Chinese Journal OF Rice Science ›› 2019, Vol. 33 ›› Issue (4): 347-356.DOI: 10.16819/j.1001-7216.2019.8140
• Research Papers • Previous Articles Next Articles
Jun YAN1,2, Qixia WU1, Jianqiang ZHU1,*(), Luping ZHANG3
Received:
2018-12-24
Revised:
2019-02-21
Online:
2019-07-10
Published:
2019-07-10
Contact:
Jianqiang ZHU
通讯作者:
朱建强
基金资助:
CLC Number:
Jun YAN, Qixia WU, Jianqiang ZHU, Luping ZHANG. Effects of Nitrogen Application on Rice Photosynthetic Characteristics, Nitrogen Uptake and Grain Yield Formation Under Rainfall-adapted Water Management[J]. Chinese Journal OF Rice Science, 2019, 33(4): 347-356.
晏军, 吴启侠, 朱建强, 张露萍. 适雨灌溉下氮肥运筹对水稻光合特性、氮素吸收及产量形成的影响[J]. 中国水稻科学, 2019, 33(4): 347-356.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2019.8140
施肥处理 Fertilization treatment | 施肥量 Fertilizer rate(N-P2O5-K2O) | 基肥 Base-manure amounts | 分蘖初期 TS | 幼穗分化期 PDS | ||||
---|---|---|---|---|---|---|---|---|
控释掺混肥 CRF | 普通复合肥 CF | 尿素 Urea | 过磷酸钙 S | 氯化钾 MP | 尿素 Urea | 尿素 Urea | ||
农民习惯施肥FFP | 180-75-105 | 0.0 | 700.0 | 0.0 | 158.3 | 0.0 | 117.4 | 0.0 |
30%N+70%CRF | 180-75-105 | 450.0 | 0.0 | 117.4 | 437.5 | 107.5 | 0.0 | 0.0 |
优化减氮施肥OPT-N | 150-75-105 | 0.0 | 416.7 | 0.0 | 347.2 | 70.8 | 114.1 | 48.9 |
Table 1 Fertilization scheme of experiment kg/hm2
施肥处理 Fertilization treatment | 施肥量 Fertilizer rate(N-P2O5-K2O) | 基肥 Base-manure amounts | 分蘖初期 TS | 幼穗分化期 PDS | ||||
---|---|---|---|---|---|---|---|---|
控释掺混肥 CRF | 普通复合肥 CF | 尿素 Urea | 过磷酸钙 S | 氯化钾 MP | 尿素 Urea | 尿素 Urea | ||
农民习惯施肥FFP | 180-75-105 | 0.0 | 700.0 | 0.0 | 158.3 | 0.0 | 117.4 | 0.0 |
30%N+70%CRF | 180-75-105 | 450.0 | 0.0 | 117.4 | 437.5 | 107.5 | 0.0 | 0.0 |
优化减氮施肥OPT-N | 150-75-105 | 0.0 | 416.7 | 0.0 | 347.2 | 70.8 | 114.1 | 48.9 |
光合特征指标 Indicators of photosynthetic characteristics | 处理 Treatment | 生育期 Growth stage | ||||||
---|---|---|---|---|---|---|---|---|
分蘖期 Tillering | 拔节期 Jointing | 孕穗期 Booting | 齐穗期 Full-heading | 灌浆期 Filling | 乳熟期 Maturity | |||
Pn/(μmol·m-2s-1) | FI | FFP | 23.6±3.0 b | 24.9±1.4 ab | 21.2±5.4 b | 26.0±0.8 a | 15.9±3.4 a | 7.3±1.4 b |
30%N+70%CRF | 25.2±4.0 a | 25.5±1.7 a | 21.7±3.6 b | 25.5±1.3 a | 16.4±2.0 a | 9.9±2.5 a | ||
OPT-N | 21.7±3.2 b | 23.6±1.5 b | 26.8±5.1 a | 26.6±2.3 a | 16.7±2.0 a | 11.0±3.2 a | ||
RAI | FFP | 24.5±3.6 b | 26.0±2.3 a | 21.8±3.1 b | 26.5±2.4 a | 16.0±3.3 a | 8.1±2.8 b | |
30%N+70%CRF | 27.7±1.8 a | 25.4±2.1 a | 24.6±3.0 ab | 26.4±1.9 a | 17.4±2.2 a | 7.4±2.3 b | ||
OPT-N | 22.0±2.3 b | 24.8±1.3 a | 25.9±2.9 a | 26.2±2.9 a | 16.7±2.2 a | 11.2±2.9 a | ||
Gs/(mol·m-2s-1) | FI | FFP | 0.5±0.1 b | 0.4±0.1 a | 0.4±0.1 ab | 0.5±0.1 ab | 0.8±0.2 a | 0.2±0.03 a |
