843 |
| 胶稠度 GC (X8) | 0.065 | 0.174 | 0.127** | 0.000 | 0.118** | 0.000 | 0.157** | 0.000 |
| 直链淀粉含量AC (X9) | −0.867** | 0.001 | −0.853** | 0.000 | −0.779** | 0.000 | −0.514** | 0.005 |
| 碱消值 ASV (X10) | −0.297 | 0.554 | 0.378 | 0.202 | 0.187 | 0.563 | 0.296 | 0.283 |
| 蛋白质含量 PC (X11) | −4.318** | 0.000 | −5.794** | 0.000 | −6.528** | 0.000 | −6.132** | 0.000 |
Table 6. Partial regression coefficients between quality traits and taste value using combined date from early and late seasons
| 性状(代号) Traits(Code) | N0 | N1 | N2 | N3 | ||||
|---|---|---|---|---|---|---|---|---|
| 偏回归系数Partial regression coefficient | 显著性 P | 偏回归系数Partial regression coefficient | 显著性 P | 偏回归系数Partial regression coefficient | 显著性 P | 偏回归系数Partial regression coefficient | 显著性 P | |
| 糙米率 BRR (X1) | 1.151 | 0.152 | −0.328 | 0.298 | 0.519 | 0.122 | 0.008 | 0.979 |
| 精米率 MRR (X2) | −1.543 | 0.081 | 0.190 | 0.581 | −0.979* | 0.011 | −0.223 | 0.537 |
| 米粒长宽比 LWR (X4) | −0.993 | 0.523 | 1.007 | 0.248 | 0.440 | 0.660 | 1.653* | 0.045 |
| 垩白粒率 CGR (X5) | 0.002 | 0.979 | 0.039 | 0.329 | −0.157** | 0.004 | −0.102* | 0.031 |
| 垩白度 CD (X6) | −0.227 | 0.263 | −0.199* | 0.012 | 0.201* | 0.041 | 0.203* | 0.023 |
| 透明度 TR (X7) | −3.322* | 0.014 | 0.230 | 0.775 | −1.273 | 0.093 | 0.137 | 0.843 |
| 胶稠度 GC (X8) | 0.065 | 0.174 | 0.127** | 0.000 | 0.118** | 0.000 | 0.157** | 0.000 |
| 直链淀粉含量AC (X9) | −0.867** | 0.001 | −0.853** | 0.000 | −0.779** | 0.000 | −0.514** | 0.005 |
| 碱消值 ASV (X10) | −0.297 | 0.554 | 0.378 | 0.202 | 0.187 | 0.563 | 0.296 | 0.283 |
| 蛋白质含量 PC (X11) | −4.318** | 0.000 | −5.794** | 0.000 | −6.528** | 0.000 | −6.132** | 0.000 |
| 处理 Treat- ment | 性状 Trait | 直接通径系数和间接通径系数 Direct path coefficient and indirect path coefficient | 总体效应 Overall effect | |||||
|---|---|---|---|---|---|---|---|---|
| N0 | 透明度 TR | 直链淀粉含量AC | 蛋白质含量PC | |||||
| 透明度 TR | −0.251 | −0.091 | −0.027 | −0.369 | ||||
| 直链淀粉含量AC | −0.036 | −0.629 | 0.022 | −0.643 | ||||
| 蛋白质含量PC | −0.019 | 0.038 | −0.354 | −0.335 | ||||
| N1 | 垩白度CD | 胶稠度GC | 直链淀粉含量AC | 蛋白质含量PC | ||||
| 垩白度CD | −0.331 | 0.061 | 0.046 | 0.004 | −0.220 | |||
| 胶稠度GC | −0.065 | 0.309 | 0.366 | −0.021 | 0.589 | |||
| 直链淀粉含量AC | 0.031 | −0.231 | −0.490 | 0.039 | −0.651 | |||
| 蛋白质含量PC | 0.003 | 0.015 | 0.043 | −0.451 | −0.390 | |||
| N2 | 精米率MRR | 垩白粒率CGR | 胶稠度GC | 直链淀粉含量AC | 蛋白质含量PC | |||
| 精米率MRR | −0.285 | −0.090 | −0.025 | 0.058 | 0.048 | −0.294 | ||
| 垩白粒率CGR | −0.093 | −0.277 | −0.041 | −0.067 | 0.054 | −0.424 | ||
| 胶稠度GC | 0.027 | 0.041 | 0.273 | 0.289 | −0.081 | 0.549 | ||
| 直链淀粉含量AC | 0.038 | −0.043 | −0.181 | −0.436 | 0.084 | −0.538 | ||
| 蛋白质含量PC | 0.031 | 0.034 | 0.050 | 0.084 | −0.440 | −0.241 | ||
