Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (1): 69-79.DOI: 10.16819/j.1001-7216.2020.9045
• Research Papers • Previous Articles Next Articles
Siping LI, Lusheng ZENG*(), Lipeng WU, Yuxiao ZHANG, Junrui XIE, Xiaodong DING*(
)
Received:
2019-04-12
Revised:
2019-11-04
Online:
2020-01-10
Published:
2020-01-10
Contact:
Lusheng ZENG, Xiaodong DING
李思平, 曾路生*(), 吴立鹏, 张玉晓, 解军蕊, 丁效东*(
)
通讯作者:
曾路生,丁效东
基金资助:
CLC Number:
Siping LI, Lusheng ZENG, Lipeng WU, Yuxiao ZHANG, Junrui XIE, Xiaodong DING. Effects of Nitrogen Fertilizer Level and Planting Density on Changes in Soil Nutrient contents and Nitrogen Use Efficiency in Rice[J]. Chinese Journal OF Rice Science, 2020, 34(1): 69-79.
李思平, 曾路生, 吴立鹏, 张玉晓, 解军蕊, 丁效东. 氮肥水平与栽植密度对植稻土壤养分含量变化与氮肥利用效率的影响[J]. 中国水稻科学, 2020, 34(1): 69-79.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2020.9045
Fig. 1. Trends of daily average temperature and daily average precipitation during rice growth period in Jining rice region of Shandong Province. The data in the figure are from China Meteorological Data Network.
处理 Treatment | 土层深度 Soil layer | 均值 Average value | 变异系数 Coefficient of variation | |
---|---|---|---|---|
0–20 cm | 20–40 cm | |||
D1N1 | 7.72±0.06 b | 7.87±0.02 c | 7.80 | 0.014 |
D1N2 | 7.69±0.01 bc | 7.75±0.01 e | 7.72 | 0.005 |
D1N3 | 7.87±0.06 a | 7.99±0.09 ab | 7.93 | 0.011 |
D1N4 | 7.91±0.05 a | 8.03±0.02 a | 7.97 | 0.011 |
D2N1 | 7.69±0.01 bc | 7.98±0.02 ab | 7.84 | 0.026 |
D2N2 | 7.65±0.04 bcd | 7.80±0.02 de | 7.73 | 0.014 |
D2N3 | 7.63±0.05 cd | 7.74±0.06 e | 7.69 | 0.010 |
D2N4 | 7.59±0.01 de | 7.66±0.07 f | 7.63 | 0.006 |
D3N1 | 7.69±0.03 bc | 7.94±0.02 b | 7.82 | 0.023 |
D3N2 | 7.71±0.03 b | 7.84±0.01 cd | 7.78 | 0.012 |
D3N3 | 7.54±0.06 ef | 7.82±0.03 cd | 7.68 | 0.026 |
D3N4 | 7.51±0.01 f | 7.99±0.03 ab | 7.75 | 0.044 |
氮肥水平Nitrogen level(N) | * | *** | ||
栽植密度Planting density(D) | *** | *** | ||
N×D | *** | *** |
Table 1 Effect of nitrogen fertilizer level and planting density on pH of different soil layers in rice maturity.
处理 Treatment | 土层深度 Soil layer | 均值 Average value | 变异系数 Coefficient of variation | |
---|---|---|---|---|
0–20 cm | 20–40 cm | |||
D1N1 | 7.72±0.06 b | 7.87±0.02 c | 7.80 | 0.014 |
D1N2 | 7.69±0.01 bc | 7.75±0.01 e | 7.72 | 0.005 |
D1N3 | 7.87±0.06 a | 7.99±0.09 ab | 7.93 | 0.011 |
D1N4 | 7.91±0.05 a | 8.03±0.02 a | 7.97 | 0.011 |
D2N1 | 7.69±0.01 bc | 7.98±0.02 ab | 7.84 | 0.026 |
D2N2 | 7.65±0.04 bcd | 7.80±0.02 de | 7.73 | 0.014 |
D2N3 | 7.63±0.05 cd | 7.74±0.06 e | 7.69 | 0.010 |
D2N4 | 7.59±0.01 de | 7.66±0.07 f | 7.63 | 0.006 |
D3N1 | 7.69±0.03 bc | 7.94±0.02 b | 7.82 | 0.023 |
D3N2 | 7.71±0.03 b | 7.84±0.01 cd | 7.78 | 0.012 |
D3N3 | 7.54±0.06 ef | 7.82±0.03 cd | 7.68 | 0.026 |
D3N4 | 7.51±0.01 f | 7.99±0.03 ab | 7.75 | 0.044 |
氮肥水平Nitrogen level(N) | * | *** | ||
栽植密度Planting density(D) | *** | *** | ||
N×D | *** | *** |
Fig. 2. Effect of nitrogen fertilizer level and planting density on alkali nitrogen content in different soil layers during rice maturity. Different lowercase letters above the bars indicate significant difference between the 0-20cm soil layers at P<0.05 level, and different capital letters indicate significant difference between 20–40 cm soil layer at P <0.05 level. The same as in figures below.