30%N+70%CRF | 0.6±0.1 a | 0.4±0.1 a | 0.3±0.1 b | 0.5±0.1 b | 0.5±0.1 b | 0.2±0.04 a | ||
OPT-N | 0.6±0.1 a | 0.5±0.1 a | 0.5±0.1 a | 0.6±0.1 a | 0.7±0.1 a | 0.3±0.03 a | ||
RAI | FFP | 0.4±0.2 b | 0.4±0.2 b | 0.4±0.1 b | 0.6±0.1 ab | 0.7±0.2 a | 0.2±0.05 b | |
30%N+70%CRF | 0.6±0.1 a | 0.4±0.1 b | 0.4±0.1 ab | 0.5±0.1 b | 0.6±0.1 a | 0.3±0.1 ab | ||
OPT-N | 0.7±0.1 a | 0.6±0.1 a | 0.5±0.1 a | 0.6±0.1 a | 0.7±0.1 a | 0.3±0.04 a | ||
Ci/(μmol·mol-1) | FI | FFP | 285.2±33.4 b | 241.0±38.5 a | 289.0±18.8 a | 294.0±5.7 a | 323.9±15.4 a | 355.3±8.7 a |
30%N+70%CRF | 325.3±10.3 a | 249.7±26.6 a | 271.2±27.5 a | 287.1±12.4 a | 318.3±5.4 a | 323.2±16.1 b | ||
OPT-N | 301.8±13.7 b | 261.9±15.0 a | 273.1±18.6 a | 293.4±7.7 a | 318.5±8.2 a | 346.8±23.8 ab | ||
RAI | FFP | 305.5±16.4 b | 253.2±21.9 b | 300.2±8.8 a | 292.9±7.5 a | 319.9±11.5 a | 354.0±18.1 b | |
30%N+70%CRF | 326.2±14.9 a | 288.3±10.2 a | 285.8±10.6 b | 294.9±11.0 a | 327.9±6.1 a | 320.6±17.9 a | ||
OPT-N | 330.1±8.0 a | 254.4±22.6 b | 280.6±7.2 b | 295.4±9.2 a | 327.0±9.1 a | 335.1±19.6 a | ||
Tr/(mmol·m-2s-1) | FI | FFP | 4.4±0.9 b | 3.0±0.8 a | 4.2±0.7 b | 5.9±0.5 b | 4.3±0.4 b | 5.5±0.4 a |
30%N+70%CRF | 6.1±0.6 a | 3.4±0.6 a | 4.3±0.8 b | 6.0±0.6 ab | 4.7±0.3 ab | 5.9±0.8 ab | ||
OPT-N | 6.4±0.6 a | 3.5±0.6 a | 5.6±0.9 a | 6.4±0.3 a | 5.2±0.4 a | 6.3±0.5 b | ||
RAI | FFP | 4.5±1.2 b | 3.0±1.0 b | 4.6±0.4 b | 6.0±0.7 b | 4.9±0.5 a | 5.0±1.0 b | |
30%N+70%CRF | 6.9±0.6 a | 4.9±0.9 a | 5.4±0.6 a | 6.1±0.4 ab | 4.9±0.4 a | 5.8±0.7 a | ||
OPT-N | 7.1±0.5 a | 3.4±0.7 b | 5.8±0.6 a | 6.6±0.6 a | 5.0±0.5 a | 6.4±0.5 a |
Table 2 Effect of photosynthetic characteristics at different rice growth stages under different water and fertilizer managements.
光合特征指标 Indicators of photosynthetic characteristics | 处理 Treatment | 生育期 Growth stage | ||||||
---|---|---|---|---|---|---|---|---|
分蘖期 Tillering | 拔节期 Jointing | 孕穗期 Booting | 齐穗期 Full-heading | 灌浆期 Filling | 乳熟期 Maturity | |||
Pn/(μmol·m-2s-1) | FI | FFP | 23.6±3.0 b | 24.9±1.4 ab | 21.2±5.4 b | 26.0±0.8 a | 15.9±3.4 a | 7.3±1.4 b |
30%N+70%CRF | 25.2±4.0 a | 25.5±1.7 a | 21.7±3.6 b | 25.5±1.3 a | 16.4±2.0 a | 9.9±2.5 a | ||
OPT-N | 21.7±3.2 b | 23.6±1.5 b | 26.8±5.1 a | 26.6±2.3 a | 16.7±2.0 a | 11.0±3.2 a | ||
RAI | FFP | 24.5±3.6 b | 26.0±2.3 a | 21.8±3.1 b | 26.5±2.4 a | 16.0±3.3 a | 8.1±2.8 b | |
30%N+70%CRF | 27.7±1.8 a | 25.4±2.1 a | 24.6±3.0 ab | 26.4±1.9 a | 17.4±2.2 a | 7.4±2.3 b | ||
OPT-N | 22.0±2.3 b | 24.8±1.3 a | 25.9±2.9 a | 26.2±2.9 a | 16.7±2.2 a | 11.2±2.9 a | ||
