Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (5): 575-585.DOI: 10.16819/j.1001-7216.2025.250203
• Reviews and Special Topics • Next Articles
HAO Wenqian1, CAI Xingjing1,
YANG Haidong1, WU Yuyang1, TENG Xuan1, XUE
Chao2,*, GONG Zhiyun1,*
Received:
2025-02-12
Revised:
2025-03-13
Online:
2025-09-10
Published:
2025-09-10
Contact:
XUE Chao, GONG Zhiyun
郝雯倩1 蔡兴菁1 杨海东1 吴宇阳1 滕轩1 薛超 2,* 龚志云1,*
通讯作者:
薛超,龚志云
基金资助:
HAO Wenqian, CAI Xingjing, YANG Haidong, WU Yuyang, TENG Xuan, XUE Chao, GONG Zhiyun. Advances in Roles of Different Types of Histone Modifications in Responses of Rice to Abiotic Stresses[J]. Chinese Journal OF Rice Science, 2025, 39(5): 575-585.
郝雯倩, 蔡兴菁, 杨海东, 吴宇阳, 滕轩, 薛超, 龚志云. 不同类型组蛋白修饰在水稻响应非生物胁迫中的研究进展[J]. 中国水稻科学, 2025, 39(5): 575-585.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.250203
[1] Fischle W, Wang Y, Allis C D. Histone and chromatin cross-talk[J]. Current Opinion in Cell Biology, 2003, 15(2): 172-183. [2] Jaskelioff M, Peterson C L. Chromatin and transcription: Histones continue to make their marks[J]. Nature Cell Biology, 2003, 5(5): 395-399. [3] Ueda M, Seki M. Histone modifications form epigenetic regulatory networks to regulate abiotic stress response [J]. Plant Physiology, 2020, 182(1): 15-26. [4] Fang H, Liu X, Thorn G, Duan J, Tian L. Expression analysis of histone acetyltransferases in rice under drought stress [J]. Biochemical and Biophysical Research Communications, 2014, 443(2): 400-405. [5] Ullah F, Xu Q, Zhao Y, Zhou D X. Histone deacetylase HDA710 controls salt tolerance by regulating ABA signaling in rice[J]. Journal of Integrative Plant Biology, 2020. DOI:10.1111/jipb.13042. [6] Roy D, Paul A, Roy A, Ghosh R, Ganguly P, Chaudhuri S. Differential acetylation of histone H3 at the regulatory region of OsDREB1b promoter facilitates chromatin remodelling and transcription activation during cold stress[J]. PLoS One, 2014, 9(6): e100343. [7] Greer E L, Shi Y. Histone methylation: A dynamic mark in health, disease and inheritance[J]. Nature Reviews Genetics, 2012, 13(5): 343-357. [8] Cloos P A C, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T, Hansen K H, Helin K. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3[J]. Nature, 2006, 442(7100): 307-311. [9] Hefferon K L. Recent patents in plant biotechnology: Impact on global health[J]. Recent Patents on Biotechnology, 2012, 6(2): 97-105. [10] Fulton M D, Brown T, Zheng P Y. Mechanisms and inhibitors of histone arginine methylation[J]. The Chemical Record, 2018, 18(12): 1792-1807. [11] Shilatifard A. The COMPASS family of histone H3K4 methylases: Mechanisms of regulation in development and disease pathogenesis[J]. Annual Review of Biochemistry, 2012, 81: 65-95. [12] Padeken J, Methot S P, Gasser S M. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance[J]. Nature Reviews Molecular Cell Biology, 2022, 23(9): 623-640. [13] Swigut T, Wysocka J. H3K27 demethylases, at long last [J]. Cell, 2007, 131(1): 29-32. [14] Huang C, Zhu B. Roles of H3K36-specific histone methyltransferases in transcription: Antagonizing silencing and safeguarding transcription fidelity[J]. Biophysics Reports, 2018, 4(4): 170-177. [15] Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Callén E, Celeste A, Pagani M, Opravil S, De La Rosa-Velazquez I A, Espejo A, Bedford M T, Nussenzweig A, Busslinger M, Jenuwein T. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse[J]. Genes & Development, 2008, 22(15): 2048-2061. [16] Daujat S, Weiss T, Mohn F, Lange U C, Ziegler-Birling C, Zeissler U, Lappe M, Schübeler D, Torres-Padilla M E, Schneider R. H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming[J]. Nature Structural & Molecular Biology, 2009, 16(7): 777-781. [17] Farooq Z, Banday S, Pandita T K, Altaf M. The many faces of histone H3K79 methylation[J]. Mutation Research Reviews in Mutation Research, 2016, 768: 46-52. [18] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析 [J]. 作物学报, 2023, 49(9): 2398-2411. Liu K, Chen J J, Liu S, Chen X, Zhao X R, Sun S, Xue C, Gong Z Y. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress{J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411. (in Chinese with English abstract) [19] Wang H, Fan Z, Shliaha P V, Miele M, Hendrickson R C, Jiang X, Helin K. H3K4me3 regulates RNA polymerase II promoter-proximal pause-release[J]. Nature, 2023, 615(7951): 339-348. [20] Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3[J]. Current Opinion in Genetics & Development, 2004, 14(2): 155-164. [21] Barski A, Cuddapah S, Cui K, Roh T Y, Schones D E, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome[J]. Cell, 2007, 129(4): 823-837. [22] Trievel R C. Structure and function of histone methyltransferases[J]. Critical Reviews in Eukaryotic Gene Expression, 2004, 14(3): 147-169. [23] Sawada K, Yang Z, Horton J R, Collins R E, Zhang X, Cheng X. Structure of the conserved core of the yeast Dot1p, a nucleosomal histone H3 lysine 79 methyltransferase[J]. Journal of Biological Chemistry, 2004, 279(41): 43296-43306. [24] Ng D W, Wang T, Chandrasekharan M B, Aramayo R, Kertbundit S, Hall T C. Plant SET domain-containing proteins: Structure, function and regulation[J]. Biochimica et Biophysica Acta (BBA), 2007, 1769(5/6): 316-329. [25] Zhou H, Liu Y, Liang Y, Zhou D, Li S, Lin S, Dong H, Huang L. The function of histone lysine methylation related SET domain group proteins in plants[J]. Protein Science, 2020, 29(5): 1120-1137. [26] Accari S L, Fisher P R. Chapter five emerging roles of JmjC domain-containing proteins[J]. International Review of Cell and Molecular Biology, 2015, 319: 165-220. [27] Liechti M E. Modern clinical research on LSD[J]. Neuropsychopharmacology, 2017, 42(11): 2114-2127. [28] Wang Q, Liu P, Jing H, Zhou X F, Zhao B, Li Y, Jin J B. JMJ27-mediated histone H3K9 demethylation positively regulates drought-stress responses in Arabidopsis[J]. New Phytologist, 2021, 232(1): 221-236. [29] Liu B, Wei G, Shi J, Jin J, Shen T, Ni T, Shen W H, Yu Y, Dong A. SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa)[J]. New Phytologist, 2016, 210(2): 577-588. [30] You J, Zong W, Li X, Ning J, Hu H, Li X, Xiao J, Xiong L. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice[J]. Journal of Experimental Botany, 2013, 64(2): 569-583. [31] Chang Y, Liu J, Guo M, Ouyang W, Yan J, Xiong L, Li X. Drought-responsive dynamics of H3K9ac-marked 3D chromatin interactions are integrated by OsbZIP23-associated super-enhancer-like promoter regions in rice[J]. Genome Biology, 2024, 25(1): 262. [32] Zhao W, Wang X, Zhang Q, Zheng Q, Yao H, Gu X, Liu D, Tian X, Wang X, Li Y, Zhu Z. H3K36 demethylase JMJ710 negatively regulates drought tolerance by suppressing MYB48-1 expression in rice[J]. Plant Physiology, 2022, 189(2): 1050-1064. [33] Zhang D, Zhang D, Zhang Y, Li G, Sun D, Zhou B, Li J. Insights into the epigenetic basis of plant salt tolerance[J]. International Journal of Molecular Sciences, 2024, 25(21): 11698. [34] Das P, Taube J H. Regulating methylation at H3K27: A trick or treat for cancer cell plasticity[J]. Cancers, 2020, 12(10): 2792. [35] Murr R. Interplay between different epigenetic modifications and mechanisms[J]. Advances in Genetics, 2010, 70: 101-141. [36] Yen C Y, Huang H W, Shu C W, Hou M F, Yuan S F, Wang H R, Chang Y T, Ahmad Farooqi A, Tang J Y, Chang H W. DNA methylation, histone acetylation and methylation of epigenetic modifications as a therapeutic approach for cancers[J]. Cancer Letters, 2016, 373(2): 185-192. [37] Paik W K, Pearson D, Lee H W, Kim S. Nonenzymatic acetylation of histones with acetyl-CoA[J]. Biochimica et Biophysica Acta, 1970, 213(2): 513-522. [38] de Ruijter A J M, van Gennip A H, Caron H N, Kemp S, van Kuilenburg A B P. Histone deacetylases (HDACs): Characterization of the classical HDAC family[J]. The Biochemical Journal, 2003, 370(Pt 3): 737-749. [39] Saha R N, Pahan K. HATs and HDACs in neurodegeneration: A tale of disconcerted acetylation homeostasis[J]. Cell Death and Differentiation, 2006, 13(4): 539-550. [40] Yang X J, Seto E. HATs and HDACs: From structure, function and regulation to novel strategies for therapy and prevention[J]. Oncogene, 2007, 26(37): 5310-5318. [41] Dyda F, Klein D C, Hickman A B. GCN5-related N-acetyltransferases: A structural overview[J]. Annual Review of Biophysics and Biomolecular Structure, 2000, 29: 81-103. [42] Avvakumov N, Côté J. The MYST family of histone acetyltransferases and their intimate links to cancer[J]. Oncogene, 2007, 26(37): 5395-5407. [43] Roth S Y, Denu J M, Allis C D. Histone acetyltransferases[J]. Annual Review of Biochemistry, 2001, 70: 81-120. [44] Chen Q, Yang B, Liu X, Zhang X D, Zhang L, Liu T. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents[J]. Theranostics, 2022, 12(11): 4935-4948. [45] 薛超. 水稻盐胁迫下组蛋白乙酰化修饰特征及HATs相关基因的功能研究[D]. 扬州: 扬州大学, 2019. Xue C. Characteristics of histone acetylation modifications and functional study of HATs-related genes in rice under salt stress [D]. Yangzhou: Yangzhou University, 2019. (in Chinese with English abstract) [46] Yang X J, Seto E. The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men[J]. Nature Reviews Molecular Cell Biology, 2008, 9(3): 206-218. [47] Fu W, Wu K, Duan J. Sequence and expression analysis of histone deacetylases in rice[J]. Biochemical and Biophysical Research Communications, 2007, 356(4): 843-850. [48] Pandey R, Müller A, Napoli C A, Selinger D A, Pikaard C S, Richards E J, Bender J, Mount D W, Jorgensen R A. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes[J]. Nucleic Acids Research, 2002, 30(23): 5036-5055. [49] Lusser A, Brosch G, Loidl A, Haas H, Loidl P. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein[J]. Science, 1997, 277(5322): 88-91. [50] Narita T, Weinert B T, Choudhary C. Functions and mechanisms of non-histone protein acetylation[J]. Nature Reviews Molecular Cell Biology, 2019, 20(3): 156-174. [51] Liu K, Chen J, Sun S, Chen X, Zhao X, Hu Y, Qi G, Li X, Xu B, Miao J, Xue C, Zhou Y, Gong Z. Histone deacetylase OsHDA706 increases salt tolerance via H4K5/K8 deacetylation of OsPP2C49 in rice[J]. Journal of Integrative Plant Biology, 2023, 65(6): 1394-1407. [52] 秦付军. 水稻组蛋白甲基转移酶和去乙酰化酶基因的功能研究[D]. 武汉: 华中农业大学, 2010. Qin F J. Study on the functions of histone methyltransferase and deacetylase genes in rice[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese with English abstract) [53] Wei H, Wang X, He Y, Xu H, Wang L. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis[J]. The EMBO Journal, 2021, 40(3): e105086. [54] Guo Y, Tan Y, Qu M, Hong K, Zeng L, Wang L, Zhuang C, Qian Q, Hu J, Xiong G. OsWR2 recruits HDA704 to regulate the deacetylation of H4K8ac in the promoter of OsABI5 in response to drought stress[J]. Journal of Integrative Plant Biology, 2023, 65(7): 1651-1669. [55] Li S, He X, Gao Y, Zhou C, Chiang V L, Li W. Histone acetylation changes in plant response to drought stress[J]. Genes, 2021, 12(9): 1409. [56] Chen Z, Xu Q, Wang J, Zhao H, Yue Y, Liu B, Xiong L, Zhao Y, Zhou D X. A histone deacetylase confers plant tolerance to heat stress by controlling protein lysine deacetylation and stress granule formation in rice[J]. Cell Reports, 2024, 43(9): 114642. [57] Sun Y, Xie Z, Jin L, Qin T, Zhan C, Huang J. Histone deacetylase OsHDA716 represses rice chilling tolerance by deacetylating OsbZIP46 to reduce its transactivation function and protein stability[J]. The Plant Cell, 2024, 36(5): 1913-1936. [58] Tang N, Zhang H, Li X, Xiao J, Xiong L. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice[J]. Plant Physiology, 2012, 158(4): 1755-1768. [59] Zhang H, Zhou J F, Kan Y, Shan J X, Ye W W, Dong N Q, Guo T, Xiang Y H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Guo S Q, Lei J J, Liao B, Mu X R, Cao Y J, Yu J J, Lin Y, Lin H X. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance[J]. Science, 2022, 376(6599): 1293-1300. [60] Rossetto D, Avvakumov N, Côté J. Histone phosphorylation: A chromatin modification involved in diverse nuclear events[J]. Epigenetics, 2012, 7(10): 1098-1108. [61] Callis J. The ubiquitination machinery of the ubiquitin system[J]. The Arabidopsis Book, 2014, 12: e0174. [62] Shukla A, Chaurasia P, Bhaumik S R. Histone methylation and ubiquitination with their cross-talk and roles in gene expression and stability[J]. Cellular and Molecular Life Sciences, 2009, 66(8): 1419-1433. [63] Banerjee T, Chakravarti D. A peek into the complex realm of histone phosphorylation[J]. Molecular and Cellular Biology, 2011, 31(24): 4858-4873. [64] Loury R, Sassone-Corsi P. Histone phosphorylation: How to proceed[J]. Methods, 2003, 31(1): 40-48. [65] Ma S, Tang N, Li X, Xie Y, Xiang D, Fu J, Shen J, Yang J, Tu H, Li X, Hu H, Xiong L. Reversible histone H2B monoubiquitination fine-tunes abscisic acid signaling and drought response in rice[J]. Molecular Plant, 2019, 12(2): 263-277. [66] Xu L, Yang L, Li A, Guo J, Wang H, Qi H, Li M, Yang P, Song S. An AP2/ERF transcription factor confers chilling tolerance in rice[J]. Science Advances, 2024, 10(35): eado4788. [67] Wang J, Ren Y, Liu X, Luo S, Zhang X, Liu X, Lin Q, Zhu S, Wan H, Yang Y, Zhang Y, Lei B, Zhou C, Pan T, Wang Y, Wu M, jing R, Xu Y, Han M, Wu F, Lei C, Guo X, Cheng Z, Zheng X, Wang Y, Zhao Z, Jiang L, Zhang X, Wang Y F, Wang H, Wan J. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice[J]. Molecular Plant, 2021, 14(2): 315-329. [68] Taverna S D, Coyne R S, Allis C D. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena[J]. Cell, 2002, 110(6): 701-711. [69] Lv H, Dao F Y, Guan Z X, Yang H, Li Y W, Lin H. Deep-Kcr: Accurate detection of lysine crotonylation sites using deep learning method[J]. Briefings in Bioinformatics, 2021, 22(4): bbaa255. [70] Xue Q, Yang Y, Li H, Li X, Zou L, Li T, Ma H, Qi H, Wang J, Yu T. Functions and mechanisms of protein lysine butyrylation (Kbu): Therapeutic implications in human diseases[J]. Genes & Diseases, 2023, 10(6): 2479-2490. [71] Abu-Zhayia E R, Machour F E, Ayoub N. HDAC-dependent decrease in histone crotonylation during DNA damage[J]. Journal of Molecular Cell Biology, 2019, 11(9): 804-806. [72] Wei H, Wang X, He Y, Xu H, Wang L. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis[J]. The EMBO Journal, 2021, 40(3): e105086. [73] Sabari B R, Zhang D, Allis C D, Zhao Y. Metabolic regulation of gene expression through histone acylations [J]. Nature Reviews Molecular Cell Biology, 2017, 18(2): 90-101. [74] Liu X, Zhou S, Wang W, Ye Y, Zhao Y, Xu Q, Zhou C, Tan F, Cheng S, Zhou D X. Regulation of histone methylation and reprogramming of gene expression in the rice inflorescence meristem[J]. The Plant Cell, 2015, 27(5): 1428-1444. [75] Liu X, Zhou C, Zhao Y, Zhou S, Wang W, Zhou D X. The rice enhancer of zeste [E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time[J]. Frontiers in Plant Science, 2014, 5: 591. [76] Sun C, Fang J, Zhao T, Xu B, Zhang F, Liu L, Tang J, Zhang G, Deng X, Chen F, Qian Q, Cao X, Chu C. The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice[J]. The Plant Cell, 2012, 24(8): 3235-3247. [77] Liu B, Liu Y, Wang B, Luo Q, Shi J, Gan J, Shen W H, Yu Y, Dong A. The transcription factor OsSUF4 interacts with SDG725 in promoting H3K36me3 establishment[J]. Nature Communications, 2019, 10(1): 2999.