因素分析 Factor analysis | 碱解氮 Alkaline nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | |||||
---|---|---|---|---|---|---|---|---|
0–20 cm | 20–40 cm | 0–20 cm | 20–40 cm | 0–20 cm | 20–40 cm | |||
氮肥水平Nitrogen level | *** | *** | NS | *** | *** | *** | ||
栽植密度Density | *** | ** | *** | *** | *** | *** | ||
N×D | *** | ** | ** | *** | *** | *** |
Table 2 Effects of nitrogen fertilizer level and planting density on the contents of alkali nitrogen, available phosphorus and available potassium in rice soil.
因素分析 Factor analysis | 碱解氮 Alkaline nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | |||||
---|---|---|---|---|---|---|---|---|
0–20 cm | 20–40 cm | 0–20 cm | 20–40 cm | 0–20 cm | 20–40 cm | |||
氮肥水平Nitrogen level | *** | *** | NS | *** | *** | *** | ||
栽植密度Density | *** | ** | *** | *** | *** | *** | ||
N×D | *** | ** | ** | *** | *** | *** |
处理 Treatment | 土壤层次 Soil level | 均值 Average value | 变异系数 Coefficient of variation | |
---|---|---|---|---|
0–20 cm | 20–40 cm | |||
D1N1 | 25.1±1.2 ab | 14.7±0.3 de | 19.9 | 0.37 |
D1N2 | 20.8±2.7 d | 18.8±1.1 ab | 19.8 | 0.07 |
D1N3 | 21.2±0.6 cd | 12.7±1.6 e | 17.0 | 0.35 |
D1N4 | 25.7±0.9 a | 16.0±2.0 cd | 20.9 | 0.33 |
D2N1 | 22.4±0.5 bcd | 19.6±0.7 a | 21.0 | 0.09 |
D2N2 | 25.0±2.8 ab | 17.3±1.0 abc | 21.2 | 0.26 |
D2N3 | 23.7±0.5 abc | 17.9±1.8 abc | 20.8 | 0.20 |
D2N4 | 24.1±0.7 ab | 19.0±1.6 ab | 21.6 | 0.17 |
D3N1 | 23.2±0.5 bc | 16.7±0.4 bcd | 20.0 | 0.23 |
D3N2 | 24.8±1.9 ab | 16.2±0.5 cd | 20.5 | 0.30 |
D3N3 | 22.6±2.7 bcd | 16.8±1.9 bcd | 19.7 | 0.21 |
D3N4 | 22.9±0.3 bc | 12.9±2.3 e | 17.9 | 0.40 |
氮肥水平Nitrogen level(N) | * | *** | ||
栽植密度Planting density(D) | NS | * | ||
N×D | ** | *** |
Table 3 Effect of nitrogen fertilizer level and planting density on organic matter content in different soil layers during rice maturity. g/kg
处理 Treatment | 土壤层次 Soil level | 均值 Average value | 变异系数 Coefficient of variation | |
---|---|---|---|---|
0–20 cm | 20–40 cm | |||
D1N1 | 25.1±1.2 ab | 14.7±0.3 de | 19.9 | 0.37 |
D1N2 | 20.8±2.7 d | 18.8±1.1 ab | 19.8 | 0.07 |
D1N3 | 21.2±0.6 cd | 12.7±1.6 e | 17.0 | 0.35 |
D1N4 | 25.7±0.9 a | 16.0±2.0 cd | 20.9 | 0.33 |
D2N1 | 22.4±0.5 bcd | 19.6±0.7 a | 21.0 | 0.09 |