Gs/(mol·m-2s-1) | FI | FFP | 0.5±0.1 b | 0.4±0.1 a | 0.4±0.1 ab | 0.5±0.1 ab | 0.8±0.2 a | 0.2±0.03 a |
30%N+70%CRF | 0.6±0.1 a | 0.4±0.1 a | 0.3±0.1 b | 0.5±0.1 b | 0.5±0.1 b | 0.2±0.04 a | ||
OPT-N | 0.6±0.1 a | 0.5±0.1 a | 0.5±0.1 a | 0.6±0.1 a | 0.7±0.1 a | 0.3±0.03 a | ||
RAI | FFP | 0.4±0.2 b | 0.4±0.2 b | 0.4±0.1 b | 0.6±0.1 ab | 0.7±0.2 a | 0.2±0.05 b | |
30%N+70%CRF | 0.6±0.1 a | 0.4±0.1 b | 0.4±0.1 ab | 0.5±0.1 b | 0.6±0.1 a | 0.3±0.1 ab | ||
OPT-N | 0.7±0.1 a | 0.6±0.1 a | 0.5±0.1 a | 0.6±0.1 a | 0.7±0.1 a | 0.3±0.04 a | ||
Ci/(μmol·mol-1) | FI | FFP | 285.2±33.4 b | 241.0±38.5 a | 289.0±18.8 a | 294.0±5.7 a | 323.9±15.4 a | 355.3±8.7 a |
30%N+70%CRF | 325.3±10.3 a | 249.7±26.6 a | 271.2±27.5 a | 287.1±12.4 a | 318.3±5.4 a | 323.2±16.1 b | ||
OPT-N | 301.8±13.7 b | 261.9±15.0 a | 273.1±18.6 a | 293.4±7.7 a | 318.5±8.2 a | 346.8±23.8 ab | ||
RAI | FFP | 305.5±16.4 b | 253.2±21.9 b | 300.2±8.8 a | 292.9±7.5 a | 319.9±11.5 a | 354.0±18.1 b | |
30%N+70%CRF | 326.2±14.9 a | 288.3±10.2 a | 285.8±10.6 b | 294.9±11.0 a | 327.9±6.1 a | 320.6±17.9 a | ||
OPT-N | 330.1±8.0 a | 254.4±22.6 b | 280.6±7.2 b | 295.4±9.2 a | 327.0±9.1 a | 335.1±19.6 a | ||
Tr/(mmol·m-2s-1) | FI | FFP | 4.4±0.9 b | 3.0±0.8 a | 4.2±0.7 b | 5.9±0.5 b | 4.3±0.4 b | 5.5±0.4 a |
30%N+70%CRF | 6.1±0.6 a | 3.4±0.6 a | 4.3±0.8 b | 6.0±0.6 ab | 4.7±0.3 ab | 5.9±0.8 ab | ||
OPT-N | 6.4±0.6 a | 3.5±0.6 a | 5.6±0.9 a | 6.4±0.3 a | 5.2±0.4 a | 6.3±0.5 b | ||
RAI | FFP | 4.5±1.2 b | 3.0±1.0 b | 4.6±0.4 b | 6.0±0.7 b | 4.9±0.5 a | 5.0±1.0 b | |
30%N+70%CRF | 6.9±0.6 a | 4.9±0.9 a | 5.4±0.6 a | 6.1±0.4 ab | 4.9±0.4 a | 5.8±0.7 a | ||
OPT-N | 7.1±0.5 a | 3.4±0.7 b | 5.8±0.6 a | 6.6±0.6 a | 5.0±0.5 a | 6.4±0.5 a |
处理 Treatment | 干物质积累量 Dry matter accumulation/(t·hm-2) | 各生育阶段干物质量所占比例 Proportion of dry matter accumulation in each growth stage/% | |||||
---|---|---|---|---|---|---|---|
分蘖期 Tillering | 齐穗期 Full-heading | 成熟期 Maturity | 移栽-分蘖期 Transplanting-Tillering | 分蘖期-齐穗期 Tillering-Heading | 齐穗期-成熟期 Heading-Maturity | ||
FI | FFP | 1.9±0.1 a | 6.1±0.4 b | 13.4±2.2 a | 14.3 a | 31.2 b | 54.5 a |
30%N+70%CRF | 2.3±0.3 a | 8.8±0.9 a | 15.0±1.9 a | 15.4 a | 42.8 a | 41.8 b | |
OPT-N | 1.4±0.3 b | 6.6±0.3 b | 14.8±2.3 a | 9.7 b | 34.7 b | 55.6 a | |
RAI | FFP | 2.1±0.2 b | 9.0±1.0 a | 13.1±1.2 b | 15.9 ab | 52.6 a | 31.5 b |
30%N+70%CRF | 2.9±0.3 a | 10.5±2.4 a | 16.7±0.8 a | 17.1 a | 45.9 a | 37.0 a | |
OPT-N | 1.7±0.2 c | 9.4±1.5 a | 15.2±1.3 ab | 11.4 b | 50.7 a | 37.9 a |
Table 3 Amount of dry matter accumulation at different growth stages of rice under different water and fertilizer managements.
