Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (2): 125-132.DOI: 10.16819/j.1001-7216.2023.220413
• Research Papers • Previous Articles Next Articles
WANG Yu1,#, SUN Quanyi1,#, DU Haibo1, XU Zhiwen1, WU Keting1, YIN Li1, FENG Zhiming1,2, HU Keming1,2, CHEN Zongxiang1,2,*(), ZUO Shimin1,2,3,*()
Received:
2022-04-24
Revised:
2022-09-03
Online:
2023-03-10
Published:
2023-03-10
Contact:
CHEN Zongxiang, ZUO Shimin
About author:
First author contact:#These authors contributed equally to this work
王雨1,#, 孙全翌1,#, 杜海波1, 许志文1, 吴科霆1, 尹力1, 冯志明1,2, 胡珂鸣1,2, 陈宗祥1,2,*(), 左示敏1,2,3,*()
通讯作者:
陈宗祥,左示敏
作者简介:
第一联系人:#共同第一作者
基金资助:
WANG Yu, SUN Quanyi, DU Haibo, XU Zhiwen, WU Keting, YIN Li, FENG Zhiming, HU Keming, CHEN Zongxiang, ZUO Shimin. Improvement of the Resistance of Nanjing 9108 to Blast and Sheath Blight by Pyramiding Resistance Gene Pigm and Quantitative Trait Genes qSB-9TQ and qSB-11HJX[J]. Chinese Journal OF Rice Science, 2023, 37(2): 125-132.
王雨, 孙全翌, 杜海波, 许志文, 吴科霆, 尹力, 冯志明, 胡珂鸣, 陈宗祥, 左示敏. 利用抗稻瘟病基因Pigm和抗纹枯病数量性状基因qSB-9TQ、qSB-11HJX改良南粳9108的抗性[J]. 中国水稻科学, 2023, 37(2): 125-132.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.220413
目标基因 Gene | 标记 Primer | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer (5'-3') |
---|---|---|---|
Pigm | M143104 | CCTTGTTCCTCCTGCTATC | ATCTCGCTGTTCAGTCTTG |
qSB-9TQ | Y93.5 | CTGTTCTTCTCCTGCGTTCT | ATGTCCTCGTGCTTCTGC |
Y90.2 | CGGGATTAAATACGAGACAT | TTTCTTAGGTCCCATTCTTC | |
Y84.2 | AAAGGTTGCGAGGAGATTAGAGT | TAGGGGTTGGTTTCTGGTTGTAG | |
qSB-11HJX | RM224 | ATCGATCGATCTTCACGAGG | TGCTATAAAAGGCATTCGGG |
ZYJ28.23 | AGGGCACAGAGGGAACAAT | ACAGGGTCAGGCAGTCAGG |
Table 1. Primer sequences of molecular markers detecting Pigm, qSB-9TQ and qSB-11HJX.
目标基因 Gene | 标记 Primer | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer (5'-3') |
---|---|---|---|
Pigm | M143104 | CCTTGTTCCTCCTGCTATC | ATCTCGCTGTTCAGTCTTG |
qSB-9TQ | Y93.5 | CTGTTCTTCTCCTGCGTTCT | ATGTCCTCGTGCTTCTGC |
Y90.2 | CGGGATTAAATACGAGACAT | TTTCTTAGGTCCCATTCTTC | |
Y84.2 | AAAGGTTGCGAGGAGATTAGAGT | TAGGGGTTGGTTTCTGGTTGTAG | |
qSB-11HJX | RM224 | ATCGATCGATCTTCACGAGG | TGCTATAAAAGGCATTCGGG |
ZYJ28.23 | AGGGCACAGAGGGAACAAT | ACAGGGTCAGGCAGTCAGG |
Fig. 2. Panicle blast resistance evaluation of lines harboring different resistance genes. A, Disease identification of 8 lines(n=3). B, Disease identification of 24 lines(n=1). Data are shown as mean±SD. Bars superscripted by different lowercase letters are significantly different at 0.05 level (one-way ANOVA).
编号 No. | 基因型 Genotype | 菌株数 No. of strains | 抗谱 Resistance frequency/% | ||
---|---|---|---|---|---|
总数Total | 抗Resistant | 感Susceptible | |||
W1 | Pg+ 9TQ+ 11HJX+ | 23 | 23 | 0 | 100.0 |
W2 | Pg− 9TQ+ 11HJX+ | 23 | 9 | 14 | 39.1 |
W3 | Pg+ 9TQ+ 11HJX− | 23 | 22 | 1 | 95.6 |
W4 | Pg− 9TQ+ 11HJX− | 23 | 11 | 12 | 47.8 |
W5 | Pg+ 9TQ− 11HJX+ | 23 | 23 | 0 | 100.0 |
W6 | Pg− 9TQ− 11HJX+ | 23 | 10 | 13 | 43.5 |
W7 | Pg+ 9TQ− 11HJX− | 23 | 23 | 0 | 100.0 |
W8 | Pg− 9TQ− 11HJX− | 23 | 7 | 16 | 30.4 |
Table 2. Seedling blast resistance evaluation of eight lines with different genotypes.
