Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (4): 543-551.DOI: 10.16819/j.1001-7216.2025.240508
• Research Papers • Previous Articles Next Articles
ZHU Jianping1,2,3, LI Xia1,2,3, LI Wenqi1,2,3, XU Yang1,2,3, WANG Fangquan1,2,3, TAO Yajun1,2,3, JIANG Yanjie1,2,3, CHEN Zhihui1,2,3, FAN Fangjun1,2,3, YANG Jie1,2,3,*()
Received:
2024-05-15
Revised:
2024-08-20
Online:
2025-07-10
Published:
2025-07-21
Contact:
YANG Jie
朱建平1,2,3, 李霞1,2,3, 李文奇1,2,3, 许扬1,2,3, 王芳权1,2,3, 陶亚军1,2,3, 蒋彦婕1,2,3, 陈智慧1,2,3, 范方军1,2,3, 杨杰1,2,3,*()
通讯作者:
杨杰
基金资助:
ZHU Jianping, LI Xia, LI Wenqi, XU Yang, WANG Fangquan, TAO Yajun, JIANG Yanjie, CHEN Zhihui, FAN Fangjun, YANG Jie. Phenotypic Analysis and Gene Mapping of a Floury Endosperm Mutant we1 in Rice[J]. Chinese Journal OF Rice Science, 2025, 39(4): 543-551.
朱建平, 李霞, 李文奇, 许扬, 王芳权, 陶亚军, 蒋彦婕, 陈智慧, 范方军, 杨杰. 水稻粉质胚乳突变体we1的表型分析与基因定位[J]. 中国水稻科学, 2025, 39(4): 543-551.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.240508
引物名称 Primer name | 正向引物序列 Forward primer (5’-3’) | 反向引物序列 Reverse primer(5’-3’) |
---|---|---|
P1 | CCCCAACTTTCAGCTTTGCT | GACAAAATCCTCCGTGGCG |
P5 | AATGCGAAGTTTGGGGGAAC | CAATCAGACGACGAAACGGG |
P8 | CGTGGACGGTGATGGAATTC | CCTCAGTGACATGCTCAAGG |
P12 | ACTCAGTAGCAGTTGAGGAGA | TCAAATCCTTGCACATAACCCA |
P16 | ACTCAGCCGATACTTGAGGG | TTTGGAGTCTATTAGGCTTGAAGC |
P18 | TGCATGTGTTCACACTGTGA | ACTAATGATCAGCTAGGTGCCT |
Table 1. Primers for fine mapping of WE1
引物名称 Primer name | 正向引物序列 Forward primer (5’-3’) | 反向引物序列 Reverse primer(5’-3’) |
---|---|---|
P1 | CCCCAACTTTCAGCTTTGCT | GACAAAATCCTCCGTGGCG |
P5 | AATGCGAAGTTTGGGGGAAC | CAATCAGACGACGAAACGGG |
P8 | CGTGGACGGTGATGGAATTC | CCTCAGTGACATGCTCAAGG |
P12 | ACTCAGTAGCAGTTGAGGAGA | TCAAATCCTTGCACATAACCCA |
P16 | ACTCAGCCGATACTTGAGGG | TTTGGAGTCTATTAGGCTTGAAGC |
P18 | TGCATGTGTTCACACTGTGA | ACTAATGATCAGCTAGGTGCCT |
引物名称 | 正向引物序列 | 反向引物序列 |
---|---|---|
Primer name | Forward primer(5’-3’) | Reverse primer(5’-3’) |
Actin | CATGCTATCCCTCGTCTCGACCT | CGCACTTCATGATGGAGTTGTAT |
AGPS1 | AGAATGCTCGTATTGGAGAAAATG | GGCAGCATGGAATAAACCAC |
AGPS2b | AACAATCGAAGCGCGAGAAA | GCCTGTAGTTGGCACCCAGA |
AGPL1 | GGAAGACGGATGATCGAGAAAG | CACATGAGATGCACCAACGA |
AGPL2 | AGTTCGATTCAAGACGGATAGC | CGACTTCCACAGGCAGCTTATT |