处理 Treatment | 干物质积累量 Dry matter accumulation/(t·hm-2) | 各生育阶段干物质量所占比例 Proportion of dry matter accumulation in each growth stage/% | |||||
---|---|---|---|---|---|---|---|
分蘖期 Tillering | 齐穗期 Full-heading | 成熟期 Maturity | 移栽-分蘖期 Transplanting-Tillering | 分蘖期-齐穗期 Tillering-Heading | 齐穗期-成熟期 Heading-Maturity | ||
FI | FFP | 1.9±0.1 a | 6.1±0.4 b | 13.4±2.2 a | 14.3 a | 31.2 b | 54.5 a |
30%N+70%CRF | 2.3±0.3 a | 8.8±0.9 a | 15.0±1.9 a | 15.4 a | 42.8 a | 41.8 b | |
OPT-N | 1.4±0.3 b | 6.6±0.3 b | 14.8±2.3 a | 9.7 b | 34.7 b | 55.6 a | |
RAI | FFP | 2.1±0.2 b | 9.0±1.0 a | 13.1±1.2 b | 15.9 ab | 52.6 a | 31.5 b |
30%N+70%CRF | 2.9±0.3 a | 10.5±2.4 a | 16.7±0.8 a | 17.1 a | 45.9 a | 37.0 a | |
OPT-N | 1.7±0.2 c | 9.4±1.5 a | 15.2±1.3 ab | 11.4 b | 50.7 a | 37.9 a |
处理 Treatment | 氮吸收量 N accumulation/(kg·hm-2) | 各生育阶段氮吸收量所占比例 Proportion of N accumulation in each growth stage/% | |||||
---|---|---|---|---|---|---|---|
分蘖期 Tillering | 齐穗期 Heading | 成熟期 Maturity | 移栽-分蘖期 Transplanting-Tillering | 分蘖期-齐穗期 Tillering-Heading | 齐穗期-成熟期 Heading-Maturity | ||
FI | FFP | 41.5±5.5 a | 71.3±3.6 b | 153.6±7.6 b | 27.1 a | 19.3 b | 53.6 a |
30%N+70%CRF | 49.4±6.0 a | 84.2±8.4 a | 171.9±7.9 a | 28.9 a | 20.2 b | 50.9 a | |
OPT-N | 26.2±4.0 b | 81.6±5.0 ab | 154.8±5.4 b | 16.9 b | 35.8 a | 47.3 a | |
RAI | FFP | 41.7±5.7 b | 80.4±7.9 b | 157.4±11.7 b | 26.7 a | 24.6 a | 48.8 a |
30%N+70%CRF | 57.0±3.9 a | 94.9±1.9 a | 179.0±8.7 a | 31.8 a | 21.3 a | 46.9 a | |
OPT-N | 30.2±5.5 c | 84.3±5.0 ab | 167.7±7.2 ab | 18.0 b | 32.2 a | 49.7 a |
Table 4 Nitrogen accumulation of rice aboveground part under different water and fertilizer managements.
处理 Treatment | 氮吸收量 N accumulation/(kg·hm-2) | 各生育阶段氮吸收量所占比例 Proportion of N accumulation in each growth stage/% | |||||
---|---|---|---|---|---|---|---|
分蘖期 Tillering | 齐穗期 Heading | 成熟期 Maturity | 移栽-分蘖期 Transplanting-Tillering | 分蘖期-齐穗期 Tillering-Heading | 齐穗期-成熟期 Heading-Maturity | ||
FI | FFP | 41.5±5.5 a | 71.3±3.6 b | 153.6±7.6 b | 27.1 a | 19.3 b | 53.6 a |
30%N+70%CRF | 49.4±6.0 a | 84.2±8.4 a | 171.9±7.9 a | 28.9 a | 20.2 b | 50.9 a | |
OPT-N | 26.2±4.0 b | 81.6±5.0 ab | 154.8±5.4 b | 16.9 b | 35.8 a | 47.3 a | |
RAI | FFP | 41.7±5.7 b | 80.4±7.9 b | 157.4±11.7 b | 26.7 a | 24.6 a | 48.8 a |
30%N+70%CRF | 57.0±3.9 a | 94.9±1.9 a | 179.0±8.7 a | 31.8 a | 21.3 a | 46.9 a | |
OPT-N | 30.2±5.5 c | 84.3±5.0 ab | 167.7±7.2 ab | 18.0 b | 32.2 a | 49.7 a |
处理 Treatment | 氮素收获指数 NHI/% | 氮素籽粒生产效率NDMPE/(kg·kg-1) | 氮素干物质生产效率 NDMPE/(kg·kg-1) | 氮肥偏生产力 NPFP/(kg·kg-1) | |
---|---|---|---|---|---|
FI | FFP | 53.8±1.9 b | 45.7±2.0 b | 84.3±2.0 a | 38.8±5.1 b |
30%N+70%CRF | 59.7±5.7 ab | 48.9±3.1 ab | 91.5±5.8 a | 45.3±4.3 ab | |
OPT-N | 66.2±3.5 a | 50.8±0.9 a | 83.3±5.8 a | 50.2±5.9 a | |
RAI | FFP | 66.7±2.6 b | 53.9±4.2 a | 91.4±7.4 a | 41.8±2.8 b |
30%N+70%CRF | 66.1±2.7 b | 53.0±2.3 a | 94.1±5.1 a | 45.7±8.5 b | |
OPT-N | 75.3±5.2 a | 58.3±9.7 a | 89.9±1.8 a | 57.5±2.5 a |
Table 5 Effects of different water and fertilizer managements on nitrogen use efficiency.