编号 No. | 基因型 Genotype | 菌株数 No. of strains | 抗谱 Resistance frequency/% | ||
---|---|---|---|---|---|
总数Total | 抗Resistant | 感Susceptible | |||
W1 | Pg+ 9TQ+ 11HJX+ | 23 | 23 | 0 | 100.0 |
W2 | Pg− 9TQ+ 11HJX+ | 23 | 9 | 14 | 39.1 |
W3 | Pg+ 9TQ+ 11HJX− | 23 | 22 | 1 | 95.6 |
W4 | Pg− 9TQ+ 11HJX− | 23 | 11 | 12 | 47.8 |
W5 | Pg+ 9TQ− 11HJX+ | 23 | 23 | 0 | 100.0 |
W6 | Pg− 9TQ− 11HJX+ | 23 | 10 | 13 | 43.5 |
W7 | Pg+ 9TQ− 11HJX− | 23 | 23 | 0 | 100.0 |
W8 | Pg− 9TQ− 11HJX− | 23 | 7 | 16 | 30.4 |
Fig. 3. Sheath blight resistance evaluation of lines harboring different resistance genes. A and B, Resistance evaluation of eight lines (n=3) against sheath blight in field at rice tillering stage(A) and in greenhouse at rice booting stage(B). C and D, Resistance evaluation of 24 lines (n=1) against sheath blight in field at rice tillering stage(C) and in green house at rice booting stage(D). Data are shown as mean±SD. Bars superscripted by different lowercase letters are significantly different at 0.05 level (one-way ANOVA).
编号 No. | 类型 Genotype | 生育期 | 株高 | 穗长 | 一次枝梗数 | 二次枝梗数 | 每穗粒数 Grain number | 结实率 | 千粒重 |
---|---|---|---|---|---|---|---|---|---|
Heading date/d | Plant height / cm | Panicle length / cm | No. of primary rachis branches | No. of secondary rachis branches | Seed setting rate/% | 1000-grain weight/g | |||
W1 | Pg+9TQ+11HJX+ | 82.2±1.0 | 116.7±2.2a | 21.12±0.06a | 16.4±1.4 | 45.9±9.4 | 149.34±3.95a | 88±4 | 27.57±0.21a |
W2 | Pg−9TQ+11HJX+ | 82.7±0.8 | 108.5±4.5b | 21.28±0.25a | 16.8±1.3 | 42.1±10.4 | 151.69±6.42a | 87±3 | 26.34±0.16cd |
W3 | Pg+9TQ+11HJX− | 81.3±1.5 | 110.0±3.1ab | 21.45±0.28a | 15.8±0.8 | 47.8±8.0 | 150.79±12.15a | 88±4 | 27.41±0.15ab |
W4 | Pg−9TQ+11HJX− | 81.5±0.5 | 114.3±2.0ab | 20.39±0.20b | 15.8±1.8 | 43.9±7.9 | 134.86±8.07ab | 88±3 | 27.36±0.13ab |
W5 | Pg+9TQ-11HJX+ | 81.7±1.0 | 110.4±2.2ab | 19.86±0.12b | 15.6±0.4 | 43.1±5.1 | 135.33±1.29ab | 89±1 | 26.73±0.26bc |
W6 | Pg−9TQ−11HJX+ | 80.7±0.8 | 108.2±1.0b | 20.33±0.30b | 15.5±0.8 | 44.9±2.3 | 135.47±3.16ab | 90±3 | 27.91±0.52a |
W7 | Pg+9TQ−11HJX− | 82.5±2.2 | 108.5±3.0b | 21.41±0.39a | 16.1±0.2 | 49.7±4.2 | 149.50±1.88a | 88±1 | 25.92±0.13d |
W8 | Pg−9TQ−11HJX− | 82.8±0.3 | 109.3±2.6ab | 20.14±0.07b | 16.0±0.2 | 44.5±0.9 | 132.06±1.52b | 88±5 | 26.80±0.08bc |
Table 3. Comparison of the main agronomic traits of eight lines harboring different resistance genes.