[ [78] Zong W, Yang J, Fu J, Xiong L. Synergistic regulation of drought-responsive genes by transcription factor OsbZIP23 and histone modification in rice[J]. Journal of Integrative Plant Biology, 2020, 62(6): 723-729. [79] Liu Y, Chen X, Xue S, Quan T, Cui D, Han L, Cong W, Li M, Yun D J, Liu B, Xu Z Y. SET DOMAIN GROUP 721 protein functions in saline–alkaline stress tolerance in the model rice variety Kitaake[J]. Plant Biotechnology Journal, 2021, 19(12): 2576-2588. [80] Jiang P, Wang S, Ikram A U, Xu Z, Jiang H, Cheng B, Ding Y. SDG721 and SDG705 are required for rice growth[J]. Journal of Integrative Plant Biology, 2018, 60(7): 530-535. [81] Liu K, Yu Y, Dong A, Shen W H. SET DOMAIN GROUP701 encodes a H3K4-methytransferase and regulates multiple key processes of rice plant development[J]. New Phytologist, 2017, 215(2): 609-623. [82] Qin F J, Sun Q W, Huang L M, Chen X S, Zhou D X. Rice SUVH histone methyltransferase genes display specific functions in chromatin modification and retrotransposon repression[J]. Molecular Plant, 2010, 3(4): 773-782. [83] Shahid S. A DNA methylation reader with an affinity for salt stress[J]. The Plant Cell, 2020, 32(11): 3380-3381. [84] 龚世诚. 水稻组蛋白甲基转移酶SDG703和SDG715在生殖发育和热胁迫中的功能研究[D]. 武汉: 华中农业大学, 2024. Gong S C. Function of rice histone methyltransferases SDG703 and SDG715 in reproductive development and heat stress[D]. Wuhan: Huazhong Agricultural University, 2024. (in Chinese with English abstract) [85] Zhang S, Hao H, Liu X, Li Y, Ma X, Liu W, Zheng R, Liang S, Luan W. SDG712 a putative H3K9-specific methyltransferase encoding gene, delays flowering through repressing the expression of florigen genes in rice[J]. Rice, 2021, 14(1): 73. [86] Zhang S, Deng L, Cheng R, Hu J, Wu C Y. RID1 sets rice heading date by balancing its binding with SLR1 and SDG722[J]. Journal of Integrative Plant Biology, 2022, 64(1): 149-165. [87] Ahmad A, Dong Y, Cao X. Characterization of the PRMT gene family in rice reveals conservation of arginine methylation[J]. PLoS One, 2011, 6(8): e22664. [88] Dong K, Wu F, Cheng S, Li S, Zhang F, Xing X, Jin X, Luo S, Feng M, Miao R, Chang Y, Zhang S, You X, Wang P, Zhang X, Lei C, Ren Y, Zhu S, Guo X, Wu C, Yang D L, Lin Q, Cheng Z, Wan J. OsPRMT6a-mediated arginine methylation of OsJAZ1 regulates jasmonate signaling and spikelet development in rice[J]. Molecular Plant, 2024, 17(6): 900-919. [89] Chai J, Gu X, Song P, Zhao X, Gao Y, Wang H, Zhang Q, Cai T, Liu Y, Li X, Song T, Zhu Z. Histone demethylase JMJ713 interaction with JMJ708 modulating H3K36me2, enhances rice heat tolerance through promoting hydrogen peroxide scavenging[J]. Plant Physiology and Biochemistry, 2024, 217: 109284. [90] Xuan H, Shi N, Chen J, Jiang Y, Zhang H, Chu C, Li S, Chen X, Yang H. Physical coupling of H3K4me3 demethylases and Polycomb repressive complex 2 to accelerate flowering in rice[J]. Plant Physiology, 2024, 195(3): 1802-1806. [91] 刘涛. 水稻表观遗传学相关基因受镉胁迫表达分析[D]. 南京: 南京农业大学, 2016. Liu T. Expression analysis of epigenetic related genes in rice under cadmium stress[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese with English abstract) [92] Yin B L, Guo L, Zhang D F, Terzaghi W, Wang X F, Liu T T, He H, Cheng Z K, Deng X W. Integration of cytological features with molecular and epigenetic properties of rice chromosome 4[J]. Molecular Plant, 2008, 1(5): 816-829. [93] 张嫚嫚, 郑青松, 李霞, 谭明谱. DNA甲基化在植物响应胁迫中的研究进展 [J]. 植物生理学报, 2021, 57(4): 780-792. Zhang M M, Zheng Q S, Li X, Tan M P. Research progress on DNA methylation in plant stress responses [J]. Plant Physiology Journal, 2021, 57(4): 780-792. [94] 李萌. 