D2N2 | 25.0±2.8 ab | 17.3±1.0 abc | 21.2 | 0.26 |
D2N3 | 23.7±0.5 abc | 17.9±1.8 abc | 20.8 | 0.20 |
D2N4 | 24.1±0.7 ab | 19.0±1.6 ab | 21.6 | 0.17 |
D3N1 | 23.2±0.5 bc | 16.7±0.4 bcd | 20.0 | 0.23 |
D3N2 | 24.8±1.9 ab | 16.2±0.5 cd | 20.5 | 0.30 |
D3N3 | 22.6±2.7 bcd | 16.8±1.9 bcd | 19.7 | 0.21 |
D3N4 | 22.9±0.3 bc | 12.9±2.3 e | 17.9 | 0.40 |
氮肥水平Nitrogen level(N) | * | *** | ||
栽植密度Planting density(D) | NS | * | ||
N×D | ** | *** |
处理 Treatment | 产量 Yield/(kg·hm-2) | 千粒重 Thousand seed weight/g | 穗数 Number of panicles per 667m2/(×104) | 穗粒数 Grain number per panicle | 结实率 Seed setting rate/% | 氮肥农学利用效率 Nitrogen fertilizer agricultural utilization efficiency/(kg·kg-1) | 肥料偏生产力 Fertilizer partial productivity/( kg·kg-1) |
---|---|---|---|---|---|---|---|
D1N1 | 11124.1±799.2 b | 22.5±0.3 cd | 220.3±16.7 d | 224.7±12.3 abc | 89.0±1.2 abc | / | 49.44 |
D1N2 | 11957.9±299.7 b | 21.2±0.4 f | 246.0±13.8 cd | 229.7±8.7 a | 89.3±1.1 ab | 3.86 | 27.12 |
D1N3 | 12331.7±949.1 b | 24.1±0.7 a | 248.6±7.9 cd | 205.9±10.8 cd | 87.5±0.7 cde | 4.19 | 24.04 |
D1N4 | 11338.7±49.9 c | 21.3±1.2 ef | 241.8±15.6 cd | 220.0±11.3 abc | 88.5±1.0 bc | 0.60 | 19.38 |
D2N1 | 13037.5±1398.6 ab | 22.9±0.5 bc | 253.6±22.1 c | 224.6±6.9 abc | 88.3±0.4 bcd | / | 57.94 |
D2N2 | 14366.2±699.3 a | 22.2±0.4 cdef | 311.0±14.7 b | 207.9±15.2 bcd | 86.8±0.7 de | 6.15 | 32.58 |
D2N3 | 14615.3±1098.9 a | 22.2±0.6 cdef | 376.7±20.7 a | 174.8±13.7 e | 89.3±1.3 ab | 5.47 | 28.49 |
D2N4 | 13165.6±449.6 b | 22.4±0.7 cde | 321.1±19.3 b | 182.9±12.2 e | 86.5±0.5 e | 0.36 | 22.51 |
D3N1 | 8221.1±499.5 d | 22.2±0.8 cdef | 164.4±9.5 e | 224.9±10.9 abc | 90.1±0.6 a | / | 36.54 |
D3N2 | 9259.1±749.3 cd | 23.7±1.1 ab | 172.4±14.5 e | 226.4±7.3 ab | 88.9±0.8 abc | 4.81 | 21.00 |
D3N3 | 9466.7±499.5 c | 21.1±0.2 f | 233.7±18.9 cd | 191.9±16.0 de | 86.4±0.7 e | 4.33 | 18.45 |
D3N4 | 11999.5±1148.9 b | 21.7±0.3 def | 236.2±26.7 cd | 233.9±14.8 a | 89.2±1.3 ab | 10.49 | 20.51 |
氮肥水平Nitrogen level(N) | *** | NS | *** | *** | * | ||
密度Growing density(D) | * | NS | *** | *** | * | ||
N×D | *** | *** | *** | * | *** |
Table 4 Effects of interaction between nitrogen level and planting density on rice yield, its components and fertilizer use efficiency.