编号 No. | 类型 Genotype | 生育期 | 株高 | 穗长 | 一次枝梗数 | 二次枝梗数 | 每穗粒数 Grain number | 结实率 | 千粒重 |
---|---|---|---|---|---|---|---|---|---|
Heading date/d | Plant height / cm | Panicle length / cm | No. of primary rachis branches | No. of secondary rachis branches | Seed setting rate/% | 1000-grain weight/g | |||
W1 | Pg+9TQ+11HJX+ | 82.2±1.0 | 116.7±2.2a | 21.12±0.06a | 16.4±1.4 | 45.9±9.4 | 149.34±3.95a | 88±4 | 27.57±0.21a |
W2 | Pg−9TQ+11HJX+ | 82.7±0.8 | 108.5±4.5b | 21.28±0.25a | 16.8±1.3 | 42.1±10.4 | 151.69±6.42a | 87±3 | 26.34±0.16cd |
W3 | Pg+9TQ+11HJX− | 81.3±1.5 | 110.0±3.1ab | 21.45±0.28a | 15.8±0.8 | 47.8±8.0 | 150.79±12.15a | 88±4 | 27.41±0.15ab |
W4 | Pg−9TQ+11HJX− | 81.5±0.5 | 114.3±2.0ab | 20.39±0.20b | 15.8±1.8 | 43.9±7.9 | 134.86±8.07ab | 88±3 | 27.36±0.13ab |
W5 | Pg+9TQ-11HJX+ | 81.7±1.0 | 110.4±2.2ab | 19.86±0.12b | 15.6±0.4 | 43.1±5.1 | 135.33±1.29ab | 89±1 | 26.73±0.26bc |
W6 | Pg−9TQ−11HJX+ | 80.7±0.8 | 108.2±1.0b | 20.33±0.30b | 15.5±0.8 | 44.9±2.3 | 135.47±3.16ab | 90±3 | 27.91±0.52a |
W7 | Pg+9TQ−11HJX− | 82.5±2.2 | 108.5±3.0b | 21.41±0.39a | 16.1±0.2 | 49.7±4.2 | 149.50±1.88a | 88±1 | 25.92±0.13d |
W8 | Pg−9TQ−11HJX− | 82.8±0.3 | 109.3±2.6ab | 20.14±0.07b | 16.0±0.2 | 44.5±0.9 | 132.06±1.52b | 88±5 | 26.80±0.08bc |
编号 No. | 类型 Genotype | 峰值黏度 Peak viscosity /cP | 热浆黏度 Hot paste viscosity /cP | 崩解值 Breakdown /cP | 终值黏度 Final viscosity /cP | 回复值 Setback /cP | 糊化温度 Gelatinization temperature /℃ | 胶稠度 Gel consistency /mm | 直链淀粉 含量Amylose /% | |
---|---|---|---|---|---|---|---|---|---|---|
W1 | Pg+9TQ+11HJX+ | 2967.1±29.4 | 1401.3±75.2 | 1565.8±102.5 | 1931.6±20.6 | −1035.5±15.6 | 12.6±0.1 | 84.3±0.7 | 70.7±0.1 | |
W2 | Pg−9TQ+11HJX+ | 2984.6±88.6 | 1362.7±107 | 1622.0±191.9 | 1902.0±80.2 | −1082.6±165.1 | 12.9±0.4 | 85.1±2.1 | 70.7±0.1 | |
W3 | Pg+9TQ+11HJX− | 2978.8±44.7 | 1317.3±64.8 | 1661.5±66.9 | 1891.6±41.5 | −1087.1±66.1 | 13.0±0.1 | 83.5±0.8 | 70.6±0.1 | |
W4 | Pg-9TQ+11HJX− | 3053.6±93.8 | 1356.7±83.5 | 1697.0±28.4 | 1959.5±52.2 | −1094.1±69.5 | 13.1±0.2 | 82.6±0.3 | 70.8±0.1 | |
W5 | Pg+9TQ−11HJX+ | 2982.1±58.5 | 1448.3±40.7 | 1533.8±99.1 | 1951.3±20.5 | −1030.8±60.6 | 12.8±0.4 | 82.6±1.5 | 70.7±0.2 | |
W6 | Pg−9TQ−11HJX+ | 3005.6±145.0 | 1500.3±2.8 | 1505.3±146.5 | 1976.5±128.6 | −1029.1±38.2 | 13.1±0.6 | 82.5±1.0 | 70.6±0.1 | |
W7 | Pg+9TQ−11HJX− | 2943.1±97.2 | 1495.5±152 | 1447.6±236.6 | 1888.5±114.1 | −1054.6±33.1 | 13.3±0.1 | 83.3±1.1 | 70.7±0.1 | |
W8 | Pg−9TQ−11HJX− | 2998.1±10.7 | 1499.5±63.3 | 1498.6±73.9 | 1952.6±8.3 | −1045.5±13.7 | 12.7±0.1 | 84.2±1.7 | 70.5±0.1 |
Table 4. Comparison of the quality traits of eight lines harboring different resistance genes.