处理 Treatment | 氮素收获指数 NHI/% | 氮素籽粒生产效率NDMPE/(kg·kg-1) | 氮素干物质生产效率 NDMPE/(kg·kg-1) | 氮肥偏生产力 NPFP/(kg·kg-1) | |
---|---|---|---|---|---|
FI | FFP | 53.8±1.9 b | 45.7±2.0 b | 84.3±2.0 a | 38.8±5.1 b |
30%N+70%CRF | 59.7±5.7 ab | 48.9±3.1 ab | 91.5±5.8 a | 45.3±4.3 ab | |
OPT-N | 66.2±3.5 a | 50.8±0.9 a | 83.3±5.8 a | 50.2±5.9 a | |
RAI | FFP | 66.7±2.6 b | 53.9±4.2 a | 91.4±7.4 a | 41.8±2.8 b |
30%N+70%CRF | 66.1±2.7 b | 53.0±2.3 a | 94.1±5.1 a | 45.7±8.5 b | |
OPT-N | 75.3±5.2 a | 58.3±9.7 a | 89.9±1.8 a | 57.5±2.5 a |
处理 Treatment | 每1 m2有效穗数 Effective panicle number per1m2 | 穗长 Panicle length /cm | 每穗总粒数 Grain number per panicle | 结实率 Seed setting rate/% | 千粒质量 1000-grain weight/g | 实际产量 Grain yield /(kg·hm-2) | |
---|---|---|---|---|---|---|---|
FI | FFP | 236±8 a | 29.7±1.0 a | 265.2±9.2 b | 70.3±2.4 c | 26.8±0.1 a | 8244 a |
30%N+70%CRF | 238±10 a | 30.4±1.0 a | 270.4±11.4 ab | 82.0±1.9 a | 26.7±0.2 a | 8602 a | |
OPT-N | 234±7 a | 29.5±0.2 a | 279.9±1.7 a | 80.7±2.6 b | 26.7±0.2 a | 8302 a | |
RAI | FFP | 232±9 ab | 29.7±0.5 a | 287.8±6.2 b | 80.6±6.6 a | 26.9±0.6 a | 8522 a |
30%N+70%CRF | 242±12 a | 31.0±0.8 a | 316.4±2.2 a | 84.0±7.3 a | 27.8±0.2 a | 9100 b | |
OPT-N | 218±10 b | 30.8±1.6 a | 296.0±8.9 b | 80.9±6.7 a | 27.4±0.3 a | 8642 ab |
Table 6 Effects of water and fertilizer management on grain yield and yield components.
处理 Treatment | 每1 m2有效穗数 Effective panicle number per1m2 | 穗长 Panicle length /cm | 每穗总粒数 Grain number per panicle | 结实率 Seed setting rate/% | 千粒质量 1000-grain weight/g | 实际产量 Grain yield /(kg·hm-2) | |
---|---|---|---|---|---|---|---|
FI | FFP | 236±8 a | 29.7±1.0 a | 265.2±9.2 b | 70.3±2.4 c | 26.8±0.1 a | 8244 a |
30%N+70%CRF | 238±10 a | 30.4±1.0 a | 270.4±11.4 ab | 82.0±1.9 a | 26.7±0.2 a | 8602 a | |
OPT-N | 234±7 a | 29.5±0.2 a | 279.9±1.7 a | 80.7±2.6 b | 26.7±0.2 a | 8302 a | |
RAI | FFP | 232±9 ab | 29.7±0.5 a | 287.8±6.2 b | 80.6±6.6 a | 26.9±0.6 a | 8522 a |
30%N+70%CRF | 242±12 a | 31.0±0.8 a | 316.4±2.2 a | 84.0±7.3 a | 27.8±0.2 a | 9100 b | |
OPT-N | 218±10 b | 30.8±1.6 a | 296.0±8.9 b | 80.9±6.7 a | 27.4±0.3 a | 8642 ab |
[1] | 朱成立, 张展羽. 灌溉模式对稻田氮磷损失及环境影响研究展望. 水资源保护, 2003(6): 56-58. |
Zhu C L, Zhang Z Y.Research prospect of irrigation mode on nitrogen and phosphorus losses and environmental impact in paddy fields. Wat Resour Prot, 2003(6): 56-58. (in Chinese with English abstract) | |
[2] | Belder P, Bouman B A M, Cabangon R, Lu G A, Quilang E J P, Li Y H, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia.Agric Water Manag, 2004, 65: 193-210. |
[3] | Zou J, Huang Y, Jiang J, Zheng X, Sass R L.A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application.Glob Biogeochem Cycles, 2005, 19: 153-174. |
[4] | 俞双恩, 李偲, 高世凯, 王梅, 孟佳佳, 汤树海. 水稻控制灌排模式的节水高产减排控污效果. 农业工程学报, 2018, 34(7): 128-136. |
Yu S E, Li S, Gao S K, Wang M, Meng J J, Tang S H.Effect of controlled irrigation and drainage on water saving, nitrogen and phosphorus loss reduction with high yield in paddy field.Tran Chin Soc Agric Engin, 2018, 34(7): 128-136. (in Chinese with English abstract) | |
[5] | 高世凯, 俞双恩, 王梅, 曹睿哲, 郭蓉. 旱涝交替下控制灌溉对稻田节水及氮磷减排的影响. 农业工程学报, 2017, 33(5): 122-128. |
Gao S K, Yu S E, Wang M, Cao R Z, Guo R.Effect of controlled irrigation and drainage on saving water and reducing nitrogen and phosphorus loss in paddy field under alternate drought and flooding condition.Tran Chin Soc Agric Engin, 2017, 33(5): 122-128. (in Chinese with English abstract) | |
[6] | Gao S K, Yu S E, Wang M, Meng J J, Tang S H, Ding J H, Li S, Miao Z M. Improving water productivity and reducing nutrient losses by controlled irrigation and drainage in paddy fields.Pol J Environ Stud, 2018, 27(3): 1049-1059. |