转录因子PtrVCS2调控毛果杨适应干旱环境的机制研究[D]. 哈尔滨: 东北林业大学, 2024. Li M. Mechanism of transcription factor PtrVCS2 in regulating populus trichocarpa adaptation to drought stress [D]. Harbin: Northeast Forestry University, 2024. (in Chinese with English abstract) [95] 王小东. 玉米ZmHDT103,ZmERF018和ZmCDPK5调控玉米苗期耐旱性的功能研究[D]. 兰州: 甘肃农业大学, 2024. Wang X D. Functional study of ZmHDT103, ZmERF018, and ZmCDPK5 in regulating drought tolerance during maize seedling stage [D]. Lanzhou: Gansu Agricultural University, 2024. (in Chinese with English abstract) [96] Xu Q, Ma X, Wei X, Chen Z, Duan Y, Ju Y, Wang Z, Chen J, Zheng L, Chen X, Huang J, Zhang J, Chen X. Histone H4K8hib modification promotes gene expression and regulates rice immunity[J]. Molecular Plant, 2025, 18(1): 9-13. [97] 刘帅. 水稻组蛋白Kcr/Kbu修饰特征分析及HDACs相关基因功能研究[D]. 扬州: 扬州大学, 2020. Liu S. Characteristics analysis of histone Kcr/Kbu modifications and functional study of HDACs-related genes in rice[D]. Yangzhou: Yangzhou University, 2020. [98] 方紫薇, 唐冉, 隆林芳, 陈艳. OsHDA703互作蛋白的筛选及其抗RSV的机制 [J]. 北京农学院学报, 2022, 37(2): 1-6. Fang Z W, Tang R, Long LF, Chen Y. Screening of OsHDA703-interacting Proteins and Its Mechanism Against RSV [J]. Journal of Beijing University of Agriculture, 2022, 37(02): 1-6. [99] 董亚茹, 杜建勋, 陈传杰, 赵东晓, 王照红. 组蛋白去乙酰化酶(HDACs)及其在植物中的作用 [J]. 生物技术通报, 2016, 32(9): 44-49. Dong Y R, Du J X, Chen C J, Zhao D X, Wang Z H. Histone deacetylases (HDACs) and their roles in plants [J]. Biotechnology Bulletin, 2016, 32(9): 44-49. [100] Huang L, Sun Q, Qin F, Li C, Zhao Y, Zhou D X. Down-regulation of a silent information regulator2- related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice[J]. Plant Physiology, 2007, 144(3): 1508-1519. [101] Zhong X, Zhang H, Zhao Y, Sun Q, Hu Y, Peng H, Zhou D X. The rice NAD(+)-dependent histone deacetylase OsSRT1 targets preferentially to stress- and metabolism- related genes and transposable elements[J]. PLoS One, 2013, 8(6): e66807. |
[1] | LU Tingting, YAN Wenhui, SU Xinquan, ZENG Luohua, HUA Liqin, CHEN Jianghua, FENG Baohua, WANG Yuexing, HU Jiang, FU Guanfu. Research Progress on Physiological and Ecological Mechanisms and Regulation Pathways of Yield, Quality and Stress Resistance Response in Perennial Rice [J]. Chinese Journal OF Rice Science, 2025, 39(5): 586-600. |
[2] | WU Wanting, XU Qian, LIU Dantong, ZHU Changjin, DU Haotian, JU Haoran, HUO Zhongyang, DAI Qigen, LI Guohui, XU Ke. Research Progress in Regulation of Anthocyanin Accumulation in Colored Rice [J]. Chinese Journal OF Rice Science, 2025, 39(5): 601-614. |
[3] | WANG Jingbo, SU Chang, FENG Jing, JIANG Sixu, XU Hai, CUI Zhibo, ZHAO Minghui. Functional Study on Aluminum Tolerance of OsAlR1 Gene in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(5): 615-623. |
[4] | SHAO Ye, HU Yuanyi, PENG Yan, MAO Bigang, LIU Huimin, TANG Chanjuan, LEI Bin, TANG Li, YU Lixia3, LI Wenjian3, LUO Wuzhong1, 2, LUO Zhibin, YUAN Yuantao, LI Yaokui, ZHANG Dan, ZHOU Libin, BAI Lianyang, TANG Wenbang, ZHAO Bingran. Directed Improvement of Hybrid Rice Zhuoliangyou 1126 by Heavy Ion Beam Mutagenesis Based on M1TDS Targeted Screening Technology [J]. Chinese Journal OF Rice Science, 2025, 39(5): 615-623. |