| N3 | 长宽比 LWR | 胶稠度GC | 蛋白质含量PC | |||||
| 长宽比LWR | 0.404 | 0.038 | −0.070 | 0.372 | ||||
| 胶稠度GC | 0.026 | 0.590 | −0.006 | 0.610 | ||||
| 蛋白质含量PC | 0.057 | 0.007 | −0.495 | −0.431 | ||||
Table 7. Path analysis of quality traits on taste value from pooled date across growing seasons
| 处理 Treat- ment | 性状 Trait | 直接通径系数和间接通径系数 Direct path coefficient and indirect path coefficient | 总体效应 Overall effect | |||||
|---|---|---|---|---|---|---|---|---|
| N0 | 透明度 TR | 直链淀粉含量AC | 蛋白质含量PC | |||||
| 透明度 TR | −0.251 | −0.091 | −0.027 | −0.369 | ||||
| 直链淀粉含量AC | −0.036 | −0.629 | 0.022 | −0.643 | ||||
| 蛋白质含量PC | −0.019 | 0.038 | −0.354 | −0.335 | ||||
| N1 | 垩白度CD | 胶稠度GC | 直链淀粉含量AC | 蛋白质含量PC | ||||
| 垩白度CD | −0.331 | 0.061 | 0.046 | 0.004 | −0.220 | |||
| 胶稠度GC | −0.065 | 0.309 | 0.366 | −0.021 | 0.589 | |||
| 直链淀粉含量AC | 0.031 | −0.231 | −0.490 | 0.039 | −0.651 | |||
| 蛋白质含量PC | 0.003 | 0.015 | 0.043 | −0.451 | −0.390 | |||
| N2 | 精米率MRR | 垩白粒率CGR | 胶稠度GC | 直链淀粉含量AC | 蛋白质含量PC | |||
| 精米率MRR | −0.285 | −0.090 | −0.025 | 0.058 | 0.048 | −0.294 | ||
| 垩白粒率CGR | −0.093 | −0.277 | −0.041 | −0.067 | 0.054 | −0.424 | ||
| 胶稠度GC | 0.027 | 0.041 | 0.273 | 0.289 | −0.081 | 0.549 | ||
| 直链淀粉含量AC | 0.038 | −0.043 | −0.181 | −0.436 | 0.084 | −0.538 | ||
| 蛋白质含量PC | 0.031 | 0.034 | 0.050 | 0.084 | −0.440 | −0.241 | ||
| N3 | 长宽比 LWR | 胶稠度GC | 蛋白质含量PC | |||||
| 长宽比LWR | 0.404 | 0.038 | −0.070 | 0.372 | ||||
| 胶稠度GC | 0.026 | 0.590 | −0.006 | 0.610 | ||||
| 蛋白质含量PC | 0.057 | 0.007 | −0.495 | −0.431 | ||||
| [1] | Shi Y S, Wei H, Hong X L. Identification of QTLs for cooking and eating quality of rice grain[J]. Rice Science, 2006, 13(3): 161-169. |
| [2] | 崔晶, 楠谷彰人, 松江勇次, 森田重則. 中日合作水稻品质·食味研究的现状和展望[J]. 北方水稻, 2011, 41(4): 1-6 |
| Cui J, Kusutani A, Matsue Y J, Morita S. Present situation and expectation of the rice quality and eating under Sino-Japanese cooperation[J]. Northern Rice, 2011, 41(4): 1-6. (in Chinese with English abstract) | |
| [3] | 刘厚清, 李超. 影响米饭食味的因素: I. 品种及种植技术对米饭食味的影响[J]. 北方水稻, 2022, 52(1): 1-4. |
| Liu H Q, Li C. Factors affecting the taste of rice: I. How the varieties and cultivation technologies affect the taste of rice[J]. Northern Rice, 2022, 52(1): 1-4. (in Chinese) | |
| [4] | 王丰. 杂交水稻育种成就与展望—广东省农业科学院杂交水稻研究50年回顾[J]. 广东农业科学, 2020, 47(12): 1-11. |
| Wang F. Achievements and prospects of hybrid rice breeding—Review of 50 years’research on hybrid rice by Rice Research Institute of Guangdong Academy of Agricultural Sciences[J]. Guangdong Agricultural Sciences, 2020, 47(12): 1-11. (in Chinese with English abstract) | |
| [5] | 甄海, 吴东辉, 伍时照, 苏倩. 广东籼稻品种品质性状的相关与通径分析[J]. 华南农业大学学报, 1996, 17(4): 41-45 |
