[1] Bologna N G, Voinnet O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis[J]. Annual Review of Plant Biology, 2014, 65: 473-503.
[2] Borges F, Martienssen R A. The expanding world of small RNAs in plants[J]. Nature Reviews Molecular Cell Biology, 2015, 16(12): 727-741.
[3] Molnar A, Melnyk C, Baulcombe D C. Silencing signals in plants: A long journey for small RNAs[J]. Genome Biology, 2011, 12(1): 215.
[4] Li S, Wang X, Xu W, Liu T, Cai C, Chen L, Clark C B, Ma J. Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts[J]. Nature Plants, 2021, 7(1): 50-59.
[5] Betti F, Ladera-Carmona M J, Weits D A, Ferri G, Iacopino S, Novi G, Svezia B, Kunkowska A B, Santaniello A, Piaggesi A, Loreti E, Perata P. Exogenous miRNAs induce post-transcriptional gene silencing in plants[J]. Nature Plants, 2021, 7(10): 1379-1388.
[6] Li T, Li H, Zhang Y X, Liu J Y. Identification and analysis of seven H₂O₂-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica)[J]. Nucleic Acids Research, 2011, 39(7): 2821-2833.
[7] Nguyen D Q, Nguyen N L, Nguyen V T, Tran T H G, Nguyen T H, Nguyen T K L, Nguyen H H. Comparative analysis of microRNA expression profiles in shoot and root tissues of contrasting rice cultivars (Oryza sativa L.) with different salt stress tolerance[J]. PLoS One, 2023, 18(5): e0286140.
[8] Bakhshi B, Mohseni Fard E, Nikpay N, Ali Ebrahimi M, Bihamta M R, Mardi M, Salekdeh G H. microRNA signatures of drought signaling in rice root[J]. PLoS One, 2016, 11(6): e0156814.
[9] Liu Q, Zhang H. Molecular identification and analysis of arsenite stress-responsive miRNAs in rice[J]. Journal of Agricultural and Food Chemistry, 2012, 60(26): 6524-6536.
[10] Sato Y, Nosaka-Takahashi M, Suzuki T, Shimizu-Sato S. Small RNAs in Rice: Molecular Species and Their Functions[M]. Rice Genomics, Genetics and Breeding, Singapore: Springer Nature, 2018: 21-36.
[11] Xu D, Mou G, Wang K, Zhou G. MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice[J]. Virus Research, 2014, 190: 60-68.
[12] Wu Y, Lü W, Hu L, Rao W, Zeng Y, Zhu L, He Y, He G. Identification and analysis of brown planthopper-responsive microRNAs in resistant and susceptible rice plants[J]. Scientific Reports, 2017, 7(1): 8712.
[13] Javed M, Reddy B, Sheoran N, Ganesan P, Kumar A. Unraveling the transcriptional network regulated by miRNAs in blast-resistant and blast-susceptible rice genotypes during Magnaporthe oryzae interaction[J]. Gene, 2023, 886: 147718.
[14] Jeong D H, Park S, Zhai J, Gurazada S G R, De Paoli E, Meyers B C, Green P J. Massive analysis of rice small RNAs: Mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage[J]. The Plant Cell, 2011, 23(12): 4185-4207.
[15] Mantelin S, Bellafiore S, Kyndt T. Meloidogyne graminicola: A major threat to rice agriculture[J]. Molecular Plant Pathology, 2016, 18: 3-15.
[16] Kyndt T, Fernandez D, Gheysen G. Plant-parasitic nematode infections in rice: Molecular and cellular insights[J]. Annual Review of Phytopathology, 2014, 52: 135-153.
[17] 刘国坤, 肖顺, 张绍升, 张敦富, 王玉. 拟禾本科根结线虫对水稻根系的侵染特性及其生活史 [J]. 热带作物学报, 2011, 32(4): 743-748.
Liu G K, Xiao S, Zhang S S, Zhang D F, Wang Y. Infection characteristics and life cycle of Meloidogyne graminicola on rice roots[J]. Chinese Journal of Tropical Crops, 2011, 32(4): 743-748. (in Chinese with English abstract)
[18] Niu Y, Xiao L, de Almeida-Engler J, Gheysen G, Peng D, Xiao X, Huang W, Wang G, Xiao Y. Morphological characterization reveals new insights into giant cell development of Meloidogyne graminicola on rice[J]. Planta, 2022, 255(3): 70.