编号 No. | 类型 Genotype | 峰值黏度 Peak viscosity /cP | 热浆黏度 Hot paste viscosity /cP | 崩解值 Breakdown /cP | 终值黏度 Final viscosity /cP | 回复值 Setback /cP | 糊化温度 Gelatinization temperature /℃ | 胶稠度 Gel consistency /mm | 直链淀粉 含量Amylose /% | |
---|---|---|---|---|---|---|---|---|---|---|
W1 | Pg+9TQ+11HJX+ | 2967.1±29.4 | 1401.3±75.2 | 1565.8±102.5 | 1931.6±20.6 | −1035.5±15.6 | 12.6±0.1 | 84.3±0.7 | 70.7±0.1 | |
W2 | Pg−9TQ+11HJX+ | 2984.6±88.6 | 1362.7±107 | 1622.0±191.9 | 1902.0±80.2 | −1082.6±165.1 | 12.9±0.4 | 85.1±2.1 | 70.7±0.1 | |
W3 | Pg+9TQ+11HJX− | 2978.8±44.7 | 1317.3±64.8 | 1661.5±66.9 | 1891.6±41.5 | −1087.1±66.1 | 13.0±0.1 | 83.5±0.8 | 70.6±0.1 | |
W4 | Pg-9TQ+11HJX− | 3053.6±93.8 | 1356.7±83.5 | 1697.0±28.4 | 1959.5±52.2 | −1094.1±69.5 | 13.1±0.2 | 82.6±0.3 | 70.8±0.1 | |
W5 | Pg+9TQ−11HJX+ | 2982.1±58.5 | 1448.3±40.7 | 1533.8±99.1 | 1951.3±20.5 | −1030.8±60.6 | 12.8±0.4 | 82.6±1.5 | 70.7±0.2 | |
W6 | Pg−9TQ−11HJX+ | 3005.6±145.0 | 1500.3±2.8 | 1505.3±146.5 | 1976.5±128.6 | −1029.1±38.2 | 13.1±0.6 | 82.5±1.0 | 70.6±0.1 | |
W7 | Pg+9TQ−11HJX− | 2943.1±97.2 | 1495.5±152 | 1447.6±236.6 | 1888.5±114.1 | −1054.6±33.1 | 13.3±0.1 | 83.3±1.1 | 70.7±0.1 | |
W8 | Pg−9TQ−11HJX− | 2998.1±10.7 | 1499.5±63.3 | 1498.6±73.9 | 1952.6±8.3 | −1045.5±13.7 | 12.7±0.1 | 84.2±1.7 | 70.5±0.1 |
[1] | Skamnioti P, Gurr S J. Against the grain: Safeguarding rice from rice blast disease[J]. Trends in Biotechnology, 2009, 27(3): 141-150. |
[2] | 何峰, 张浩, 刘金灵, 王志龙, 王国梁. 水稻抗稻瘟病天然免疫机制及抗病育种新策略[J]. 遗传, 2014, 36(8): 756-765. |
Heng F, Zhang H, Liu J L, Wang Z L, Wang G L. Recent advances in understanding the innate immune mechanisms and developing new disease resistance breeding strategies against the rice blast fungus Magnaporthe oryzae in rice[J]. Heraditas(Beijing), 2014, 36(8): 756-765. (in Chinese with English abstract) | |
[3] | Zheng A P, Lin R M, Zhang D H, Qin P G, Xu L Z, Ai P, Ding L, Wang Y R, Chen Y, Liu Y, Sun Z G, Feng H T, Liang X X, Fu R T, Tang C Q, Li Q, Zhang J, Xie Z L, Wang L X, Liu H N, Li P. The evolution and pathogenic mechanisms of the rice sheath blight pathogen[J]. Nature Communications, 2013, 4(1424): 1-10. |
[4] | Lee N F, Rush M C. Rice sheath blight: A major rice disease[J]. Plant Disease, 1983, 6(7): 829-832. |
[5] | Wang B H, Daniel J, Ebbole W Z, Wang Z H. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes[J]. Journal of Integrative Agriculture, 2017, 16(12): 2746-2760. |
[6] | Chen S, Wang L, Que Z Q, Pan R Q. Genetic and physical mapping of pi37(t), a new gene conferring resistance to rice blast[J]. Theoretical and Applied Genetics, 2005, 111(8): 1563-1570. |
[7] | Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes[J]. Plant Journal, 1999, 19(1): 55-64. |
[8] | Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G D, Bellizzi M, Wang G L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions, 2006, 19(11): 1216-1228. |
[9] | Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J Z, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance[J]. Genetics, 2008, 180(4): 2267-2276. |