| Zhen H, Wu D H, Wu S X, Su Q. Correlation and path analyses of quality characters of indica type rice varieties in Guangdong[J]. Journal of South China Agricultural University, 1996, 17(4): 41-45. (in Chinese with English abstract) | |
| [6] | 陈能, 罗玉坤, 朱智伟, 张伯平, 郑有川, 谢黎虹. 优质食用稻米品质的理化指标与食味的相关性研究[J]. 中国水稻科学, 1997, 11(2): 70-76. |
| Chen N, Luo Y K, Zhu Z W, Zhang B P, Zheng Y C, Xie L H. Correlation between eating quality and physico-chemical properties of high grain qualitiy rice[J]. Chinese Journal of Rice Science, 1997, 11(2): 70-76. (in Chinese with English abstract) | |
| [7] | 周治宝, 王晓玲, 余传元, 雷建国, 胡培松, 王智权, 李马忠, 朱昌兰. 籼稻米饭食味与品质性状的相关性分析[J]. 中国粮油学报, 2012, 27(1): 1-5. |
| Zhou Z B, Wang X L, Yu C Y, Lei J G, Hu P S, Wang Z Q, Li M Z, Zhu C L. Correlation analysis of eating quality with quality characters of indica rice[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(1): 1-5. (in Chinese with English abstract) | |
| [8] | 徐正进, 陈温福, 马殿荣, 吴晓冬, 郑煜焱, 王嘉宇. 辽宁水稻食味值及其与品质性状的关系[J]. 作物学报, 2005, 31(8): 1092-1094. |
| Xu Z J, Chen W F, Ma D R, Wu X D, Zheng Y Y, Wang J Y. Relationship between eating quality and other quality characters of rice in Liaoning[J]. Acta Agronomica Sinica, 2005, 31(8): 1092-1094. (in Chinese with English abstract) | |
| [9] | 朱大伟, 章林平, 陈铭学, 方长云, 于永红, 郑小龙, 邵雅芳. 中国优质稻品种品质及食味感官评分值的特征[J]. 中国农业科学, 2022, 55(7): 1271-1283. |
| Zhu D W, Zhang L P, Chen M X, Fang C Y, Yu Y H, Zheng X L, Shao Y F. Characteristics of high-quality rice varieties and taste sensory evaluation values in China[J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283. (in Chinese with English abstract) | |
| [10] | 向远鸿, 唐启源, 黄燕湘. 稻米品质性状相关性研究: I. 籼型粘稻食味与其它米质性状的关系[J]. 湖南农学院学报, 1990, 16(4): 325-330 |
| Xiang Y H, Tang Q Y, Huang Y X. The relativity of rice grain quality characteristics: I. Relations between eating quality and other grain quality characteristics[J]. Journal of Hunan Agricultural College, 1990, 16(4): 325-330. (in Chinese with English abstract) | |
| [11] | 林建荣, 詹勇强, 闵捷, 宋昕蔚, 吴明国. 粳稻稻米食味仪测定值与理化指标的关系[J]. 中国稻米, 2011, 17(3): 5-8. |
| Lin J R, Zhan Y Q, Min J, Song X W, Wu M G. The relationship between the test values of japonica rice by the taste instrument and the physical and chemical indicators[J]. China Rice, 2011, 17(3): 5-8. (in Chinese with English abstract) | |
| [12] | 曲红岩, 张欣, 施利利, 李永杰, 徐锡明, 生华, 崔晶. 水稻食味品质主要影响因子分析[J]. 江苏农业科学, 2017, 45(6): 172-175. |
| Qu H Y, Zhang X, Shi L L, Li Y J, Xu X M, Sheng H, Cui J. Analysis of main factors influencing taste quality in rice[J]. Jiangsu Agricultural Sciences, 2017, 45(6): 172-175. (in Chinese with English abstract) | |
| [13] | Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21760-21765. |