处理 Treatment | 产量 Yield/(kg·hm-2) | 千粒重 Thousand seed weight/g | 穗数 Number of panicles per 667m2/(×104) | 穗粒数 Grain number per panicle | 结实率 Seed setting rate/% | 氮肥农学利用效率 Nitrogen fertilizer agricultural utilization efficiency/(kg·kg-1) | 肥料偏生产力 Fertilizer partial productivity/( kg·kg-1) |
---|---|---|---|---|---|---|---|
D1N1 | 11124.1±799.2 b | 22.5±0.3 cd | 220.3±16.7 d | 224.7±12.3 abc | 89.0±1.2 abc | / | 49.44 |
D1N2 | 11957.9±299.7 b | 21.2±0.4 f | 246.0±13.8 cd | 229.7±8.7 a | 89.3±1.1 ab | 3.86 | 27.12 |
D1N3 | 12331.7±949.1 b | 24.1±0.7 a | 248.6±7.9 cd | 205.9±10.8 cd | 87.5±0.7 cde | 4.19 | 24.04 |
D1N4 | 11338.7±49.9 c | 21.3±1.2 ef | 241.8±15.6 cd | 220.0±11.3 abc | 88.5±1.0 bc | 0.60 | 19.38 |
D2N1 | 13037.5±1398.6 ab | 22.9±0.5 bc | 253.6±22.1 c | 224.6±6.9 abc | 88.3±0.4 bcd | / | 57.94 |
D2N2 | 14366.2±699.3 a | 22.2±0.4 cdef | 311.0±14.7 b | 207.9±15.2 bcd | 86.8±0.7 de | 6.15 | 32.58 |
D2N3 | 14615.3±1098.9 a | 22.2±0.6 cdef | 376.7±20.7 a | 174.8±13.7 e | 89.3±1.3 ab | 5.47 | 28.49 |
D2N4 | 13165.6±449.6 b | 22.4±0.7 cde | 321.1±19.3 b | 182.9±12.2 e | 86.5±0.5 e | 0.36 | 22.51 |
D3N1 | 8221.1±499.5 d | 22.2±0.8 cdef | 164.4±9.5 e | 224.9±10.9 abc | 90.1±0.6 a | / | 36.54 |
D3N2 | 9259.1±749.3 cd | 23.7±1.1 ab | 172.4±14.5 e | 226.4±7.3 ab | 88.9±0.8 abc | 4.81 | 21.00 |
D3N3 | 9466.7±499.5 c | 21.1±0.2 f | 233.7±18.9 cd | 191.9±16.0 de | 86.4±0.7 e | 4.33 | 18.45 |
D3N4 | 11999.5±1148.9 b | 21.7±0.3 def | 236.2±26.7 cd | 233.9±14.8 a | 89.2±1.3 ab | 10.49 | 20.51 |
氮肥水平Nitrogen level(N) | *** | NS | *** | *** | * | ||
密度Growing density(D) | * | NS | *** | *** | * | ||
N×D | *** | *** | *** | * | *** |
相关系数 Correlation coefficient | 土壤pH Soil pH | 土壤碱解氮 Soil alkaline nitrogen | 土壤速效磷 Soil available phosphorus | 土壤速效钾 Soil available potassium | 土壤有机质 Soil organic matter | 氮肥农学利用效率 Nitrogen fertilizer agricultural utilization efficiency | 肥料偏生产力 Fertilizer partial productivity | 水稻产量 Yield |
---|---|---|---|---|---|---|---|---|
土壤pH Soil pH value | 1.00 | |||||||
土壤碱解氮Soil alkaline nitrogen | -0.31 | 1.00 | ||||||
土壤速效磷Soil available phosphorus | 0.38 | -0.09 | 1.00 | |||||
土壤速效钾Soil available potassium | -0.33 | 0.04 | 0.32 | 1.00 | ||||
土壤有机质Soil organic matter | 0.13 | -0.08 | -0.29 | -0.13 | 1.00 | |||
氮肥农学利用效率 Nitrogen fertilizer agronomy utilization efficiency | -0.38 | 0.58* | -0.15 | 0.02 | -0.24 | 1.00 | ||
肥料偏生产力Fertilizer partial productivity | 0.17 | 0.03 | 0.52* | -0.22 | 0.15 | 0.17 | 1.00 | |
水稻产量Yield | -0.32 | -0.25 | 0.57* | 0.44* | 0.07 | 0.06 | 0.14 | 1.00 |
Table 5 Correlation analysis between soil nutrient contents and rice yield and fertilizer utilization rate in 0–20 cm rice soil layer during rice maturity.