[7] | Djaman K, Mel V C, Diop L, Sow L, Ei-namaky R, Manneh B, Saito K, Futakuchi K, Irmak S. Effects of alternate wetting and drying irrigation regime and nitrogen fertilizer on yield and nitrogen use efficiency of irrigated rice in the Sahel. Water, 2018, 10(6), 711; |
[8] | 鲁艳红, 廖育林, 聂军, 周兴, 谢坚, 杨曾平. 紫云英与尿素或控释尿素配施对双季稻产量及氮钾利用率的影响. 植物营养与肥料学报, 2017, 23(2): 360-368. |
Lu Y H, Liao Y L, Nie J, Zhou X, Xie J, Yang Z P. Effect of incorporation of Chinese milk vetch coupled with urea or controlled release urea on yield and nitrogen and potassium nutrient use efficiency in double-cropping rice system. J Plant Nutr Fert, 2017, 23(2): 360-368. (in Chinese with English abstract) | |
[9] | 张文学, 孙刚, 何萍, 梁国庆, 余喜初, 刘光荣, 周卫. 双季稻田添加脲酶抑制剂NBPT氮肥的最高减量潜力研究. 植物营养与肥料学报, 2014, 20(4): 821-830. |
Zhang W X, Sun G, He P, Liang G Q, Yu X C, Liu G R, Zhou W.Highest potential of subtracting nitrogen fertilizer through addition of urease inhibitor NBPT in double-cropping paddy field.J Plant Nutr Fert, 2014, 20(4): 821-830. (in Chinese with English abstract) | |
[10] | 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19(2): 259-273. |
Zhu Z L, Jin J Y.Fertilizer use and food security in China.J Plant Nutr Fert, 2013, 19(2): 259-273. (in Chinese with English abstract) | |
[11] | 刘立军, 徐伟, 桑大志, 刘翠莲, 周家麟, 杨建昌. 实地氮肥管理提高水稻氮肥利用效率. 作物学报, 2006, 32(7): 987-994. |
Liu L J, Xu W, Sang D Z, Liu C L, Zhou J L, Yang J C. site-specific nitrogen management increases fertilizer- nitrogen use efficiency in rice.Acta Agron Sin, 2006, 32(7): 987-994. (in Chinese with English abstract) | |
[12] | 肖万川, 贾宏伟, 邱昕恺, 黄万勇. 水稻适雨灌溉对稻田CH4和N2O排放的影响. 灌溉排水学报, 2017, 36(11): 36-40. |
Xiao W C, Jia H W, Qiu X K, Huang W Y.Effects of irrigation adjusted by rainfall on emissions of CH4 and N2O from paddy fields.J Irrig Drain, 2017, 36(11): 36-40. (in Chinese with English abstract) | |
[13] | 吴启侠, 朱建强, 晏军, 黄成涛. 涝胁迫对杂交中稻形态和产量的影响. 中国农业气象, 2016, 37(2): 188-198. |
Wu Q X, Zhu J Q, Yan J, Huang C T.Morphology of middle-season hybrid rice in Hubei province and its yield under different waterlogging stresses.Chin J Agrometeorol, 2016, 37(2): 188-198. (in Chinese with English abstract) | |
[14] | 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. |
Lu R K.Analytical methods for soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 1999. | |
[15] | 李录久, 王家嘉, 吴萍萍, 黄厚宽, 蒋荫锡. 秸秆还田下氮肥运筹对白土田水稻产量和氮吸收利用的影响. 植物营养与肥料学报, 2016, 22(1): 254-262. |
Li L J, Wang J J, Wu P P, Huang H K, Jiang Y X.Effect of different nitrogen application on rice yield and N uptake of white soil under wheat straw turnover.J Plant Nutr Fert, 2016, 22(1): 254-262. (in Chinese with English abstract) | |
[16] | 姜萍, 袁永坤, 朱日恒, 戴耀文, 沈逸菲, 赵峥, 岳玉波, 赵琦, 曹林奎. 节水灌溉条件下稻田氮素径流与渗漏流失特征研究. 农业环境科学学报, 2013, 32(8): 1592-1596. |
Jiang P, Yuan Y K, Zhu R H, Dai Y W, Shen Y F, Zhao F, Yue Y B, Zhao Q, Cao L K.Study on the nitrogen loss from paddy fields on different water management.J Agro-Environ Sci, 2013, 32(8): 1592-1596. (in Chinese with English abstract) | |
[17] | 王唯逍, 刘小军, 田永超, 等.不同土壤水分处理对水稻光合特性及产量的影响. 生态学报, 2012, 32(22): 7053-7060. |
Wang W X, Liu X J, Tian Y C, et al. Effects of different soil water treatments on photosynthetic characteristics and grain yield in rice. Acta Ecol Sin, 2012, 32(22): 7053-7060. (in Chinese with English abstract) | |
[18] | 赵黎明, 李明, 郑殿峰, 姚霞, 曹卫星, 朱艳. 灌溉方式与种植密度对寒地水稻产量及光合物质生产特性的影响. 农业工程学报, 2015, 31(6): 159-169. |
Zhao L M, Li M, Zheng D F, Yao X, Cao W X, Zhu Y.Effects of irrigation methods and rice planting densities on yield and photosynthetic characteristics of matter production in cold area.Tran Chin Soc Agric Engin(Transactions of the CSAE), 2015, 31(6): 159-169. (in Chinese with English abstract) | |
