Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (5): 650-664.DOI: 10.16819/j.1001-7216.2025.241006
• Research Papers • Previous Articles Next Articles
ZHANG Haipeng, LI Wanyi, LIAO Fuxing, MA Meizi, ZHANG Hongcheng, YANG Yanju*
Received:
2024-10-17
Revised:
2025-03-07
Online:
2025-09-10
Published:
2025-09-10
Contact:
YANG Yanju
张海鹏 李莞意 廖福兴 马美子 张洪程 杨艳菊*
通讯作者:
杨艳菊
ZHANG Haipeng, LI Wanyi, LIAO Fuxing, MA Meizi, ZHANG Hongcheng, YANG Yanju. Effects of Nano-molybdenum on Root Morpho-physiological Traits and Nitrate Uptake in Rice[J]. Chinese Journal OF Rice Science, 2025, 39(5): 650-664.
张海鹏, 李莞意, 廖福兴, 马美子, 张洪程, 杨艳菊. 纳米钼对水稻根系形态生理和硝态氮吸收的影响[J]. 中国水稻科学, 2025, 39(5): 650-664.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.241006
[1] Yang S, Zhu Y, Zhang R, Liu G D, Wei H Y, Zhang H C, Zhang H P. Mid-stage nitrogen application timing regulates yield formation, quality traits and 2-acetyl-1-pyrroline biosynthesis of fragrant rice[J]. Field Crops Research, 2022, 287: 108667. [2] 肖大康, 胡仁, 韩天富, 张卫峰, 侯俊, 任科宇. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析[J]. 中国水稻科学, 2023, 37(5): 529-542. Xiao D K, Hu R, Han T F, Zhang W F, Hou J, Ren K Y. Effects of nitrogen fertilizer consumption and operation on rice yield and its components in China: A meta-analysis[J]. Chinese Journal of Rice Science, 2023, 37(5): 529-542. (in Chinese with English abstract) [3] Yang Y J, Meng T Z, Qian X Q, Zhang J B, Cai Z C. Evidence for nitrification ability controlling nitrogen use efficiency and N losses via denitrification in paddy soils[J]. Biology and Fertility of Soils, 2017, 53(3): 349-356. [4] Zhang H P, Liao F X, Li W Y, Li Y L, Yang S, Zhang H C, Yang Y J, Shan Y H. Rhizosphere soil nitrification ability controls nitrogen-use efficiency in rice growth period[J]. Food and Energy Security, 2023, 12(2): e429. [5] 刘时光, 王晓玲, 王元涛, 王晓敏, 宋以萍, 蒋莹莹, 祝贵兵. 稻田土壤氧化亚氮产生潜势、反硝化功能基因丰度和群落结构的垂向分布[J]. 环境科学学报, 2020, 40(3): 1040-1050. Liu S G, Wang X L, Wang Y T, Wang X M, Song Y P, Jiang Y Y, Zhu G B. The potential of nitrous oxide, denitrification function gene abundance, and vertical distribution of community structure in paddy soil[J]. Acta Scientiae Circumstantiae, 2020, 40(3): 1040-1050. (in Chinese with English abstract) [6] Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041-3046. [7] 张文学, 王少先, 夏文建, 孙刚, 刘增兵, 李祖章, 刘光荣. 脲酶抑制剂与硝化抑制剂对稻田土壤硝化、反硝化功能菌的影响[J]. 植物营养与肥料学报, 2019, 25(6): 897-909. Zhang W X, Wang S X, Xia W J, Sun G, Liu Z B, Li Z Z, Liu G R. Effects of urease inhibitor and nitrification inhibitor on functional nitrifier and denitrifier in paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(6): 897-909. (in Chinese with English abstract) [8] Zhao X, Zhou Y, Wang S A, Xing G X, Shi W M, Xu R K, Zhu Z L. Nitrogen balance in a highly fertilized rice-wheat double-cropping system in Southern China[J]. Soil Science Society of the America Journal, 2012, 76(3): 1068-1078. [9] 唐海明, 石丽红, 文丽, 程凯凯, 李超, 龙泽东, 肖志武, 李微艳, 郭勇. 长期施肥对双季稻田根际土壤氮素的影响[J]. 生态环境学报, 2023, 32(3): 492-499. Tang H M, Shi L H, Wen L, Cheng K K, Li C, Long Z D, Xiao Z W, Li W Y, Guo Y. Effects of different long-term fertilizer managements on rhizosphere soil nitrogen in the double-cropping rice field[J]. Ecology and Environmental Sciences, 2023, 32(3): 492-499. (in Chinese with English abstract) [10] Glass A D M, Britto D T, Kaiser B N, Kinghorn J R, Kronzucker H J, Kumar A, Okamoto M, Rawat S, Siddiqi M Y, Unkles S E, Vidmar J J. The regulation of nitrate and ammonium transport systems in plants[J]. Journal of Experimental Botany, 2002, 53(370): 855-864. [11] 李志康, 严冬, 薛张逸, 李思嘉, 刘立军, 张耗, 王志琴, 杨建昌, 顾骏飞. 