| [14] | Tan Y F, Li J X, Yu S B, Xing Y Z, Xu C G, Zhang Q. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63[J]. Theoretical and Applied Genetics, 1999, 99: 642-648. |
| [15] | Zhang C Q, Zhu J H, Chen S J, Fan X L, Li Q F, Lu Y, Wang M, Yu H X, Yi C D, Tang S Z, Gu M H, Liu Q Q. Wxlv, the ancestral allele of rice waxy gene[J]. Molecular Plant, 2019, 12: 1157-1166. |
| [16] | Liang H L, Tao D B, Zhang Q, Zhang S, Wang J Y, Liu L F, Wu Z X, Sun W T. Nitrogen fertilizer application rate impacts eating and cooking quality of rice after storage[J]. PLoS ONE, 2021, 16(6): 1-14. |
| [17] | 赵可, 许俊伟, 姜元华, 韦还和, 张洪程, 许轲, 李超, 丁焕新. 施氮量和品种类型对稻米食味品质的影响[J]. 食品科学, 2014, 35(21): 63-67. |
| Zhao K, Xu J W, Jiang Y H, Wei H H, Zhang H C, Xu K, Li C, Ding H X. Effect of nitrogen fertilizer application on the eating quality of different types of rice varieties[J]. Food Science, 2014, 35(21): 63-67. (in Chinese with English abstract) | |
| [18] | 徐富贤, 熊洪, 张林, 郭晓艺, 朱永川, 周兴兵, 刘茂. 杂交中稻在不同地域和施氮水平下米质变异的影响因素及其预测模型[J]. 中国水稻科学, 2012, 26(4): 438-444. |
| Xu F X, Xiong H, Zhang L, Guo X Y, Zhu Y C, Zhou X B, Liu M. Effect factor and predict model of rice quality variation for mid-season hybrid rice at different ecological sites and nitrogen application levels[J]. Chinese Journal of Rice Science, 2012, 26(4): 438-444. | |
| [19] | 朱旭东, 熊振民, 罗玉坤, 孔繁林, 曹立勇, 闵捷. 异季栽培对稻米品质的影响[J]. 中国水稻科学, 1993, 7(3): 172-174. |
| Zhu X D, Xiong Z M, Luo Y K, Cao L Y, Min J. The influence of different cropping seasons on rice grain quality[J]. Chinese Journal of Rice Science, 1993, 7(3): 172-174. (in Chinese with English abstract) | |
| [20] | 吉志军, 尤娟, 王龙俊, 王绍华, 杜永林, 张国发, 王强盛, 丁艳锋. 不同基因型水稻稻米加工品质和外观品质的生态型差异[J]. 南京农业大学学报, 2005, 28(4): 16-20. |
| Ji Z J, You J, Wang L J, Wang S H, Du Y L, Zhang G F, Wang Q S, Ding Y F. Ecotye differences in milling qualities and appearence qualityies of different rice genotypes[J]. Journal of Nanjing Agricultural University, 2005, 28(4): 16-20. (in Chinese with English abstract) | |
| [21] | 中华人民共和国农业部. 米质测定方法: NYT83-2017[S]. 北京: 中国农业出版社, 2017. |
| Ministry of Agriculture of the People's Republic of China. Method for Determination of Rice Quality: NYT83—2017[S]. Beijing: China Agriculture Press, 2017. (in Chinese) | |
| [22] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 粮油检验大米胶稠度的测定: GB/T 22294—2008[S]. 北京: 中国标准出版社, 2008. |
| State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. Determination of Gel consistency of Rice for Grain and Oil Inspection: GB/T 22294—2008[S]. Beijing: China Standard Publishing House, 2008. (in Chinese) | |
| [23] | 中华人民其和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 大米直链淀粉含量的测定: GB/T 15683—2008/SO 6647-1: 2007[S]. 北京: 中国标准出版社, 2009. |