[19] | 裴鹏刚, 张均华, 朱练峰, 胡志华, 金千瑜. 秸秆还田耦合施氮水平对水稻光合特性、氮素吸收及产量形成的影响.中国水稻科学, 2015, 29(3): 282-290. |
Pei P G, Zhang J H, Zhu L F, Hu Z H, Jin Q Y. Effects of straw returning coupled with N application on rice photosynthetic characteristics, nitrogen uptake and grain yield formation. Chin J Rice Sci, 2015, 29(3): 282-290. (in Chinese with English abstract) | |
[20] | 曹树青, 翟虎渠, 杨图南, 张荣铣, 匡廷云. 水稻种质资源光合速率及光合功能期的研究. 中国水稻科学, 2001, 15(1): 29-34. |
Cao S Q, Zhai H Q, Yang T N, Zhang R X, Kuang T Y.Studies on photosynthetic rate and function duration of rice germplasm resources.Chin J Rice Sci, 2001, 15(1): 29-34. (in Chinese with English abstract) | |
[21] | 陈温福, 徐正进, 张龙步. 水稻超高产育种生理基础. 沈阳: 辽宁科技出版社, 1995. |
Chen W F, Xu Z J, Zhang L B.Physiological basis of rice breeding for super high yield. Shenyang: Liaoning Science and Technology Publishing House, 1995. | |
[22] | Yang Z, Inoue N, Fujita K, Kato M.Analysis of dry-matter translocation during grain filling stage of rice.Jpan J Crop Sci, 2004, 73(3): 416-423. |
[23] | 郭智, 刘红江, 张岳芳, 周炜, 陈留根. 氮磷减施对水稻剑叶光合特性、产量及氮素利用率的影响. 西南农业学报, 2017, 30(10): 2263-2269. |
Guo Z, Liu H J, Zhang Y F, Zhou W, Chen L G.Effects of reducing nitrogen and phosphorus application on photosynthetic characteristics of flag leaves, grain yield, and nitrogen use efficiency.Southwest China J Agric Sci, 2017, 30(10): 2263-2269. (in Chinese with English abstract) | |
[24] | 李娟. 不同施肥处理对稻田氮磷流失风险及水稻产量的影响. 杭州:浙江大学, 2016. |
Li J.Effects of different fertilization treatments on rice yield and the risk of nitrogen and phosphorus losses from paddy field. Hangzhou:Zhejiang University, 2016. | |
[25] | 刘忠新, 孙磊, 吴英, 刘玉林. 包膜控释尿素对寒地水稻产量与氮肥利用率的影响. 北方水稻, 2009, 39(5): 10-12, 15. |
Liu, Z X, Sun L, Wu Y, Liu Y L. Effect of coated controlled released urea in yield and nitrogen utilization efficiency of rice in cold region. North Rice, 2009(5): 10-12, 15. (in Chinese with English abstract) | |
[26] | 谭亦杭, 沈健林, 蒋炳伸, 李巧云, 李勇, 吴金水. 秸秆还田与水分管理对双季水稻氮素吸收及氮肥利用率的影响. 农业现代化研究, 2018, 39(3): 511-519. |
Tan Y H, Shen J L, Jiang B S, Li Q Y, Li Y, Wu J S.The effects of straw incorporation and water management on nitrogen uptake and nitrogen use efficiency in a double rice cropping system.Res Agric Moder, 2018, 39(3): 511-519. (in Chinese with English abstract) | |
[27] | 李珣, 苗立新, 孙杰, 刘忠卓, 姚红军. 氮肥运筹对北方超级稻水稻氮素利用率的影响. 北方水稻, 2014, 44(5): 15-18. |
Li X, Miao L X, Sun J, Liu Z Z, Yao H J.Effect of N-management on the nitrogen using efficiency of north super rice.North Rice, 2014, 44(5): 15-18. (in Chinese with English abstract) | |
[28] | 卢铁钢, 崔月峰, 孙国才, 王俊茹, 王桂艳, 王健. 氮肥运筹对水稻产量及氮素利用率的影响. 作物研究, 2012, 26(4): 320-323. |
Lu T G, Cui Y F, Sun G C, Wang J R, Wang G Y, Wang J.Effects of nitrogen application on yield formation and nitrogen use efficiency of rice.Crop Res, 2012, 26(4): 320-323. (in Chinese with English abstract) | |
[29] | 吴文革, 张四海, 赵决建, 吴桂成, 李泽福, 夏加发. 氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响. 植物营养与肥料学报, 2007, 13(5): 757-764. |
Wu W G, Zhang S H, Zhao J J, Wu G C, Li Z F, Xia J F.Nitrogen uptake, utilization and rice yield in the north rim land of double-cropping rice region as affected by different nitrogen management strategies.Plant Nutr Fert Sci, 2007, 13(5): 757-764. (in Chinese with English abstract) | |
[30] | 李敏, 郭熙盛, 叶舒娅, 刘枫, 袁嫚嫚, 黄义德. 硫膜和树脂膜控释尿素对水稻产量、光合特性及氮肥利用率的影响. 植物营养与肥料学报, 2013, 19(4): 808-815. |
Li M, Guo X S, Ye S Y, Liu F, Yuan M M, Huang Y D.Effects of sulfur and polymer-coated controlled release urea on yield, photosynthetic characteristics and nitrogen fertilizer efficiency of rice.Plant Nutr Fert Sci, 2013, 19(4): 808-815. (in Chinese with English abstract) | |