AGPL4 | TCAACGTCGATGCAGCAAAT | ATCCCTCAGTTCCTAGCCTCATT |
GBSSI | TCCGAGAGGTTCAGGTCATC | ATGAGCTCCTCGGCGTAGTA |
SSI | GGGCCTTCATGGATCAACC | CCGCTTCAAGCATCCTCATC |
SSIIa | GCTTCCGGTTTGTGTGTTCA | CTTAATACTCCCTCAACTCCACCAT |
SSIIc | GCAAAGCGGCTATAGAGGTTCC | ATTTCCATCACCGTAGCAGTAGC |
SSIIIa | GCCTGCCCTGGACTACATTG | GCAAACATATGTACACGGTTCTGG |
SSIVa | GGGAGCGGCTCAAACATAAA | CCGTGCACTGACTGCAAAAT |
BEI | TGGCCATGGAAGAGTTGGC | CAGAAGCAACTGCTCCACC |
BEIIa | AGCGCTGAAGGCATTACCTACC | CTACTAATGCTGCAGACTGTGCTC |
BEIIb | ATGCTAGAGTTTGACCGC | AGTGTGATGGATCCTGCC |
ISA1 | TGCTCAGCTACTCCTCCATCATC | AGGACCGCACAACTTCAACATA |
ISA2 | TAGAGGTCCTCTTGGAGG | AATCAGCTTCTGAGTCACCG |
ISA3 | ACAGCTTGAGACACTGGGTTGAG | GCATCAAGAGGACAACCATCTG |
Table 2. Primers used in real-time PCR analysis
引物名称 | 正向引物序列 | 反向引物序列 |
---|---|---|
Primer name | Forward primer(5’-3’) | Reverse primer(5’-3’) |
Actin | CATGCTATCCCTCGTCTCGACCT | CGCACTTCATGATGGAGTTGTAT |
AGPS1 | AGAATGCTCGTATTGGAGAAAATG | GGCAGCATGGAATAAACCAC |
AGPS2b | AACAATCGAAGCGCGAGAAA | GCCTGTAGTTGGCACCCAGA |
AGPL1 | GGAAGACGGATGATCGAGAAAG | CACATGAGATGCACCAACGA |
AGPL2 | AGTTCGATTCAAGACGGATAGC | CGACTTCCACAGGCAGCTTATT |
AGPL4 | TCAACGTCGATGCAGCAAAT | ATCCCTCAGTTCCTAGCCTCATT |
GBSSI | TCCGAGAGGTTCAGGTCATC | ATGAGCTCCTCGGCGTAGTA |
SSI | GGGCCTTCATGGATCAACC | CCGCTTCAAGCATCCTCATC |
SSIIa | GCTTCCGGTTTGTGTGTTCA | CTTAATACTCCCTCAACTCCACCAT |
SSIIc | GCAAAGCGGCTATAGAGGTTCC | ATTTCCATCACCGTAGCAGTAGC |
SSIIIa | GCCTGCCCTGGACTACATTG | GCAAACATATGTACACGGTTCTGG |
SSIVa | GGGAGCGGCTCAAACATAAA | CCGTGCACTGACTGCAAAAT |
BEI | TGGCCATGGAAGAGTTGGC | CAGAAGCAACTGCTCCACC |
BEIIa | AGCGCTGAAGGCATTACCTACC | CTACTAATGCTGCAGACTGTGCTC |
BEIIb | ATGCTAGAGTTTGACCGC | AGTGTGATGGATCCTGCC |
ISA1 | TGCTCAGCTACTCCTCCATCATC | AGGACCGCACAACTTCAACATA |
ISA2 | TAGAGGTCCTCTTGGAGG | AATCAGCTTCTGAGTCACCG |
ISA3 | ACAGCTTGAGACACTGGGTTGAG | GCATCAAGAGGACAACCATCTG |
Fig. 1. Phenotypic analysis of wild type and the we1 mutant A, B, Mature seeds of WT and we1. Bars = 1 mm. C, D, Cross-sections of mature seeds of WT and we1. Bars = 1 mm.
Fig. 2. Agronomic traits comparison between wild type and the we1 mutant All values are means±SD (n=20). **indicates significant difference at P<0.01 level (Student’s t-test).
