[1] Oladosu Y, Rafii M, Abdullah N, Hussin G, Ramli A, Rahim H, Miah G, Usman M. Principle and application of plant mutagenesis in crop improvement: A review[J]. Biotechnology & Biotechnological Equipment, 2016, 30(1): 1-16.
[2] Sahu P, Sao R, Mondal S, Vishwakarma G, Gupta S, Kumar V, Singh S, Sharma D, Das B. Next generation sequencing based forward genetic approaches for identification and mapping of causal mutations in crop plants: A comprehensive review[J]. Plants (Basel), 2020, 9(10): 1355.
[3] Bagher A, Nahid A, Mohsen M, Vahid M. Nuclear techniques in agriculture and genetics[J]. American Journal of Bioscience, 2014, 2(3): 102-105.
[4] Jankowicz-Cieslak J, Tai T, Kumlehn J, Till B. Biotechnologies for plant mutation breeding: Protocols[M]. Springer Nature, 2017.
[5] Spencer-Lopes M, Forster B, Jankuloski L. Manual on mutation breeding[M]. Food and Agriculture Organization of the United Nations (FAO), 2018.
[6] Tokuyama Y, Furusawa Y, Ide H, Yasui A, Terato H. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation[J]. Journal of Radiation Research, 2015, 56(3): 446-455.
[7] Hamada N, Imaoka T, Masunaga S, Ogata T, Okayasu R, Takahashi A, Kato T A, Kobayashi Y, Ohnishi T, Ono K, Shimada Y, Teshima T. Recent advances in the biology of heavy-ion cancer therapy[J]. Journal of Radiation Research, 2010, 51(4): 365-383.
[8] Tanaka A, Shikazono N, Hase Y. Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants[J]. Journal of Radiation Research, 2010, 51(3): 223-233.
[9] Hirano T, Kazama Y, Ishii K, Ohbu S, Shirakawa Y, Abe T. Comprehensive identification of mutations induced by heavy-ion beam irradiation in Arabidopsis thaliana[J]. Plant Journal, 2015, 82(1): 93-104.
[10] Dong X, Yan X, Li W. Plant mutation breeding with heavy ion irradiation at IMP[J]. Journal of Agricultural Science, 2016, 8(5): 34-41.
[11] Abe T, Kazama Y, Hirano T. Ion beam breeding and gene discovery for function analyses using mutants[J]. Nuclear Physics News, 2015, 25(4): 30-34.
[12] 韶也, 彭彦, 毛毕刚, 余丽霞, 唐丽, 李曜魁, 胡远艺, 张丹, 袁智成, 罗武中, 彭选明, 李文建, 周利斌, 柏连阳, 赵炳然. M1TDS技术及镉低积累杂交水稻亲本创制与组合选育[J]. 杂交水稻, 2022, 37(1): 1-11.
Shao Y, Peng Y, Mao B G, Yu L X, Tang L, Li Y K, Hu Y Y, Zhang D, Yuan Z C, Luo W Z, Peng X M, Li W J, Zhou L B, Bai L Y, Zhao B R. M1TDS technology and breeding of Cd low-accumulating hybrid rice parents and combinations[J]. Hybrid Rice, 2022, 37(1): 1-11. (in Chinese with English abstract)
[13] 赵连芝, 王浩瀚, 王勇, 李雁民, 甄东升, 颉红梅. 重离子辐照选育春小麦新品种初探[J]. 西北农业学报, 2006(3): 17-19.
Zhao L Z, Wang H H, Wang Y, Li Y M, Zhen D S, Xie H M. Preliminary study on breeding new spring wheat varieties by heavy-ion irradiation[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2006(3): 17-19. (in Chinese with English abstract)
[14] Melsen K, van de Wouw M, Contreras R. Mutation breeding in ornamentals[J]. HortScience, 2021, 56(10): 1154-1165.
[15] Hu W, Li W, Chen J. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP[J]. Letters in Applied Microbiology, 2017, 65(4): 274-280.
[16] 陆栋, 王颖, 刘青芳, 吴鑫, 王菊芳, 马爽, 李文建. 12C离子束辐照对酵母发酵能力的影响[J]. 核技术, 2010, 33(5): 350-353.