[10] | Deng Y, Zhai K, Xie Z, Deng Y W, Zhai K R, Xie Z, Yang D Y, Zhu X D, Liu J Z, Wang X, Qin P, Yang Y Z, Zhang G M, Li Q, Zhang J F, Wu S Q, Milazzo J, Mao B Z, He Z H. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science, 2017, 355(6328): 962-965. |
[11] | Bryan G T, Wu K S, Farrall L, Jia Y L, Hershey H, McAdams S, Faulk K, Donaldson G, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J]. Plant Cell, 2000, 12(11): 2033-2045. |
[12] | Rama Devi S J S, Singh K, Umakanth B, Vishalakshi B, Renu P, Sudhakar K V, Prasad M S, Viraktamath B C, Babu V R, Madhav M S. Development and identification of novel rice blast resistant sources and their characterization using molecular markers[J]. Rice Science, 2015, 22(6): 300-308. |
[13] | 田红刚, 陈红旗, 胡江, 雷财林, 朱旭东, 钱前. 抗稻瘟病基因Pigm导入对寒地粳稻抗病性和产量性状的影响[J]. 沈阳农业大学学报, 2016, 47(5): 520-526. |
Tian H G, Chen H Q, Hu J, Lei C L, Zhu X D, Qian Q. Effect of introgressed Pigm gene on rice blast resistance and yield traits of japonica rice in cold area[J]. Journal of Shenyang Agricultural University, 2016, 47(5): 520-526. (in Chinese with English abstract) | |
[14] | 张礼霞, 王林友, 范宏环, 王建军. 利用Pigm基因改良粳稻保持系的稻瘟病抗性研究[J]. 核农学报, 2017, 31(3): 424-431. |
Zhang L X, Wang L Y, Fan H H, Wang J J. Improvement of rice blast resistance of japonica rice maintainer lines using gene Pigm[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(3): 424-431. (in Chinese with English abstract) | |
[15] | 杨平, 邹国兴, 陈春莲, 黄永萍, 兰波, 熊运华, 尹建华. 利用分子标记辅助选择改良春恢350稻瘟病抗性[J]. 分子植物育种, 2015, 13(4): 741-747. |
Yang P, Zou G X, Chen C L, Huang Y P, Lan B, Xiong Y H, Yin J H. Improvement of rice blast resistance of Chunhui 350 by using molecular-marker assisted selection[J]. Molecular Plant Breeding, 2015, 13(4): 741-747. (in Chinese with English abstract) | |
[16] | 陈涛, 孙旭超, 张善磊, 梁文化, 周丽慧, 赵庆勇, 姚姝, 赵凌, 赵春芳, 朱镇, 张亚东, 王才林. 稻瘟病广谱抗性基因Pigm特异性分子标记的开发和应用[J]. 中国水稻科学, 2020, 34(1): 28-36. |
Chen T, Sun X C, Zhang S L, Liang W H, Zhou L H, Zhao Q Y, Yao S, Zhao L, Zhao C F, Zhu Z, Zhang Y D, Wang C L. Development and verification of specific molecular markers for Pigm gene associated with broad-spectrum resistance to rice blast[J]. Chinese Journal of Rice Science, 2020, 34(1): 28-36. (in Chinese with English abstract) | |
[17] | Zou J H, Pan X B, Chen Z X, Xu J Y, Lu J F, Zhai W X, Zhu L H. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars[J]. Theoretical and Applied Genetics, 2000, 101(4): 569-573. |
[18] | Pinson S R M, Capdevielle F M, Oard J H. Blight resistance in rice using recombinant inbred lines[J]. Crop Science, 2005, 45(2): 503-510. |
[19] | Li Z, Pinson S R M, Marchetti M A, Stansel J W, Park W D. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani)[J]. Theoretical and Applied Genetics, 1995, 91(2): 382-388. |
[20] | 潘学彪, Rush M C. 美国的水稻纹枯病抗病遗传育种研究[J]. 江苏农学院学报, 1997, 18(1): 57-63. |
Pan X B, Rush M C. Studies in the U.S. on genetics and breeding of resistance to rice sheath blight[J]. Journal of Jiangsu Agricultural College, 1997, 18(1): 57-63. (in Chinese with English abstract) | |