Fig. 3. Physicochemical properties comparison between wild type and the we1 mutant All values are means ± SD (n=3). **indicates significant difference at P<0.01 level (Student’s t-test).
Fig. 4. Scanning electron microscopic analysis of mature seeds of WT and we1 Scanning electron microscopic (SEM) analysis of cross-sections of mature seeds of WT (A~C) and we1 (D~F). A, D, Bars = 1 mm; B, E, Bars = 50 μm; C, F, Bars = 10 μm.
杂交组合 Cross | 正常透明种子数 No. of wild type seeds | 突变粉质种子数 No. of mutant seeds | χ2(3:1) |
---|---|---|---|
we1/野生型F2 F2 of we1/wild type | 132 | 50 | 0.469 |
野生型/we1 F2 F2 of wild type/we1 | 151 | 47 | 0.108 |
Table 3. Genetic analysis of the we1 mutant
杂交组合 Cross | 正常透明种子数 No. of wild type seeds | 突变粉质种子数 No. of mutant seeds | χ2(3:1) |
---|---|---|---|
we1/野生型F2 F2 of we1/wild type | 132 | 50 | 0.469 |
野生型/we1 F2 F2 of wild type/we1 | 151 | 47 | 0.108 |
Fig. 5. Fine mapping of WE1 gene The WE1 locus was mapped to a 181 kb region between markers P16 and P18 on the long arm of chromosome 12, which contains 23 predicted open reading frames (ORFs).
开放阅读框 | 基因登录号 | 功能注释 |
---|---|---|
ORFs | Locus ID | Functional description |
ORF1 | Os06g0165200 | 含有仙茅凝集素结构域的蛋白质Curculin-like lectin domain containing protein |
ORF2 | Os06g0165300 | 保守假定蛋白Conserved hypothetical protein |
ORF3 | Os06g0165500 | 含有仙茅凝集素结构域的蛋白质Curculin-like lectin domain containing protein |
ORF4 | Os06g0165600 | 含有AP2结构域的蛋白质AP2 domain containing protein |
ORF5 | Os06g0165800 | 咖啡酰辅酶A氧甲基转移酶Caffeoyl-CoA 3-O-methyltransferase |
ORF6 | Os06g0166000 | 含有F-box结构域的蛋白质Cyclin-like F-box domain containing protein |
ORF7 | Os06g0166100 | 含有FAR1结构域的蛋白质FAR1 domain containing protein |
ORF8 | Os06g0166200 | 含有C2H2型锌指结构域的蛋白质Zinc finger, C2H2-type domain containing protein |
ORF9 | Os06g0166400 | TINY 类蛋白质TINY-like protein |
ORF10 | Os06g0166500 | 生长素响应蛋白IAA20 Auxin-responsive protein IAA20 |
ORF11 | Os06g0166900 | 含有蛋白激酶结构域的蛋白质Protein kinase-like domain containing protein |
ORF12 | Os06g0167000 | PRP8 蛋白质PRP8 protein |
ORF13 | Os06g0167100 | 含有Armadillo类螺旋结构域的蛋白质Armadillo-like helical domain containing protein |
ORF14 | Os06g0167200 | RING-H2型锌指蛋白RING-H2 finger protein ATL1R |
ORF15 | Os06g0167400 | DTC家族蛋白Di-trans-poly-cis-decaprenylcistransferase family protein |
ORF16 | Os06g0167500 | 含有LRR结构域的蛋白质Leucine-rich repeat, plant specific containing protein |
ORF17 | Os06g0167600 | 蛋白酶体亚基-3 Proteasome subunit alpha-3 |
ORF18 | Os06g0168000 | 谷胱甘肽硫转移酶Glutathione S-transferase, C-terminal-like domain containing protein |