细胞分裂素对植物生长发育的调控机理研究进展及其在水稻生产中的应用探讨[J]. 中国水稻科学, 2018, 32(4): 311-324. Li Z K, Yan D, Xue Z Y, Gu Y B, Li S J, Liu L J, Zhang H, Wang Z Q, Yang J C, Gu J F. Regulations of plant growth and development by cytokinins and their application in rice production[J]. Chinese Journal of Rice Science, 2018, 32(4): 311-324. (in Chinese with English abstract) [12] Hang J N, Wu B W, Qiu D Y, Yang G, Fang Z M, Zhang M Y. OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency[J]. Journal of Integrative Agriculture, 2024, 23(4): 1087-1104. [13] Zhang H P, Wang R, Chen Z Q, Pu J L, Wang J J, Zhang H C, Yang Y J. Nanoscale molybdenum oxide improves plant growth and increases nitrate utilisation in rice (Oryza sativa L.)[J]. Food and Energy Security, 2022, 11: e383. [14] 张艳红, 陈志青, 杨硕, 卢豪, 崔培媛, 杨艳菊, 张洪程, 张海鹏. 增施纳米三氧化钼对水稻产量、品质和氮肥利用率的影响[J]. 扬州大学学报: 农业与生命科学版, 2022, 43(5): 27-36. Zhang Y H, Chen Z Q, Yang S, Lu H, Cui P Y, Yang Y J, Zhang H C, Zhang H P. Effects of nano-sized molybdenum trioxide application on rice yield, grain quality and nitrogen use efficiency[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2022, 43(5): 27-36. (in Chinese with English abstract) [15] Li Y D, Jin Q, Yang D S, Cui J H. Molybdenum sulfide induce growth enhancement effect of rice (Oryza sativa L.) through regulating the synthesis of chlorophyll and the expression of aquaporin gene[J]. Journal of Agricultural and Food Chemistry, 2018, 66(16): 4013-4021. [16] 门中华, 李生秀. 钼对冬小麦硝态氮代谢的影响[J]. 植物营养与肥料学报, 2005, 11(2): 205-210. Men Z H, Li S X. Effects of molybdenum on nitrate metabolism of winter wheat[J]. Plant Nutrition and Fertilizer Science, 2005, 11(2): 205-210. (in Chinese with English abstract) [17] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338. Chen Z Q, Feng Y, Wang R, Cui P Y, Lu H, Wei H Y, Zhang H P, Zhang H C. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice[J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338. (in Chinese with English abstract) [18] 冀建华, 吕真真, 刘淑珍, 侯红乾, 刘益仁, 刘秀梅, 李絮花, 蓝贤瑾.长期施用化肥对南方稻田土壤酸化和盐基离子损失的影响[J]. 中国农业科学, 2024, 57(13): 2599-2611. Ji J H, Lü Z Z, Liu S Z, Hou H Q, Liu Y R, Liu X M, Li X H, Lan X J. Long-term application of chemical fertilizers induces soil acidification and soil exchangeable base cation loss on paddy in Southern China[J]. Scientia Agricultura Sinica, 2024, 57(13): 2599-2611. (in Chinese with English abstract) [19] Taran N Y, Gonchar O M, Lopatko K G, Batsmanova L M, Patyka M V, Volkogon M V. The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L[J]. Nanoscale Research Letters, 2014, 9(1): 289. [20] Cao X S, Chen X F, Liu Y L, Wang C X, Yue L, Elmer W H, White J C, Wang Z Y, Xing B S. Lanthanum silicate nanomaterials enhance sheath blight resistance in rice: Mechanisms of action and soil health evaluation[J]. ACS Nano, 2023, 17(16): 15821-15835. [21] Oliveira H C, Seabra A B, Kondak S, Adedokun O P, Kolbert Z. Multilevel approach to plant-nanomaterial relationships: From cells to living ecosystems[J]. Journal of Experimental Botany, 2023, 74(12): 3406-3424. [22] Ping Y C, Cao D Y, Hu J Y, Lin J Y, Dang C, Xue D W. The application, safety, and challenge of nanomaterials on plant growth and stress tolerance[J]. Industrial Crops and Products, 2024, 222: 119691. [23] Dev A, Srivastava A K, Karmakar S. Nanomaterial toxicity for plants[J]. Environmental Chemistry Letters, 2018, 16(1): 85-100. [24] Khot L R, Sankaran S, Maja J M, Ehsani R, Schuster E W. Applications of nanomaterials in agricultural production and crop protection: A review[J]. Crop Protection, 2012, 35: 64-70. [25] Miralles P, Church T L, Harris A T. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants[J]. Environmental Science & Technology, 2012, 46(17): 9224-9239. [26] Stolte Bezerra Lisboa Oliveira L, Ristroph K D. Critical review: Uptake and translocation of organic nanodelivery vehicles in plants[J]. Environmental Science & Technology, 2024, 58(13): 5646-5669. [27] Juárez-Maldonado A, Tortella G, Rubilar O, Fincheira P, Benavides-Mendoza A. Biostimulation and toxicity: The magnitude of the impact of nanomaterials in microorganisms and plants[J]. Journal of Advanced Research, 2021, 31: 113-126. [28] Chen S, Kang Z, Peralta-Videa J R, Zhao L J. Environmental implication of MoS2 nanosheets: Effects on maize plant growth and soil microorganisms[J]. Science of the Total Environment, 2023, 860: 160362. [29] 李玉祥, 解双喜, 刘扬, 丁艳峰, 王绍华, 刘正辉, 唐设, 丁承强, 陈琳, 李刚华. 营养液浓度对水稻机插水培毯状苗秧苗素质及产量的影响[J]. 农业工程学报, 2018, 34(24): 201-209. Li Y X, Xie S X, Liu Y, Ding Y F, Wang S H, Liu Z H, Tang S, Ding C Q, Chen L, Li G H. Effects of nutrient solution concentrations on quality and yield of hydroponically grown long-mat rice seedlings under mechanical transplanting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(24): 201-209. [30] Liu X, Wang J, Yu Y, Kong L, Liu Y M, Liu Z Q, Li H Y, Wei P W, Liu M L, Zhou H, Bu Q Y, Fang J. Identification and characterization of the rice pre-harvest sprouting mutants involved in molybdenum cofactor biosynthesis[J]. New Phytologist, 2019, 222(1): 275-285. [31] 李娜, 杨志远, 代邹, 孙永健, 徐徽, 何艳, 蒋明金, 严田蓉, 郭长春, 马均. 水氮管理对不同氮效率水稻根系性状、氮素吸收利用及产量的影响[J]. 中国水稻科学, 2017, 31(5): 500-512. Li N, Yang Z Y, Dai Z, Sun Y J, Xu H, He Y, Jiang M J, Yan T R, Guo C C, Ma J. Effects of water-nitrogen management on root traits, nitrogen accumulation and utilization and grain yield in rice with different nitrogen use efficiency[J]. Chinese Journal of Rice Science, 2017, 31(5): 500-512. (in Chinese with English abstract) [32] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553. Tang Q Y, Yang J J, Zhao L, Song Z W, Wang G D, Li Y X. Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots[J]. Acta Agronomica Snica, 2024, 50(6): 1540-1553. (in Chinese with English abstract) [33] Chen Y, Ding Z X, Yu T Q, Cao L, Duan Y M, Zu Y Q, Li Z R. Accumulation characteristics of heavy metals in three wild rice species and adaptation of root morphology and anatomical structure to native soil heavy metals in Yunnan[J]. Ecological Indicators, 2024, 167: 112601. [34] Liu K, Li T T, Chen Y, Huang J, Qiu Y Y, Li S Y, Wang H, Zhu A, Zhuo X X, Yu F, Gu J F, Liu L J, Yang J C. Effects of root morphology and physiology on the formation and regulation of large panicles in rice[J]. Field Crops Research, 2020, 258: 107946. [35] Rajendran S, Park H, Kim J, Park S J, Shin D, Lee J H, Song Y H, Paek N C, Kim C M. Methane emission from rice fields: Necessity for molecular approach for mitigation[J]. Rice Science, 2024, 31(2): 159-178. [36] Ma J, Bei Q C, Wang X J, Lan P, Liu G, Lin X W, Liu Q, Lin Z B, Liu B J, Zhang Y H, Jin H Y, Hu T L, Zhu J G, Xie Z B. Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system[J]. Science of the Total Environment, 2019, 649: 686-694. [37] Imran M, Hussain S, Rana M S, Saleem M H, Rasul F, Ali K H, Potcho M P, Pan S G, Duan M Y, Tang X R. Molybdenum improves 2-acetyl-1-pyrroline, grain quality traits and yield attributes in fragrant rice through efficient nitrogen assimilation under cadmium toxicity[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111911. [38] Imran M, Sun X C, Hussain S, Rana M S, Saleem M H, Riaz M, Tang X R, Khan I, Hu C X. Molybdenum supply increases root system growth of winter wheat by enhancing nitric oxide accumulation and expression of NRT genes[J]. Plant and Soil, 2021, 459(1): 235-248. [39] Li M S, Zhang P, Guo Z L, Zhao W C, Li Y B, Yi T J, Cao W D, Gao L, Tian C F, Chen Q, Ren F Z, Rui Y K, White J C, Lynch I. Dynamic transformation of nano-MoS2 in a soil-plant system empowers its multifunctionality on soybean growth[J]. Environmental Science & Technology, 2024, 58(2): 1211-1222. [40] Yang J H, Song Z Y, Ma J, Han H Y. Toxicity of molybdenum-based nanomaterials on the soybean-rhizobia symbiotic system: Implication for nutrition[J]. ACS Applied Nano Materials, 2020, 3(6): 5773-5782. [41] Chai Y N, Schachtman D P. Root exudates impact plant performance under abiotic stress[J]. Trends in Plant Science, 2022, 27(1): 80-91. [42] Tao K, Jensen I T, Zhang S, Villa-Rodríguez E, Blahovska Z, Salomonsen C L, Martyn A, Björgvinsdóttir Þ N, Kelly S, Janss L, Glasius M, Waagepetersen R, Radutoiu S. Nitrogen and Nod factor signaling determine Lotus japonicus root exudate composition and bacterial assembly[J]. Nature Communications, 2024, 15(1): 3436. [43] 李宝珍, 辛伟杰, 徐国华. 氮饥饿水稻利用不同形态氮素的差异及其生理机制[J]. 土壤学报, 2007, 44(2): 273-279. Li B Z, Xin W J, Xu G H. Physiological mechanisms in uptake and use of different forms of nitrogen by nitrogen starved rice crop[J]. Acta Pedologica Sinica, 2007, 44(2): 273-279. (in Chinese with English abstract) [44] Guo N, Zhang S N, Gu M J, Xu G H. Function, transport, and regulation of amino acids: What is missing in rice[J]? The Crop Journal, 2021, 9(3): 530-542. [45] 顾嘉怡, 吕欣平, 周宇琨, 孟庆好, 王琛, 张瑛, 张耗. 水稻根系分泌物对氮素吸收利用的影响研究进展[J]. 杂交水稻, 2024, 39(4): 9-15. Gu J Y, Lü X P, Zhou Y K, Meng Q H, Wang C, Zhang Y, Zhang H. Research progress on the effects of root exudates on nitrogen uptake and utilization in rice[J]. Hybrid Rice, 2024, 39(4): 9-15. (in Chinese with English abstract) [46] Zhang H, Zhang J H, Yang J C. Improving nitrogen use efficiency of rice crop through an optimized root system and agronomic practices[J]. Crop and Environment, 2023, 2(4): 192-201. |
[1] | HAO Wenqian, CAI Xingjing, YANG Haidong, WU Yuyang, TENG Xuan, XUE Chao, GONG Zhiyun. Advances in Roles of Different Types of Histone Modifications in Responses of Rice to Abiotic Stresses [J]. Chinese Journal OF Rice Science, 2025, 39(5): 575-585. |
[2] | LU Tingting, YAN Wenhui, SU Xinquan, ZENG Luohua, HUA Liqin, CHEN Jianghua, FENG Baohua, WANG Yuexing, HU Jiang, FU Guanfu. Research Progress on Physiological and Ecological Mechanisms and Regulation Pathways of Yield, Quality and Stress Resistance Response in Perennial Rice [J]. Chinese Journal OF Rice Science, 2025, 39(5): 586-600. |
[3] | WU Wanting, XU Qian, LIU Dantong, ZHU Changjin, DU Haotian, JU Haoran, HUO Zhongyang, DAI Qigen, LI Guohui, XU Ke. Research Progress in Regulation of Anthocyanin Accumulation in Colored Rice [J]. Chinese Journal OF Rice Science, 2025, 39(5): 601-614. |