[19] Verstraeten B, Atighi M R, Ruiz-Ferrer V, Escobar C, de Meyer T, Kyndt T. Non-coding RNAs in the interaction between rice and Meloidogyne graminicola[J]. BMC Genomics, 2021, 22(1): 560.
[20] Hui F, Zhou C R, Zhu F, Le X H, Jing D D, Daly P, Zhou D M, Wei L H. Resistance analysis of the rice variety Huaidao 5 against root-knot nematode Meloidogyne graminicola[J]. Journal of Integrative Agriculture, 2023, 22(10): 3081-3089.
[21] 冯辉, 聂国嫒, 陈曦, 张金凤, 周冬梅, 魏利辉. 拟禾谷根结线虫江苏分离群体形态学和分子鉴定[J]. 江苏农业学报, 2017, 33(4): 794-801.
Feng H, Nie G A, Chen X, Zhang J F, Zhou D M, Wei L H. Morphological and molecular identification of Meloidogyne graminicola isolates from Jiangsu Province[J]. Jiangsu Journal of Agricultural Sciences, 2017, 33(4): 794-801. (in Chinese with English abstract)
[22] Wang C, Lower S, Williamson V M. Application of Pluronic gel to the study of root-knot nematode behaviour[J]. Nematology, 2009, 11(3): 453-464.
[23] Cuperus J T, Fahlgren N, Carrington J C. Evolution and functional diversification of MIRNA genes[J]. The Plant Cell, 2011, 23(2): 431-442.
[24] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method[J]. Nat Protocols, 2008, 3(6): 1101-1108.
[25] Koeppe S, Kawchuk L, Kalischuk M. RNA Interference past and future applications in plants[J]. International Journal of Molecular Sciences, 2023, 24(11): 9755.
[26] Bilir Ö, Göl D, Hong Y, McDowell J M, Tör M. Small RNA-based plant protection against diseases[J]. Frontiers in Plant Science, 2022, 13: 951097.
[27] Dalakouras A, Wassenegger M, Dadami E, Ganopoulos I, Pappas M L, Papadopoulou K. Genetically modified organism-free RNA interference: Exogenous application of RNA molecules in plants[J]. Plant Physiology, 2020, 182(1): 38-50.
[28] Niu D, Hamby R, Sanchez J N, Cai Q, Yan Q, Jin H. RNAs: A new frontier in crop protection[J]. Current Opinion in Biotechnology, 2021, 70: 204-212.
[29] 王帅, 魏钰洋, 张羲, 谢佳, 胡展, 孙然锋. 根结线虫趋化性研究进展 [J]. 农药学学报, 2022, 24(5): 982-996. DOI: 10.16801/j.issn.1008-7303.2022.0090.
Wang S, Wei Y Y, Zhang X, Xie J, Hu Z, Sun R F. Research progress on chemotaxis of root-knot nematodes[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 982-996. DOI: 10.16801/j.issn.1008-7303.2022.0090. (in Chinese with English abstract)
[30] Ghorbanzadeh Z, Hamid R, Jacob F, Mirzaei M, Zeinalabedini M, Abdirad S, Atwell B J, Haynes P A, Ghafari M R, Salekdeh G H. MicroRNA profiling of root meristematic zone in contrasting genotypes reveals novel insight into rice response to water deficiency[J]. Journal of Plant Growth Regulation, 2022, 42(6): 3814-3834.
[31] 张静文. 普通野生稻(Oryza rufipogon Griff.)干旱胁迫相关的 microRNAs 的鉴定与功能分析[D]. 北京: 中国农业大学,2017.
Zhang J W. Identification and functional analysis of drought stress-related microRNAs in Oryza rufipogon Griff.[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[32] Chowdhury A T, Hasan M N, Bhuiyan F H, Islam M Q, Nayon M R W, Rahaman M M, Hoque H, Jewel N A, Ashrafuzzaman M, Prodhan S H. Identification, characterization of Apyrase (APY) gene family in rice (Oryza sativa) and analysis of the expression pattern under various stress conditions[J]. PLoS One, 2023, 18(5): e0273592. |