ORF19 | Os06g0168400 | 保守假定蛋白Conserved hypothetical protein |
ORF20 | Os06g0168500 | Syntaxin类蛋白 Syntaxin-like protein |
ORF21 | Os06g0168600 | 核糖核苷酸还原酶Ribonucleotide reductase |
ORF22 | Os06g0168700 | 富含脯氨酸蛋白Prolin rich protein |
ORF23 | Os06g0168800 | 蛋白激酶Protein kinase |
Table 4. Candidate genes for WE1
开放阅读框 | 基因登录号 | 功能注释 |
---|---|---|
ORFs | Locus ID | Functional description |
ORF1 | Os06g0165200 | 含有仙茅凝集素结构域的蛋白质Curculin-like lectin domain containing protein |
ORF2 | Os06g0165300 | 保守假定蛋白Conserved hypothetical protein |
ORF3 | Os06g0165500 | 含有仙茅凝集素结构域的蛋白质Curculin-like lectin domain containing protein |
ORF4 | Os06g0165600 | 含有AP2结构域的蛋白质AP2 domain containing protein |
ORF5 | Os06g0165800 | 咖啡酰辅酶A氧甲基转移酶Caffeoyl-CoA 3-O-methyltransferase |
ORF6 | Os06g0166000 | 含有F-box结构域的蛋白质Cyclin-like F-box domain containing protein |
ORF7 | Os06g0166100 | 含有FAR1结构域的蛋白质FAR1 domain containing protein |
ORF8 | Os06g0166200 | 含有C2H2型锌指结构域的蛋白质Zinc finger, C2H2-type domain containing protein |
ORF9 | Os06g0166400 | TINY 类蛋白质TINY-like protein |
ORF10 | Os06g0166500 | 生长素响应蛋白IAA20 Auxin-responsive protein IAA20 |
ORF11 | Os06g0166900 | 含有蛋白激酶结构域的蛋白质Protein kinase-like domain containing protein |
ORF12 | Os06g0167000 | PRP8 蛋白质PRP8 protein |
ORF13 | Os06g0167100 | 含有Armadillo类螺旋结构域的蛋白质Armadillo-like helical domain containing protein |
ORF14 | Os06g0167200 | RING-H2型锌指蛋白RING-H2 finger protein ATL1R |
ORF15 | Os06g0167400 | DTC家族蛋白Di-trans-poly-cis-decaprenylcistransferase family protein |
ORF16 | Os06g0167500 | 含有LRR结构域的蛋白质Leucine-rich repeat, plant specific containing protein |
ORF17 | Os06g0167600 | 蛋白酶体亚基-3 Proteasome subunit alpha-3 |
ORF18 | Os06g0168000 | 谷胱甘肽硫转移酶Glutathione S-transferase, C-terminal-like domain containing protein |
ORF19 | Os06g0168400 | 保守假定蛋白Conserved hypothetical protein |
ORF20 | Os06g0168500 | Syntaxin类蛋白 Syntaxin-like protein |
ORF21 | Os06g0168600 | 核糖核苷酸还原酶Ribonucleotide reductase |
ORF22 | Os06g0168700 | 富含脯氨酸蛋白Prolin rich protein |
ORF23 | Os06g0168800 | 蛋白激酶Protein kinase |
Fig. 6. Expression of WE1 candidate genes qRT-PCR assay of the expression of WE1 candidate genes in 12 DAF endosperm. Actin was used as control. All values are means ± SD(n = 3).
Fig. 7. Expression analysis of representative genes coding starch synthesis qRT-PCR assay of the expression of representative genes coding starch synthesis in 12 DAF endosperm. Actin was used as control. All values are means ± SD(n=3). **P<0.01(Student’s t-test).