| State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. Determination of the Content of Amylose in Rice: GB/T 15683—2008/SO 6647-1: 2007[S] Beijing: China Standard Publishing House, 2009. (in Chinese) | |
| [24] | 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准食品中蛋白质的测定: GB 5009.5—2016[S]. 北京: 中国标准出版社, 2016. |
| National Health and Family Planning Commission of the People's Republic of ChinaNational Health and Family Planning Commission of the People's Republic of China, State Food and Drug Administration. National Standard for Food Safety-Determination of Protein in Foods: GB 5009.5—2016[S]. Beijing: China Standard Publishing House, 2016. (in Chinese) | |
| [25] | 赖穗春, 河野元信, 王志东, 三上隆司, 黄道强, 李宏, 卢德城, 周德贵, 周少川. 米饭食味计评价华南籼稻食味品质[J]. 中国水稻科学, 2011, 25(4): 435-438. |
| Lai S C, Kawano M, Wang Z D, Mikami T, Huang D Q, Li H, Lu D C, Zhou D G, Zhou S C. Cooking and eating quality of indica rice varieties from South China by using rice taste ananlyzer[J]. Chinese Journal of Rice Science, 2011, 25(4): 435-438. (in Chinese with English abstract) | |
| [26] | 杜家菊, 陈志伟. 使用SPSS线性回归实现通径分析的方法[J] 生物学通报, 2010, 45(2): 4-6 |
| Du J J, Chen Z W. The method of using SPSS linear regression to implement path analysis[J]. Biological Science Bulletin, 2010, 45(2): 4-6. (in Chinese with English abstract) | |
| [27] | 张兰兰, 刘迪林, 马晓智, 霍兴, 孔乐, 柳武革, 王丰. 华南籼稻品种(系)食味相关性状对施氮量的响应研究[J]. 华南农业大学学报, 2023, 44(6): 949-959. |
| Zhang L L, Liu D L, Ma X Z, Huo X, Kong L, Liu W G, Wang F. Responses of eating quality related traits to nitrogen application rate for Indica rice varieties (lines) from South China[J]. Journal of South China Agricultural University, 2023, 44(6): 949-959. (in Chinese with English abstract) | |
| [28] | Mao T, Zhang Z, Ni S J, Zhao Y Z, Li X, Zhang L L, Liu Y, Zhong C S, Huang H, Wang S L, Li X. Assisted selection of eating quality progeny of indica (O. sativa L. ssp. indica) and japonica (O. sativa L. ssp. japonica) hybrids using rice starch properties[J]. Genetic Resources and Crop Evolution, 2021, 68: 411-420. |
| [29] | Vanavichit A, Kamolsukyeunyong W, Siangliw M, Siangliw J L, Traprab S, Ruengphayak S, Chaichoompu E, Saensuk C, Phuvanartnaruba E, Toojinda T, Tragoonrung S. Thai Hom Mali Rice: Origin and breeding for subsistence rainfed lowland rice System[J]. Rice, 2018, 11: 20. |
| [30] | Singh R K, Singh U S, Khush G S. Aromatic Rices[M]. NewDelhi, Calcutta: Mohan Primlani for Oxford &IBH Publishing Co. Pvt. Ltd, 2000: 108-152. |
| [31] | Amarawathi Y, Singh R, Singh A K, Singh V P, Mohapatra T, Sharma T R, Singh N K. Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.)[J]. Molecular Breeding, 2008, 21: 49-65. |