[21] | 左示敏, 张亚芳, 陈宗祥, 陈夕军, 潘学彪. 水稻抗纹枯病遗传育种研究进展[J]. 中国科学:生命科学, 2013, 40(11): 1014-1023. |
Zuo S M, Zhang Y F, Chen Z X, Chen X J, Pan X B. Current progress on genetics and breeding in resistance to rice sheath blight[J]. Science China: Life Sciences, 2010, 40(11): 1014-1023. (in Chinese with English abstract) | |
[22] | 陈宗祥, 邹军煌, 徐敬友, 童蕴慧, 汤述翥, 王子斌, 蒋日民, 凌兵, 唐进, 潘学彪. 对水稻纹枯病抗源的初步研究[J]. 中国水稻科学, 2000, 14(1): 15-18. |
Chen Z X, Zou J H, Xu J Y, Tong Y H, Tang S Z, Wang Z B, Jiang Y M, Ling B, Tang J, Pan X B. A preliminary study on resources of resistance to rice sheath blight[J]. Chinese Journal of Rice Science, 2000, 14(1): 15-18. (in Chinese with English abstract) | |
[23] | 殷跃军, 左示敏, 王辉, 张亚芳, 陈宗祥, 马玉银, 顾世梁, 潘学彪. 抗水稻纹枯病qSB-9Tq基因效应及作用方式分析[J]. 作物学报, 2009, 35(2): 279-285. |
Yin Y J, Zuo S M, Wang H, Zhang Y F, Chen Z X, Ma Y Y, Gu S L, Pan X B. Effect and action analysis of qSB-9Tq conferring resistance to rice sheath blight[J]. Acta Agronomica Sinica, 2009, 35(2): 279-285. (in Chinese with English abstract) | |
[24] | Zhu Y J, Zuo S M, Chen Z X, Chen X G, Li G, Zhang Y F. Identification of two major rice sheath blight resistance QTLs, qSB1-1HJX74 and qSB11HJX74, in field trials using chromosome segment substitution lines[J]. Plant Disease, 2014, 98(8): 1112-1121. |
[25] | 王才林, 张亚东, 朱镇, 姚姝, 赵庆勇, 陈涛, 周丽慧, 赵凌. 优良食味粳稻新品种南粳9108的选育与利用[J]. 江苏农业科学, 2013, 41(9): 86-88. |
Wang C L, Zhang Y D, Zhu Z, Yao S, Zhao Q Y, Chen T, Zhou L H, Zhao L. Breeding and utilization of a new japonica rice variety Nanjing 9108 with good taste[J]. Jiangsu Agricultural Sciences, 2013, 41(9): 86-88. (in Chinese with English abstract) | |
[26] | 张亚东, 姚姝, 陈涛, 王军, 朱镇, 赵庆勇, 周丽慧, 赵凌, 赵春芳, 路凯, 梁文化, 王才林. 聚合Wx-mp、fgr和Pi-ta、Pi-b基因选育优质粳稻新品种[J]. 分子植物育种, 2021, https://kns.cnki.net/kcms/detail/46.1068.S.20210709.1328.025.html |
Zhang Y D, Yao S, Chen T, Wang J, Zhu Z, Zhao Q Y, Zhou L H, Zhao L, Zhao C F, Lu K, Liang W H, Wang C L. Pyramiding Wx-mp, fgr and Pi-ta, Pi-b genes by marker-assisted selection in new japonica rice varieties with good quality[J]. Molecular Plant Breeding, 2021. https://kns.cnki.net/kcms/detail/46.1068.S.20210709.1328.025.html (in Chinese with English abstract) | |
[27] | 李明友, 王嘉楠, 王广达, 冯志明, 叶英豪, 姜伟, 左天, 张亚芳, 陈夕军, 潘学彪. 抗纹枯病数量性状基因qSB-11HJX及qSB-9TQ改良粳稻品种的抗性研究[J]. 扬州大学学报: 农业与生命科学版, 2019, 40(6): 1-7. |
Li M Y, Wang J N, Wang G D, Feng Z M, Ye Y H, Jiang W, Zuo T, Zhang Y F, Chen X J, Pan X B. Improvement of japonica rice resistance to sheath blight disease by incorporating quantitative resistance genes qSB-11HJX and qSB-9TQ[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2019, 40(6): 1-7. (in Chinese with English abstract) | |
[28] | 贺闽, 尹俊杰, 冯志明, 朱孝波, 赵剑华, 左示敏, 陈学伟. 水稻稻瘟病和纹枯病抗性鉴定方法[J]. 植物学报, 2020, 55(5): 577-587. |
He M, Yin J J, Feng Z M, Zhu X B, Zhao J H, Zuo S M, Chen X W. Identification methods of resistance to rice blast and sheath blight[J]. Chinese Bulletin of Botany, 2020, 55(5): 577-587. (in Chinese with English abstract) | |
[29] | 王小秋. 江苏粳稻抗稻瘟病基因应用与稻瘟菌多样性分析[D]. 扬州: 扬州大学, 2020. |