[1] | Smith A M, Zeeman S C. Starch: A flexible, adaptable carbon store coupled to plant growth[J]. Annual Review of Plant Biology, 2020, 71: 217-245. |
[2] | 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉. 水稻Wx基因的等位变异及育种利用研究进展[J]. 中国水稻科学, 2015, 29(4): 431-438. |
Zhu J H, Zhang C Q, Gu M H, Liu Q Q. Progress in the allelic variation of Wx gene and its application in rice breeding[J]. Chinese Journal of Rice Science, 2015, 29(4): 431-438. (in Chinese with English abstract) | |
[3] | Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: Rice endosperm as a model tissue[J]. Plant and Cell Physiology, 2002, 43(7): 718-725. |
[4] | Hirose T, Terao T. A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.)[J]. Planta, 2004, 220(1): 9-16. |
[5] | Ohdan T, Francisco P B Jr, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice[J]. Journal of Experimental Botany, 2005, 56(422): 3229-3244. |
[6] | Utsumi Y, Utsumi C, Sawada T, Fujita N, Nakamura Y. Functional diversity of isoamylase oligomers: The ISA1 Homo-oligomer is essential for amylopectin biosynthesis in rice endosperm[J]. Plant Physiology, 2011, 156(1): 61-77. |
[7] | Li P, Chen Y H, Lu J, Zhang C Q, Liu Q Q, Li Q F. Genes and their molecular functions determining seed structure, components, and quality of rice[J]. Rice, 2022, 15(1): 18. |
[8] | 张习春, 鲁菲菲, 吕育松, 罗荣剑, 焦桂爱, 邬亚文, 唐绍清, 胡培松, 魏祥进. 两个垩白突变体的鉴定及突变基因的图位克隆[J]. 中国水稻科学, 2017, 31(6): 568-579. |
Zhang D C, Lu F F, Lü Y S, Luo R J, Jiao G A, Wu Y W, Tang S Q, Hu P S, Wei X J. Identification and gene mapping-based clone of two chalkiness mutants in rice[J]. Chinese Journal of Rice Science, 2017, 31(6): 568-579. (in Chinese with English abstract) | |
[9] | 杜溢墨, 潘天, 田云录, 刘世家, 刘喜, 江玲, 张文伟, 王益华, 万建民. 水稻粉质皱缩胚乳突变体fse4的表型分析与基因克隆[J]. 中国水稻科学2019, 33(6): 499-512. |
Du Y M, Pan T, Tian Y L, Liu S J, Liu X, Jiang L, Zhang W W, Wang Y H, Wan J M. Phenotypic analysis and gene cloning of rice floury endosperm mutant fse4[J]. Chinese Journal of Rice Science, 2019, 33(6): 499-512. (in Chinese with English abstract | |
[10] | 唐小涵, 刘世家, 刘喜, 田云录, 王云龙, 滕烜, 段二超, 张元燕, 江玲, 张文伟, 王益华, 万建民. 色氨酰-tRNA合成酶基因WRS1调控水稻种子发育[J]. 中国水稻科学, 2020, 34(5): 383-396. |
Tang X H, Liu S J, Liu X, Tian Y L, Wang Y L, Teng X, Duan E C, Zhang Y Y, Jiang L, Zhang W W, Wang Y H, Wan J M. Tryptophanyl-tRNA synthetase gene WRS1 regulates rice seed development[J]. Chinese Journal of Rice Science, 2020, 34(5): 383-396. (in Chinese with English abstract) | |
[11] | She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality[J]. The Plant Cell, 2010, 22(10): 3280-3294. |
[12] | Kang H G, Park S, Matsuoka M, An G H. White-core endosperm in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB)[J]. Plant Journal, 2005, 42(6): 901-911. |
[13] | Ryoo N, Yu C, Park C S, Baik M Y, Park I M, Cho M H, Bhoo S H, An G, Hahn T R, Jeon J S. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice[J]. Plant Cell Reports, 2007, 26(7): 1083-1095. |
[14] | Peng C, Wang Y H, Liu F, Ren Y L, Zhou K N, Lü J, Zheng M, Zhao S L, Zhang L, Wang C M, Jiang L, Zhang X, Guo X P, Bao Y Q, Wan J M. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm[J]. Plant Journal, 2014, 77(6): 917-930. |