| [32] | 王丰, 柳武革, 刘迪林, 廖亦龙, 付崇允, 朱满山, 李金华, 曾学勤, 马晓智, 霍兴. 广东优质稻发展及稻米品牌建设与展望[J]. 中国稻米, 2021, 27(4): 107-116. |
| Wang F, Liu W G, Liu D L, Liao Y L, Fu C Y, Zhu M S, Li J H, Zeng X Q, Ma X Z, Huo X. Development of high quality rice, constraction and prospects of Rice Brands in Guangdong[J]. China Rice, 2021, 27(4): 107-116. (in Chinese with English abstract) | |
| [33] | Martin M, Fitzgerald M A. Proteins in rice grains infuence cooking properties[J]. Journal of Cereal Science, 2002, 36: 285-294. |
| [34] | 中华人民共和国农业农村部. 食用稻品种品质: NY/T 593-2021[S]. 北京: 中国农业出版社, 2021. |
| Ministry of Agriculture and Rural Affairs of the People's Republic of China. Quality of Edible Rice Varieties: NY/T 593-2021[S]. Beijing: China Agriculture Press, 2021. (in Chinese) | |
| [35] | Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19581-19584. |
| [36] | Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008, 18: 1199-1209. |
| [37] | Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 47, 949-954 |
| [38] | Tan W C, Miao J, Xu B, Zhou C T, Wang Y R, Gu X Q, Liang S N, Wang B X, Chen C, Zhu J Y, Zuo S M, Yang Z F, Gong Z Y, You A Q, Wu S J, Liang G H, Zhou Y. Rapid production of novel beneficial alleles for improving rice appearance quality by targeting a regulatory element of SLG7[J]. Plant Biotechnology Journal, 2023, 21: 1305-1307. |
| [39] | 王丰, 刘迪林, 朱满山, 廖亦龙, 李金华, 付崇允, 曾学勤, 马晓智, 霍兴, 孔乐, 柳武革. 水稻不育系泰丰A的创制及其优良品质性状的遗传基础研究[J]. 中国稻米, 2024, 30(4): 24-32. |
| Wang F, Liu D L, Zhu M S, Liao Y L, Li J H, Fu C Y, Zeng X Q, Ma X Z, Huo X, Kong L, Liu W G. Creation of male sterile line Taifeng a and study on the genetic basis of its excellent quality traits in rice[J]. China Rice, 2024, 30(4): 24-32. (in Chinese with English abstract) | |
| [40] | Deng Z, Liu Y, Gong C, Chen B, Wang T. Waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study[J]. Journal of Experimental Botany, 2022, 73(19): 6942-6954. |
| [41] | Zhang C, Yang Y, Chen S, Liu X, Zhu J, Zhou L, Lu Y, Li Q, Fan X, Tan S, Gu M, Liu Q. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 2021, 63: 889-901 |
| [42] | Tan Y, Li J, Yu S, Xing Y, Xu C, Zhang Q. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63[J]. Theoretical and Applied Genetics, 1999, 99: 642-648. |
| [43] | Tian Z, Qian Q, Liu Q, Yan M, Liu X, Yan C, Liu G, Gao Z, Tang S, Zeng D, Wang Y, Yu J, Gu M, Li J. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 21760-21765. |
| [44] | Gao Z Y, Zeng D L, Cheng F M, Tian Z X, Guo L B, Su Y, Yan M X, Jiang H, Dong G J, Huang Y C, Han B, Li J Y, Qian Q. ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice[J]. Journal of Integrative Plant Biology, 2011, 53(9): 756-765. |