相关系数 Correlation coefficient | 土壤pH Soil pH | 土壤碱解氮 Soil alkaline nitrogen | 土壤速效磷 Soil available phosphorus | 土壤速效钾 Soil available potassium | 土壤有机质 Soil organic matter | 氮肥农学利用效率 Nitrogen fertilizer agricultural utilization efficiency | 肥料偏生产力 Fertilizer partial productivity | 水稻产量 Yield |
---|---|---|---|---|---|---|---|---|
土壤pH Soil pH value | 1.00 | |||||||
土壤碱解氮Soil alkaline nitrogen | -0.31 | 1.00 | ||||||
土壤速效磷Soil available phosphorus | 0.38 | -0.09 | 1.00 | |||||
土壤速效钾Soil available potassium | -0.33 | 0.04 | 0.32 | 1.00 | ||||
土壤有机质Soil organic matter | 0.13 | -0.08 | -0.29 | -0.13 | 1.00 | |||
氮肥农学利用效率 Nitrogen fertilizer agronomy utilization efficiency | -0.38 | 0.58* | -0.15 | 0.02 | -0.24 | 1.00 | ||
肥料偏生产力Fertilizer partial productivity | 0.17 | 0.03 | 0.52* | -0.22 | 0.15 | 0.17 | 1.00 | |
水稻产量Yield | -0.32 | -0.25 | 0.57* | 0.44* | 0.07 | 0.06 | 0.14 | 1.00 |
[1] | 邓明君, 邓俊杰, 刘佳宇. 中国粮食作物化肥施用的碳排放时空演变与减排潜力[J]. 资源科学, 2016, 38(3): 534-544. |
Deng M J, Deng J J, Liu J Y.On the space-time evolution of carbon emissions and reduction potential in Chinese grain crop fertilizer application[J]. Resources Science, 2016, 38(3): 534-544. (in Chinese with English abstract) | |
[2] | 刘书通, 李春生, 方福平, 张小惠, 毛一剑, 孔宪琴, 张克勤, 吴荣梁. 我国水稻生产区域变化及其比较优势分析[J]. 中国稻米, 2014, 20(4): 9-13. |
Liu S T, Li C S, Fang F P, Zhang X H, Mao Y J, Kong X Q, Zhang K Q, Wu R L.Study on the variation and comparative advantage of regional rice production structure in China[J]. China Rice, 2014, 20(4): 9-13. (in Chinese with English abstract) | |
[3] | Ladha J K, Gjd K, Bennett J, Peng S, Reddy C K, Reddy P M, Singh U.Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm[J]. Field Crops Research, 1998, 56(1-2): 41-71. |
[4] | Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S.Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the USA, 2009, 106(9): 3041-3046. |
[5] | Zheng X, Han S, Huang Y, Wang Y S, Wang M X.Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands[J]. Global Biogeochemical Cycles, 2004, 18(2), DOI: 10.102912003GB002167, 2004. |
[6] | 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践[J]. 中国农业科学, 2015, 48(17): 3404-3414. |
Zhu D F, Zhang Y P, Chen H Z, Xiang J, Zhang Y K.Innovation and practice of high-yield rice cultivation technology in China[J]. Scientia Agricultura Sinica, 2015, 48(17): 3404-3414. (in Chinese with English abstract) | |
[7] | Huang M, Yang C L, Ji Q M, Jiang L G, Tan J L, Li Y Q.Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China.Field Crops Research, 2013, 149: 187-192. |
[8] | 邓中华, 明日, 李小坤, 郑磊, 徐维明, 杨运清, 任涛, 丛日环, 鲁剑巍. 不同密度和氮肥用量对水稻产量、构成因子及氮肥利用率的影响[J]. 土壤, 2015, 47(1): 20-25. |
Deng Z H, Ming R, Li X K, Zheng L, Xu W M, Yang Y Q, Ren T, Cong R H, Lu J W.Effects of nitrogen application rate and planting density on grain yields, yield components and nitrogen use efficiencies of rice[J]. Soils, 2015, 47(1): 20-25. (in Chinese with English abstract) | |
[9] | 陈小荣,肖自京,孙嘉,钟蕾,朱昌兰,彭小松,贺晓鹏,傅军如,欧阳林娟. 不同产量晚稻品种分蘖期动态密度稀化下群体自动调节力的差异与生理机制. 中国水稻科学[J], 2013, 27(4): 405-412. |