[15] | Zhang L, Ren Y L, Lu B Y, Yang C Y, Feng Z M, Liu Z, Chen J, Ma W W, Wang Y, Yu X W, Wang Y L, Zhang W W, Wang Y H, Liu S J, Wu F Q, Zhang X, Guo X P, Bao Y Q, Jiang L, Wan J M. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice[J]. Journal of Experimental Botany, 2016, 67(3): 633-647. |
[16] | Yan H G, Zhang W W, Wang Y H, Jin J, Xu H C, Fu Y S, Shan Z Z, Wang X, Teng X, Li X, Wang Y X, Hu X Q, Zhang W X, Zhu C Y, Zhang X, Zhang Y, Wang R Q, Zhang J, Cai Y, You X M, Chen J, Ge X Y, Wang L, Xu J H, Jiang L, Liu S J, Lei C L, Zhang X, Wang H Y, Ren Y L, Wan J M. Rice LIKE EARLY STARVATION1 cooperates with FLOURY ENDOSPERM 6 to modulate starch biosynthesis and endosperm development[J]. The Plant Cell, 2024, 36(5): 1892-1912. |
[17] | You X M, Zhang W W, Hu J L, Jing R N, Cai Y, Feng Z M, Kong F, Zhang J, Yan H G, Chen W W, Chen X G, Ma J, Tang X J, Wang P, Zhu S S, Liu L L, Jiang L, Wan J M. FLOURY ENDOSPERM15 encodes a glyoxalase I involved in compound granule formation and starch synthesis in rice endosperm[J]. Plant Cell Reports, 2019, 38(3): 345-359. |
[18] | Teng X, Zhong M S, Zhu X P, Wang C M, Ren Y L, Wang Y L, Zhang H, Jiang L, Wang D, Hao Y Y, Wu M M, Zhu J P, Zhang X, Guo X P, Wang Y H, Wan J M. FLOURY ENDOSPERM16 encoding a NAD-dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice[J]. Plant Biotechnology Journal, 2019, 17(10): 1914-1927. |
[19] | Lei J, Teng X, Wang Y F, Jiang X K, Zhao H H, Zheng X M, Ren Y L, Dong H, Wang Y L, Duan E C, Zhang Y Y, Zhang W W, Yang H, Chen X L, Chen R B, Zhang Y, Yu M Z, Xu S B, Bao X H, Zhang P C, Liu S J, Liu X, Tian Y L, Jiang L, Wang Y H, Wan J M. Plastidic pyruvate dehydrogenase complex E1 component subunit Alpha1 is involved in galactolipid biosynthesis required for amyloplast development in rice[J]. Plant Biotechnology Journal, 2022, 20(3): 437-453. |
[20] | Wei X J, Jiao G A, Lin H Y, Sheng Z H, Shao G N, Xie L H, Tang S Q, Xu Q G, Hu P S. GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synthesis during rice caryopsis development[J]. Journal of Integrative Plant Biology, 2017, 59(2): 134-153. |
[21] | 方鹏飞, 李三峰, 焦桂爱, 谢黎虹, 胡培松, 魏祥进, 唐绍清. 水稻粉质胚乳突变体flo7的理化性质及基因定位[J]. 中国水稻科学, 2014, 28(5): 447-457. |
Fang P F, Li S F, Jiao G A, Xie L H, Hu P S, Wei X J, Tang S Q. Physicochemical property analysis and gene mapping of a floury endosperm mutant flo7 in rice[J]. Chinese Journal of Rice Science, 2014, 28(5): 447-457. (in Chinese with English abstract) | |
[22] | 李景芳, 田云录, 刘喜, 刘世家, 陈亮明, 江玲, 张文伟, 徐大勇, 王益华, 万建民. 鸟苷酸激酶 OsGK1 对水稻种子发育至关重要[J]. 中国水稻科学, 2018, 32(5): 415-426. |
Li J F, Tian Y L, Liu X, Liu S J, Chen L M, Jiang L, Zhang W W, Xu D Y, Wang Y H, Wan J M. The guanylate kinase OsGK1 is essential for seed development in rice[J]. Chinese Journal of Rice Science, 2018, 32(5): 415-426. (in Chinese with English abstract) | |
[23] | 于艳芳, 刘喜, 田云录, 刘世家, 陈亮明, 朱建平, 王云龙, 江玲, 张文伟, 王益华, 万建民. 水稻粉质胚乳fse3突变体的表型分析及基因定位[J]. 中国农业科学, 2018, 51(11): 2023-2037. |