| [45] | Li Y B, Fan C C, Xing Y Z, Yun P, Luo L J, Yan B, Peng B, Xie W B, Wang G W, Li X H, Xiao J H, Xu C G, He Y Q. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404 |
| [46] | Yang Y H, Guo M, Sun S Y, Zou Y L, Yin S Y, Liu Y N, Tang S Z, Gu M H, Yang Z F, Yan C J. Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature Communications, 2019, 10: 1949. |
| [47] | Peng B, Kong H L, Li Y B, Wang L Q, Zhong M, Sun L, Gao G J, Zhang Q L, Luo L J, Wang G W, Xie W B, Chen J X, Yao W, Peng Y, Lei L, Lian X M, Xiao J H, Xu C G, Li X H, He Y Q. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nature Communications, 2014, 5: 4847. |
| [1] | BIAN Jinlong, REN Gaolei, QIU Shi, XU Fangfu, HU Zhonglei, ZHANG Hongcheng, WEI Haiyan. Effect of Application Methods of Mixed Controlled-release Nitrogen Fertilizer on Yield and Nitrogen Utilization of Good Taste Quality japonica Rice Under Different Mechanical Transplanting Methods in the Huaibei Region [J]. Chinese Journal OF Rice Science, 2025, 39(6): 847-862. |
| [2] | YAN Ying, WANG Kai, ZHANG Lixia, HU Zejun, YE Junhua, YANG Hang, GU Chunjun, WU Shujun. Development of a New High-Quality and Multi-Resistant japonica Rice Variety, Huxianggeng 216, Through Molecular Pyramiding Breeding [J]. Chinese Journal OF Rice Science, 2025, 39(2): 209-219. |
| [3] | CHEN Liming, YANG Taotao, XIONG Ruoyu, TAN Xueming, HUANG Shang, ZENG Yongjun, PAN Xiaohua, SHI Qinghua, ZHANG Jun, ZENG Yanhua. Effect of Free-air Temperature Increasing on Activities of Enzymes Involved in Starch Synthesis and Accumulation of Double-cropping indica Rice [J]. Chinese Journal OF Rice Science, 2023, 37(2): 166-177. |
| [4] | ZHANG Jia, WANG Huijie, HE Zhengquan, LIU Wenzhen. Analysis of Agrobacterium-Mediated Genetic Transformation System of indica Rice 9311 and Huazhan [J]. Chinese Journal OF Rice Science, 2023, 37(2): 213-224. |
| [5] | Qing ZHANG, Yajie HU, Baowei GUO, Hongcheng ZHANG, Xiaojie XU, Yufeng XU, Banghui ZHU, Jiefen XU, Zhongyi NIU, Rongwen TU. Study on the Characteristics of Soft japonica Rice Varieties with Good Taste and High Yield in Taihu Lake Area [J]. Chinese Journal OF Rice Science, 2021, 35(3): 279-290. |
| [6] | Cheng YANG, Yang WANG, Wanyang ZHANG, Tinghong YE, Jianwei LU, Geng ZHANG, Xiaokun LI. Effects of Interaction Between Irrigation Mode and Nitrogen Application Rate on the Yield Formation of Main Stem and Tillers of Rice [J]. Chinese Journal OF Rice Science, 2021, 35(2): 155-165. |
| [7] | Wenxia WANG, Liming CHEN, Haixia WANG, Youqing LIU, Ziming WU, Yongjun ZENG, Xueming TAN, Xiaohua PAN, Qinghua SHI, Yanhua ZENG. Study on Physiological Characteristics Behind Mitigative Effects of Flooding on Low Temperature-caused Chilling Damage to Direct Seeded Early indica Rice at the Seedling Stage [J]. Chinese Journal OF Rice Science, 2021, 35(2): 166-176. |