[31] | Ding W C, Xu X P, He P, Sami U, Zhang J J, Cui Z L, Zhou W.Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: A meta-analysis.Field Crops Res, 2018, 227: 11-18. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[4] | ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui. Effects of Drought Priming During Tillering Stage on Panicle Development and Yield Formation Under High Temperature During Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 277-289. |
[5] | ZHOU Tian, WU Shaohua, KANG Jianhong, WU Hongliang, YANG Shenglong, WANG Xingqiang, LI Yu, HUANG Yufeng. Effects of Planting Patterns on Starch Content and Activities of Key Starch Enzymes in Rice Grains [J]. Chinese Journal OF Rice Science, 2024, 38(3): 303-315. |
[6] | LIU Huimin, ZHOU Jieqiang, HU Yuanyi, TIAN Yan, LEI Bin, LI Jianwu, WEI Zhongwei, TANG Wenbang. Super-high Yield Characteristics of Two-line Hybrid Rice Zhuoliangyou 1126 [J]. Chinese Journal OF Rice Science, 2024, 38(2): 160-171. |
[7] | PENG Xianlong, DONG Qiang, ZHANG Chen, LI Pengfei, LI Bolin, LIU Zhilei, YU Cailian. Effects of Straw Return Rate on Soil Reducing Substances and Rice Growth Under Different Soil Conditions [J]. Chinese Journal OF Rice Science, 2024, 38(2): 198-210. |
[8] | JING Xiu, ZHOU Miao, WANG Jing, WANG Yan, WANG Wang, WANG Kai, GUO Baowei, HU Yajie, XING Zhipeng, XU Ke, ZHANG Hongcheng. Effect of Drought Stress on Root Morphology and Leaf Photosynthetic Characteristics of Good Taste japonica Rice from Late Stage of Panicle Differentiation to Early Stage of Grain Filling [J]. Chinese Journal OF Rice Science, 2024, 38(1): 33-47. |
[9] | ZHU Wang, ZHANG Xiang, GENG Xiaoyu, ZHANG Zhe, CHEN Yinglong, WEI Huanhe, DAI Qigen, XU Ke, ZHU Guanglong, ZHOU Guisheng, MENG Tianyao. Morphological and Physiological Characteristics of Rice Roots Under Combined Salinity-Drought Stress and Their Relationships with Yield Formation [J]. Chinese Journal OF Rice Science, 2023, 37(6): 617-627. |
[10] | WU Yuhong, LI Yanhua, WANG Lü, QIN Yuhang, LI Shanshan, HAO Xingshun, ZHANG Qinglu, CUI Yuezhen, XIAO Fei. Improvement of Yield and Quality of Rice by Combining Returning of Green Manure (Astragalus smicus L.) and Rice Straw with Reduced Application of Nitrogen Fertilizer in Southern Shaanxi Province [J]. Chinese Journal OF Rice Science, 2023, 37(6): 628-641. |
[11] | ZOU Yuao, WU Qixia, ZHOU Qianshun, ZHU Jianqiang, YAN Jun. Response of Middle-season Hybrid Rice to Flooding Stress at the Booting Stage [J]. Chinese Journal OF Rice Science, 2023, 37(6): 642-656. |
[12] | YUAN Pei, ZHOU Xuan, YANG Wei, YIN Lingjie, JIN Tuo, PENG Jianwei, RONG Xiangmin, TIAN Chang. Effects of Combined Application of Chemical Fertilizers and Nitrogen Reduction on the Yield of Double-cropping Rice and the Risk of Nitrogen and Phosphorus Loss in Field Water in Dongting Lake Area [J]. Chinese Journal OF Rice Science, 2023, 37(5): 518-528. |
[13] | XIAO Dakang, HU Ren, HAN Tianfu, ZHANG Weifeng, HOU Jun, REN Keyu. Effects of Nitrogen Fertilizer Consumption and Operation on Rice Yield and Its Components in China:A Meta-analysis [J]. Chinese Journal OF Rice Science, 2023, 37(5): 529-542. |
[14] | HUANG Yaru, XU Peng, WANG Lele, HE Yizhe, WANG Hui, KE Jian, HE Haibing, WU Liquan, YOU Cuicui. Effects of Exogenous Trehalose on Grain Filling Characteristics and Yield Formation of japonica Rice Cultivar W1844 [J]. Chinese Journal OF Rice Science, 2023, 37(4): 379-391. |
[15] | DONG Liqiang, YANG Tiexin, LI Rui, SHANG Wenqi, MA Liang, LI Yuedong, SUI Guomin. Effect of Plant-row Spacing on Rice Yield and Root Morphological and Physiological Characteristics in Super High Yield Field [J]. Chinese Journal OF Rice Science, 2023, 37(4): 392-404. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||