Yu Y F, Liu X, Tian Y L, Liu S J, Chen L M, Zhu J P, Wang Y L, Jiang L, Zhang W W, Wang Y H, Wan J M. Phenotypic analysis and gene mapping of a floury and shrunken endosperm mutant fse3 in rice[J]. Scientia Agricultura Sinica, 2018, 51(11): 2023-2037. (in Chinese with English abstract) | |
[24] | 潘鹏屹, 朱建平, 王云龙, 郝媛媛, 蔡跃, 张文伟, 江玲, 王益华, 万建民. 水稻粉质胚乳突变体ws 的表型分析及基因克隆[J]. 中国水稻科学, 2016, 30(5): 447-457. |
Pan P Y, Zhu J P, Wang Y L, Hao Y Y, Cai Y, Zhang W W, Jiang L, Wang Y H, Wan J M. Phenotyping and gene cloning of a floury endosperm mutant ws in rice[J]. Chinese Journal of Rice Science, 2016, 30(5): 447-457. (in Chinese with English abstract) | |
[25] | Hu T T, Tian Y L, Zhu J P, Wang Y L, Jing R N, Lei J, Sun Y L, Yu Y F, Li J F, Chen X L, Zhu X P, Hao Y Y, Liu L L, Wang Y H, Wan J M. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice[J]. Plant Cell Reports, 2018, 37(12): 1667-1679. |
[26] | Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. Journal of Experimental Botany, 2013, 64(11): 3453-3466. |
[27] | Fu F F, Xue H W. Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator[J]. Plant Physiology, 2010, 154(2): 927-938. |
[28] | Xiong Y F, Ren Y, Li W, Wu F S, Yang W J, Huang X L, Yao J L. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice[J]. Journal of Experimental Botany, 2019, 70(15): 3765-3780. |
[29] | Bello B K, Hou Y X, Zhao J, Jiao G A, Wu Y W, Li Z Y, Wang Y F, Tong X H, Wang W, Yuan W Y, Wei X J, Zhang J. NF-YB1-YC12-bHLH144 complex directly activates Wx to regulate grain quality in rice (Oryza sativa L.)[J]. Plant Biotechnology Journal, 2019, 17(7): 1222-1235. |
[30] | Wang J, Chen Z C, Zhang Q, Meng S S, Wei C X. The NAC Transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis[J]. Plant Physiology, 2020, 184(4): 1775-1791. |
[31] | Wu M W, Liu J X, Bai X, Chen W Q, Ren Y L, Liu J L, Chen M M, Zhao H, Yao X F, Zhang J D, Wan J M, Liu C M. Transcription factors NAC20 and NAC26 interact with RPBF to activate albumin accumulations in rice endosperm[J]. Plant Biotechnology Journal, 2023, 21(5): 890-892. |
[1] | TANG Chenghan, CHEN Huizhe, HUAI Yan, SUN Liang, ZHANG Yuping, XIANG Jing, ZHANG Yikai, WANG Zhigang, XU Yiwen, WANG Yaliang. Response of Machine-transplanting Quality and Yield Formation of Hybrid Rice Pot-mat Seedlings to Pot Depth [J]. Chinese Journal OF Rice Science, 2025, 39(4): 491-500. |
[2] | ZHU Peng, LING Xitie, WANG Jinyan, ZHANG Baolong, YANG Yuwen, XU Ke, QIU Shi. Effects of Weed Control Methods on Grain Yield and Quality of Herbicide-resistant Rice Under Direct Seeding [J]. Chinese Journal OF Rice Science, 2025, 39(4): 501-515. |
[3] | DONG Liqiang, ZHANG Yikai, YANG Tiexin, FENG Yingying, MA Liang, LIANG Xiao, ZHANG Yuping, LI Yuedong. Effect of Dense Sowing Nursery on Seedling Quality and Picking Characteristics for Mechanized Transplanting in Northern japonica Rice [J]. Chinese Journal OF Rice Science, 2025, 39(4): 516-528. |
[4] | ZHOU Yang, YE Fan, LIU Lijun. Research Progress of Typical Plant Growth-promoting Microorganism Enhancing Salt Stress Resistance in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(4): 529-542. |