[4] | WANG Jingbo, SU Chang, FENG Jing, JIANG Sixu, XU Hai, CUI Zhibo, ZHAO Minghui. Functional Study on Aluminum Tolerance of OsAlR1 Gene in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(5): 615-623. |
[5] | SHAO Ye, HU Yuanyi, PENG Yan, MAO Bigang, LIU Huimin, TANG Chanjuan, LEI Bin, TANG Li, YU Lixia3, LI Wenjian3, LUO Wuzhong1, 2, LUO Zhibin, YUAN Yuantao, LI Yaokui, ZHANG Dan, ZHOU Libin, BAI Lianyang, TANG Wenbang, ZHAO Bingran. Directed Improvement of Hybrid Rice Zhuoliangyou 1126 by Heavy Ion Beam Mutagenesis Based on M1TDS Targeted Screening Technology [J]. Chinese Journal OF Rice Science, 2025, 39(5): 615-623. |
[6] | LIU Yuting, ZHOU Xing, HE Chenyan, LI Qiuping, AI Xiaofeng, YUAN Yujie, LIU Rui, YANG Jingwen, LIU Tingting1, WANG Li, CHENG Hong, HUANG Rong, LI Aoyun, HU Wen, HU Zhong, REN Wanjun, DENG Fei. Effects of Reducing Hill Density While Maintaining Plant Population on Dry Matter Accumulation and Transport in Rice Stem and Sheath Under Different Light Conditions [J]. Chinese Journal OF Rice Science, 2025, 39(5): 665-678. |
[7] | YANG Xingzhou, CUI Miaomiao, WEI Lihui, GU Aiguo, LI Dongxia, LE Xiuhu, FENG Hui. Effects of Exogenous miR3979 on Chemotaxis, Infection and Development of Root Knot Nematode Meloidogyne graminicola in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(5): 703-710. |
[8] | TANG Chenghan, CHEN Huizhe, HUAI Yan, SUN Liang, ZHANG Yuping, XIANG Jing, ZHANG Yikai, WANG Zhigang, XU Yiwen, WANG Yaliang. Response of Machine-transplanting Quality and Yield Formation of Hybrid Rice Pot-mat Seedlings to Pot Depth [J]. Chinese Journal OF Rice Science, 2025, 39(4): 491-500. |
[9] | ZHU Peng, LING Xitie, WANG Jinyan, ZHANG Baolong, YANG Yuwen, XU Ke, QIU Shi. Effects of Weed Control Methods on Grain Yield and Quality of Herbicide-resistant Rice Under Direct Seeding [J]. Chinese Journal OF Rice Science, 2025, 39(4): 501-515. |
[10] | DONG Liqiang, ZHANG Yikai, YANG Tiexin, FENG Yingying, MA Liang, LIANG Xiao, ZHANG Yuping, LI Yuedong. Effect of Dense Sowing Nursery on Seedling Quality and Picking Characteristics for Mechanized Transplanting in Northern japonica Rice [J]. Chinese Journal OF Rice Science, 2025, 39(4): 516-528. |
[11] | ZHOU Yang, YE Fan, LIU Lijun. Research Progress of Typical Plant Growth-promoting Microorganism Enhancing Salt Stress Resistance in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(4): 529-542. |
[12] | ZHU Jianping, LI Xia, LI Wenqi, XU Yang, WANG Fangquan, TAO Yajun, JIANG Yanjie, CHEN Zhihui, FAN Fangjun, YANG Jie. Phenotypic Analysis and Gene Mapping of a Floury Endosperm Mutant we1 in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(4): 543-551. |
[13] | HUANG Fudeng, WU Chunyan, HAO Yuanyuan, HAN Yifei, ZHANG Xiaobin, SUN Huifeng, PAN Gang. Transcriptome Analysis of Top Second Leaf Sheath of Rice Under Different Nitrogen Fertilizer Levels [J]. Chinese Journal OF Rice Science, 2025, 39(4): 563-574. |
[14] | LU Yezi, QIU Jiehua, JIANG Nan, KOU Yanjun, SHI Huanbin. Research Progress in Effectors of Magnaporthe oryzae [J]. Chinese Journal OF Rice Science, 2025, 39(3): 287-294. |
[15] | WANG Chaorui, ZHOU Yukun, WEN Ya, ZHANG Ying, FA Xiaotong, XIAO Zhilin, ZHANG Hao. Effects of Straw Returning Methods on Soil Characteristics and Greenhouse Gas Emissions in Paddy Fields and Their Regulation Through Water-fertilizer Interactions [J]. Chinese Journal OF Rice Science, 2025, 39(3): 295-305. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||