| [8] | Zhimin DU, Xiaolin LIU, Danlei SHAO, Nan ZHANG, Yiwei WANG, Jingbo WANG, Xiaokang WU, Tao HU, Yuanye XIA, Hai XU. Variation of Plant Type, Yield and Quality of Hybrid Progenies of Chinese and Japanese Japonica Rice Varieties Under Nitrogen Reduction Practice and Their Interrelation [J]. Chinese Journal OF Rice Science, 2020, 34(2): 171-180. |
| [9] | Wenxia WANG, Yanzhi ZHOU, Yongjun ZENG, Ziming WU, Xueming TAN, Xiaohua PAN, Qinghua SHI, Yanhua ZENG. Effects of Different Mechanical Direct Seeding Patterns on Yield and Lodging Resistance of High-Quality Late indica Rice in South China [J]. Chinese Journal OF Rice Science, 2020, 34(1): 46-56. |
| [10] | Xiaolei WANG, Yang LIU, Xiaotang SUN, Linjuan OUYANG, Jinlong PAN, Xiaosong PENG, Xiaorong CHEN, Xiaopeng HE, Junru FU, Jianmin BIAN, Lifang HU, Jie XU, Haohua HE, Changlan ZHU. Identification and Stability Analysis of QTL for Grain Quality Traits Under Multiple Environments in Rice [J]. Chinese Journal OF Rice Science, 2020, 34(1): 17-27. |
| [11] | Qizhang LONG, Yonglan HUANG, Xiuying TANG, Huimin WANG, Ming LU, Linfeng YUAN, Jianlin WAN. Creation of Low-Cd-accumulating indica Rice by Disruption of OsNramp5 Gene via CRISPR/Cas9 [J]. Chinese Journal OF Rice Science, 2019, 33(5): 407-420. |
| [12] | Pei WU, Tianye CHEN, Jiaqi YUAN, Heng HUANG, Zhipeng XING, Yajie HU, Ming ZHU, Dejian LI, Guolin LIU, Hongcheng ZHANG. Effects of Interaction Between Nitrogen Application Rate and Direct-sowing Density on Yield Formation Characteristics of Rice [J]. Chinese Journal OF Rice Science, 2019, 33(3): 269-281. |
| [13] | Zhongna HAO, Xueqin MAO, Rongyao CHAI, Yanli WANG, Guochang SUN. Analysis of Resistance to Rice Blast in indica Rice Varieties from Rice Regional Trials in the Middle and Lower Reaches of the Yangtze River in China [J]. Chinese Journal OF Rice Science, 2019, 33(2): 152-157. |
| [14] | TANG Zhiming1,#,*, YANG Jun2,#, WANG Xiaoyan3, CAI Kefeng1, LI Xiaofang2,*. Temporal Change in Diversity of Grain Quality Traits in Major Conventional Rice Varieties in Guangdong Province, China [J]. Chinese Journal of Rice Science, 2012, 26(6): 669-676. |
| [15] | LAI Sui-Chun1, Motonobu KAWANO2, WANG Zhi-Dong1, Takashi MIKAMI2, HUANG Dao-Qiang1, LI Hong1, LU De-Cheng1, ZHOU De-Gui1, ZHOU Shao-Chuan1, * . Cooking and Eating Quality of Indica Rice Varieties from South China by Using Rice Taste Analyzer [J]. Chinese Journal of Rice Science, 2011, 25(4): 435-438. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||