Lu D, Wang Y, Liu Q F, Wu X, Wang J F, Ma S, Li W J. Effects of 12C ion beam irradiation on yeast fermentation capacity[J]. Nuclear Techniques, 2010, 33(5): 350-353. (in Chinese with English abstract)
[17] McCallum C M, Comai L, Greene E A, Henikoff S. Targeted screening for induced mutations[J]. Nature Biotechnology, 2000, 18(4): 455-7.
[18] Colbert T, Till B, Tompa R, Reynolds S, Steine M, Yeung A, McCallum C, Comai L, Henikoff S. High-throughput screening for induced point mutations[J]. Plant Physiology, 2001, 126(2): 480-4.
[19] Taheri S, Abdullah T, Jain S, Sahebi M, Azizi P. TILLING, high-resolution melting (HRM), and next-generation sequencing (NGS) techniques in plant mutation breeding[J]. Molecular Breeding, 2017, 37: 1-23.
[20] Till B J, Datta S, Jankowicz-Cieslak J. TILLING: The next generation[J]. Advances in Biochemical Engineering-biotechnology, 2018, 164: 139-160.
[21] Kumar A, McKeown P, Boualem A, Ryder P, Brychkova G, Bendahmane A, Sarkar A, Chatterjee M, Spillane C. TILLING by Sequencing (TbyS) for targeted genome mutagenesis in crops[J]. Molecular Breeding, 2017, 37: 1-12.
[22] Kashtwari M, Wani A, Rather R. TILLING: An alternative path for crop improvement[J]. Journal of Crop Improvement, 2019, 33(1): 83-109.
[23] Dai P, Wu L R, Chen S X, Wang M X, Cheng L Y, Zhang J X, Hao P, Yao W, Zarka J, Issa G C, Kwong L, Zhang D Y. Calibration-free NGS quantitation of mutations below 0.01% VAF[J]. Nature Communications, 2021, 12(1): 6123.
[24] Song P, Chen S X, Yan Y H, Pinto A, Cheng L Y, Dai P, Patel A A, Zhang D Y. Selective multiplexed enrichment for the detection and quantitation of low-fraction DNA variants via low-depth sequencing[J]. Nature Biomedical Engineering, 2021, 5(7): 690-701.
[25] Tang L, Mao B, Li Y, Lü Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, Xia S, Zhao B. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7(1): 14438.
[26] Hui S, Li H, Mawia AM, Zhou L, Cai J, Ahmad S, Lai C, Wang J, Jiao G, Xie L, Shao G, Sheng Z, Tang S, Wang J, Wei X, Hu S, Hu P. Production of aromatic three-line hybrid rice using novel alleles of BADH2[J]. Plant Biotechnology Journal, 2022, 20(1): 59-74.
[27] Xu H, Wei Y, Zhu Y, Lian L, Xie H, Cai Q, Chen Q, Lin Z, Wang Z, Xie H, Zhang J. Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity[J]. Plant Biotechnology Journal, 2015, 13(4): 526-39.
[28] Lü Y, Shao G, Jiao G, Sheng Z, Xie L, Hu S, Tang S, Wei X, Hu P. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield[J]. Molecular Plant, 2021, 14(2): 344-351.
[29] Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, Xia L. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes[J]. Frontiers in Plant Science, 2017, 8: 298.
[30] Wang A, Jing Y, Cheng Q, Zhou H, Wang L, Gong W, Kou L, Liu G, Meng X, Chen M, Ma H, Shu X, Yu H, Wu D, Li J. Loss of function of SSIIIa and SSIIIb coordinately confers high RS content in cooked rice[J]. Proceedings of the National Academy of Sciences of the United States America, 2023, 120(19): e2220622120.
[31] Kitamura S, Satoh K, Oono Y. Detection and characterization of genome-wide mutations in M1 vegetative cells of gamma-irradiated Arabidopsis[J]. PLoS Genetics, 2022, 18(1): e1009979.
[32] Sasikala R, Kalaiyarasi R. Sensitivity of rice varieties to gamma irradiation[J]. Electronic Journal of Plant Breeding, 2010, 1(4): 845-889.
[33] Gowthami R, Vanniarajan C, Souframanien J, Arumugam M. Comparison of radiosensitivity of two rice (Oryza sativa L.) varieties to gamma rays and electron beam in M1 generation[J]. Electronic Journal of Plant Breeding, 2017, 8(3): 732-741.
[34] Yamaguchi H. Characteristics of ion beams as mutagens for mutation breeding in rice and chrysanthemums[J]. Japan Agricultural Research Quarterly, 2013, 47(4): 339-346. |