Wang X Q. Research on blast resistance genes utilized in japonica rice and analysis of blast isolates diversity in Jiangsu Province[D]. Yangzhou: Yangzhou University, 2020. (in Chinese with English abstract) | |
[30] | 左示敏, 张亚芳, 殷跃军, 陈宗祥, 潘学彪. 田间水稻纹枯病抗性鉴定体系的确立与完善[J]. 扬州大学学报:农业与生命科学版, 2006, 27(4): 57-61. |
Zuo S M, Zhang Y F, Yin Y J, Chen Z X, Pan X B. Establishment and improvement of inoculation technique and rating system in researching rice sheath blight resistance in field[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2006, 27(4): 57-61. (in Chinese with English abstract) | |
[31] | 朱大伟. 三种关键栽培措施对软米粳稻产量与品质的影响[D]. 扬州: 扬州大学, 2018. |
Zhu D W. Effect of three key cultivation measures on yield and quality of japonica soft rice[D]. Yangzhou: Yangzhou University, 2020. (in Chinese with English abstract) | |
[32] | Liu Y, Chen L, Fu D, Lou Q J, Mei H W, Xiong L, Li M S, Xu X Y, Mei X H, Luo L J. Dissection of additive, epistatic effect and QTL × environment interaction of quantitative trait loci for sheath blight resistance in rice[J]. Hereditas, 2014, 151(2-3): 28-37. |
[33] | Eizenga G C, Prasad B, Jackson A K, Jia M H. Identification of rice sheath blight and blast quantitative trait loci in two different O. sativa/O. nivara advanced backcross populations[J]. Molecular Breeding, 2013, 31(4): 889-907. |
[34] | 陈宗祥, 冯志明, 王龙平, 冯凡, 张亚芳, 马玉银, 潘学彪, 左示敏. 水稻分蘖角基因TAC1的育种应用价值分析[J]. 中国水稻科学, 2017, 31(6): 590-598. |
Chen Z X, Feng Z M, Wang L P, Feng F, Zhang Y F, Ma Y Y, Pan X B, Zuo S M. Breeding potential of rice TAC1 gene for tiller angle[J]. Chinese Journal of Rice Science, 2017, 31(6): 590-598. (in Chinese with English abstract) |
[1] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[2] | JING Xiu, ZHOU Miao, WANG Jing, WANG Yan, WANG Wang, WANG Kai, GUO Baowei, HU Yajie, XING Zhipeng, XU Ke, ZHANG Hongcheng. Effect of Drought Stress on Root Morphology and Leaf Photosynthetic Characteristics of Good Taste japonica Rice from Late Stage of Panicle Differentiation to Early Stage of Grain Filling [J]. Chinese Journal OF Rice Science, 2024, 38(1): 33-47. |
[3] | FENG Aiqing, WANG Congying, SU Jing, FENG Jinqi, CHEN Kailing, LIN Xiaopeng, CHEN Bing, LIANG Meiling, YANG Jianyuan, ZHU Xiaoyuan, CHEN Shen. Development and Agronomic Traits Analysis of New Rice Resistance Lines to Xanthomonas oryzae pv. oryzicola [J]. Chinese Journal OF Rice Science, 2023, 37(6): 587-596. |
[4] | CHEN Mingliang, XIONG Wentao, SHEN Yumin, XIONG Huanjin, LUO Shiyou, WU Xiaoyan, HU Lanxiang, XIAO Yeqing. Genetic Dissection of Broad Spectrum Resistance of the Rice Maintainer Ganxiang B [J]. Chinese Journal OF Rice Science, 2023, 37(5): 470-477. |
[5] | LI Gang, GAO Qingsong, LI Wei, ZHANG Wenxia, WANG Jian, CHEN Baoshan, WANG Di, GAO Hao, XU Weijun, CHEN Hongqi, JI Jianhui. Directed Knockout of SD1 Gene Improves Lodging Resistance and Blast Resistance of Rice [J]. Chinese Journal OF Rice Science, 2023, 37(4): 359-367. |
[6] | HUANG Yaru, XU Peng, WANG Lele, HE Yizhe, WANG Hui, KE Jian, HE Haibing, WU Liquan, YOU Cuicui. Effects of Exogenous Trehalose on Grain Filling Characteristics and Yield Formation of japonica Rice Cultivar W1844 [J]. Chinese Journal OF Rice Science, 2023, 37(4): 379-391. |