[5] | HUANG Fudeng, WU Chunyan, HAO Yuanyuan, HAN Yifei, ZHANG Xiaobin, SUN Huifeng, PAN Gang. Transcriptome Analysis of Top Second Leaf Sheath of Rice Under Different Nitrogen Fertilizer Levels [J]. Chinese Journal OF Rice Science, 2025, 39(4): 563-574. |
[6] | LU Yezi, QIU Jiehua, JIANG Nan, KOU Yanjun, SHI Huanbin. Research Progress in Effectors of Magnaporthe oryzae [J]. Chinese Journal OF Rice Science, 2025, 39(3): 287-294. |
[7] | WANG Chaorui, ZHOU Yukun, WEN Ya, ZHANG Ying, FA Xiaotong, XIAO Zhilin, ZHANG Hao. Effects of Straw Returning Methods on Soil Characteristics and Greenhouse Gas Emissions in Paddy Fields and Their Regulation Through Water-fertilizer Interactions [J]. Chinese Journal OF Rice Science, 2025, 39(3): 295-305. |
[8] | WANG Yaxuan, WANG Xinfeng, YANG Houhong, LIU Fang, XIAO Jing, CAI Yubiao, WEI Qi, FU Qiang, WAN Pinjun. Recent Advances in Mechanisms of Adaptation of Planthoppers to Rice Resistance [J]. Chinese Journal OF Rice Science, 2025, 39(3): 306-321. |
[9] | HUANG Tao, WEI Zhaogen, CHENG Qi, CHENG Ze, LIU Xin, WANG Guangda, HU Keming, XIE Wenya, CHEN Zongxiang, FENG Zhiming, ZUO Shimin. Gene Cloning and Broad-spectrum Disease Resistance Analysis of Rice Lesion Mimic Mutant lm52 [J]. Chinese Journal OF Rice Science, 2025, 39(3): 322-330. |
[10] | MA Shunting, HU Yungao, GAO Fangyuan, LIU Liping, MOU Changling, LÜ Jianqun, SU Xiangwen, LIU Song, LIANG Yuyu, REN Guangjun, GUO Hongming. Functional Study of Rice Eukaryotic Translation Initiation Factor OseIF6.2 in Grain Size Regulation [J]. Chinese Journal OF Rice Science, 2025, 39(3): 331-342. |
[11] | ZHANG Bintao, LIU Congcong, GUO Mingliang, YANG Shaohua, WU Shiqiang, GUO Longbiao, ZHU Yiwang. Evaluation of Blast Resistance and Identification of Superior Haplotype of OsDR8 in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(3): 343-351. |
[12] | WEI Xinyu, ZENG Yuehui, XIAO Changchun, HUANG Jianhong, RUAN Hongchun, YANG Wangxing, ZOU Wenguang, XU Xuming. Cloning and Functional Verification of Rice-Blast Resistance Gene Pi-kf2(t) in Kangfeng B [J]. Chinese Journal OF Rice Science, 2025, 39(3): 352-364. |
[13] | LI Wenqi, XU Yang, WANG Fangquan, ZHU Jianping, TAO Yajun, LI Xia, FAN Fangjun, JIANG Yanjie, CHEN Zhihui, YANG Jie. Development and Application of KASP Marker for Broad-Spectrum Resistance Gene PigmR to Rice Blast [J]. Chinese Journal OF Rice Science, 2025, 39(3): 365-372. |
[14] | WEI Huanhe, WANG Lulu, MA Weiyi, ZHANG Xiang, ZUO Boyuan, GENG Xiaoyu, ZHU Wang, ZHU Jizou, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, DAI Qigen. Grain-filling Characteristics and Its Relationship with Grain Yield Formation of japonica Rice Nanjing 9108 Under Combined Salinity-drought Stress [J]. Chinese Journal OF Rice Science, 2025, 39(3): 373-386. |
[15] | ZHANG Haiwei, GU Xinyi, CHEN Mingshuai, LI Fukang, SHI Yuecheng, YANG Ting, JIANG Shuochen. Effects of Nitrogen Type of Basal Fertilizer on Growth, Grain Yield and Nitrogen Use Efficiency of Ratooning Rice [J]. Chinese Journal OF Rice Science, 2025, 39(3): 387-398. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||