[5] | ZHANG Haipeng, LI Wanyi, LIAO Fuxing, MA Meizi, ZHANG Hongcheng, YANG Yanju. Effects of Nano-molybdenum on Root Morpho-physiological Traits and Nitrate Uptake in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(5): 650-664. |
[6] | LIU Yuting, ZHOU Xing, HE Chenyan, LI Qiuping, AI Xiaofeng, YUAN Yujie, LIU Rui, YANG Jingwen, LIU Tingting1, WANG Li, CHENG Hong, HUANG Rong, LI Aoyun, HU Wen, HU Zhong, REN Wanjun, DENG Fei. Effects of Reducing Hill Density While Maintaining Plant Population on Dry Matter Accumulation and Transport in Rice Stem and Sheath Under Different Light Conditions [J]. Chinese Journal OF Rice Science, 2025, 39(5): 665-678. |
[7] | YANG Xingzhou, CUI Miaomiao, WEI Lihui, GU Aiguo, LI Dongxia, LE Xiuhu, FENG Hui. Effects of Exogenous miR3979 on Chemotaxis, Infection and Development of Root Knot Nematode Meloidogyne graminicola in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(5): 703-710. |
[8] | TANG Chenghan, CHEN Huizhe, HUAI Yan, SUN Liang, ZHANG Yuping, XIANG Jing, ZHANG Yikai, WANG Zhigang, XU Yiwen, WANG Yaliang. Response of Machine-transplanting Quality and Yield Formation of Hybrid Rice Pot-mat Seedlings to Pot Depth [J]. Chinese Journal OF Rice Science, 2025, 39(4): 491-500. |
[9] | ZHU Peng, LING Xitie, WANG Jinyan, ZHANG Baolong, YANG Yuwen, XU Ke, QIU Shi. Effects of Weed Control Methods on Grain Yield and Quality of Herbicide-resistant Rice Under Direct Seeding [J]. Chinese Journal OF Rice Science, 2025, 39(4): 501-515. |
[10] | DONG Liqiang, ZHANG Yikai, YANG Tiexin, FENG Yingying, MA Liang, LIANG Xiao, ZHANG Yuping, LI Yuedong. Effect of Dense Sowing Nursery on Seedling Quality and Picking Characteristics for Mechanized Transplanting in Northern japonica Rice [J]. Chinese Journal OF Rice Science, 2025, 39(4): 516-528. |
[11] | ZHOU Yang, YE Fan, LIU Lijun. Research Progress of Typical Plant Growth-promoting Microorganism Enhancing Salt Stress Resistance in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(4): 529-542. |
[12] | ZHU Jianping, LI Xia, LI Wenqi, XU Yang, WANG Fangquan, TAO Yajun, JIANG Yanjie, CHEN Zhihui, FAN Fangjun, YANG Jie. Phenotypic Analysis and Gene Mapping of a Floury Endosperm Mutant we1 in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(4): 543-551. |
[13] | HUANG Fudeng, WU Chunyan, HAO Yuanyuan, HAN Yifei, ZHANG Xiaobin, SUN Huifeng, PAN Gang. Transcriptome Analysis of Top Second Leaf Sheath of Rice Under Different Nitrogen Fertilizer Levels [J]. Chinese Journal OF Rice Science, 2025, 39(4): 563-574. |
[14] | LU Yezi, QIU Jiehua, JIANG Nan, KOU Yanjun, SHI Huanbin. Research Progress in Effectors of Magnaporthe oryzae [J]. Chinese Journal OF Rice Science, 2025, 39(3): 287-294. |
[15] | WANG Chaorui, ZHOU Yukun, WEN Ya, ZHANG Ying, FA Xiaotong, XIAO Zhilin, ZHANG Hao. Effects of Straw Returning Methods on Soil Characteristics and Greenhouse Gas Emissions in Paddy Fields and Their Regulation Through Water-fertilizer Interactions [J]. Chinese Journal OF Rice Science, 2025, 39(3): 295-305. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||