[7] | PEI Feng, WANG Guangda, GAO Peng, FENG Zhiming, HU Keming, CHEN Zongxiang, CHEN Hongqi, CUI Ao, ZUO Shimin. Evaluation of New japonica Rice Lines with Low Cadmium Accumulation and Good Quality Generated by Knocking Out OsNramp5 [J]. Chinese Journal OF Rice Science, 2023, 37(1): 16-28. |
[8] | CHEN Tao, ZHAO Qingyong, ZHU Zhen, ZHAO Ling, YAO Shu, ZHOU Lihui, ZHAO Chunfang, ZHANG Yadong, WANG Cailin. Development of New Low Glutelin Content japonica Rice Lines with Good Eating Quality and Fragrance by Molecular Marker-Assisted Selection [J]. Chinese Journal OF Rice Science, 2023, 37(1): 55-65. |
[9] | ZHOU Yonglin, SHEN Xiaolei, ZHOU Lishuai, LIN Qiaoxia, WANG Zhaolu, CHEN Jing, FENG Huijie, ZHANG Zhenwen, CHEN Xiaoting, LU Guodong. OsLOX10 Positively Regulates Defense Responses of Rice to Rice Blast and Bacterial Blight [J]. Chinese Journal OF Rice Science, 2022, 36(4): 348-356. |
[10] | ZHANG Xiaoxiang, SHAO Shimei, ZHAO Buhong, ZHANG Hao, JI Hongjuan, XIAO Ning, PAN Cunhong, LI Yuhong, WU Yunyu, CAI Yue, LIU Jianju, JI Chunming, ZHANG Xiuqin, LIU Guangqing, ZHOU Changhai, HUANG Niansheng, LI Aihong. Effects of Nitrogen Reduction Model on Yield and Nitrogen Absorption and Utilization of Late-maturing Mid-japonica Rice with Different Panicle Types [J]. Chinese Journal OF Rice Science, 2022, 36(3): 278-294. |
[11] | CHEN Yixuan, QIN Guiliang, ZHOU Xiaoxin, HUANG Junjun, MENG Quan, WU Junhui, YAN Xiaojing, YUAN Huizhu. Deposition and Distribution of Droplets Sprayed by Different Plant Protection Machinery in Rice Canopy and Comparison of Control Effects on Diseases and Pests [J]. Chinese Journal OF Rice Science, 2022, 36(2): 207-214. |
[12] | Yudong CAO, Xiangyi XIAO, Naizhong YE, Xiaowen DING, Xiaoxuan YI, Jinling LIU, Yinghui XIAO. Auxin Regulator OsGRF4 Simultaneously Regulates Rice Grain Shape and Blast Resistance [J]. Chinese Journal OF Rice Science, 2021, 35(6): 629-638. |
[13] | Zhiming FENG, Guangda WANG, Jianhua ZHAO, Ran JU, Mengchen LI, Peng GAO, Keming HU, Zongxiang CHEN, Shimin ZUO. Response Characteristics of Rice Cysteine-rich Receptor-like Kinases Family Genes to Rhizoctonia solani and Plant Hormones [J]. Chinese Journal OF Rice Science, 2021, 35(5): 439-448. |
[14] | Cailin WANG, Yadong ZHANG, Tao CHEN, Zhen ZHU, Qingyong ZHAO, Shu YAO, Ling ZHAO, Chunfang ZHAO, Lihui ZHOU, Xiaodong Wei, Kai LU, Wenhua LIANG. Rapid Breeding of New Semi-glutinous japonica Rice Varieties with Good Eating Quality by Crossing Between Sister Lines [J]. Chinese Journal OF Rice Science, 2021, 35(5): 455-465. |
[15] | Mengjia WANG, Min YIN, Guang CHU, Yuanhui LIU, Chunmei XU, Xiufu ZHANG, Danying WANG, Song CHENG. Ecological Differences in Yield, Growth Period and the Utilization of Temperature and Light Resources of Double-cropping Late japonica Rice in the Middle and Lower Reaches of the Yangtze River [J]. Chinese Journal OF Rice Science, 2021, 35(5): 475-486. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||