Chen X R, Xiao Z J, Sun J, Zhong L, Zhu C L, Peng X S, He X P, Fu J R, Ou-Yang L J. Discrepancy and its physiological mechanism of population self regulatory ability for late rice varieties under treatment of dynamic thinning of seedlings during tillering stage[J]. Chinese Journal of Rice Science, 2013, 27(4): 405-412. (in Chinese with English abstract) | |
[10] | 林洪鑫, 肖运萍, 袁展汽, 刘仁根, 汪瑞清. 水稻合理密植及其优质高产机理研究进展[J]. 中国农学通报, 2011, 27(9): 1-4. |
Lin H X, Xiao Y P, Yuan Z Q, Liu R Y, Wang R Q.Advance in rational colse planting and its mechanism of superior quality and high yield in rice[J]. Chinese Agricultural Science Bulletin, 2011, 27(9): 1-4. (in Chinese with English abstract) | |
[11] | 王成瑷, 王伯伦, 张文香, 赵磊, 赵秀哲, 高连文. 栽培密度对水稻产量及品质的影响[J]. 沈阳农业大学学报, 2004, 35(4): 318-322. |
Wang C A, Wang B L, Zhang W X, Zhao L, Zhao X Z, Gao L W.Effect of planting density on grain yield and quality of rice[J]. Journal of Shenyang Agricultural University, 2004, 35(4): 318-322. (in Chinese with English abstract) | |
[12] | 周江明, 赵琳, 董越勇, 徐进, 边武英, 毛杨仓, 章秀福. 氮肥和栽植密度对水稻产量及氮肥利用率的影响[J]. 植物营养与肥料学报, 2010, 16(2): 274-281. |
Zhou J M, Zhao L, Dong Y Y, Xu J, Bian W Y, Mao Y C, Zhang X F.Nitrogen and transplanting density interactions on the rice yield and N use rate[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 274-281. (in Chinese with English abstract) | |
[13] | 徐新朋, 周卫, 梁国庆, 孙静文, 王秀斌, 何萍, 徐芳森, 余喜初. 氮肥用量和密度对双季稻产量及氮肥利用率的影响[J]. 植物营养与肥料学报, 2015, 21(3): 1279-1286. |
Xu X P, Zhou W, Liang G Q, Sun J W, Wang X B, He P, Xu F S, Yu X C.Effects of nitrogen and density interactions on grain yield and nitrogen use efficiency of double-rice systems[J]. Plant Nutrition and Fertilizer Science, 2015, 21(3): 1279-1286. (in Chinese with English abstract) | |
[14] | 吴培, 陈天晔, 袁嘉琦, 黄恒, 邢志鹏, 胡雅杰, 朱明, 李德剑, 刘国林, 张洪程. 施氮量和直播密度互作对水稻产量形成特征的影响[J]. 中国水稻科学, 2019, 33(3): 269-281. |
Wu P, Chen T Y, Yuan J Q, Huang H, Xing Z P, Hu Y J, Zhu M, Li D J, Liu G L, Zhang H C.Effects of interaction between nitrogen application rate and direct-sowing density on yield formation characteristics of rice[J]. Chinese Journal of Rice Science, 2019, 33(3): 269-281.(in Chinese with English abstract) | |
[15] | 陈军, 黄珊瑜, 刘冰,吴林坤,林文雄. 不同氮肥运筹对水稻根际土壤理化性质及代谢物质的影响[J]. 福建农业学报, 2015, 30(11): 1082-1089. |
Chen J, Huang S Y, Liu B, Wu L K, Lin W X.Effects of different nitrogen regimes on soil physico-chemical properties and metabolites in rice rhizosphere[J]. Fujian Journal of Agricultural Sciences, 2015, 30(11): 1082-1089. (in Chinese with English abstract) | |
[16] | 张玉,秦华东,黄敏,江立庚,徐世宏. 氮肥运筹对免耕水稻根系生长、根际土壤特性及产量的影响[J]. 广西植物, 2014(5): 681-685, 621. |
Zhang Y, Qin H D, Huang M, Jiang L G, Xu S H.Effect of different nitrogen application modes on root growth, rhizosphere soil characteristics and rice yield under no-tillage[J]. Guihaia, 2014(5): 681-685, 621. (in Chinese with English abstract) | |
[17] | 鲍士旦. 土壤农化分析[M].第三版. 北京: 中国农业出版社, 2000. |
Bao S D.Soil Agro-chemistrical Analysis[M]. 3rd. Beijing: China Agriculture Press, 2000. | |
[18] | 吕丽华, 陶洪斌, 王璞, 赵明, 赵久然, 鲁来清. 施氮量对夏玉米碳、氮代谢和氮利用效率的影响[J]. 植物营养与肥料学报, 2008, 14(4): 630-637. |
Lv L H, Tao H B, Wang P, Zhao M, Zhao J R, Lu L Q.The effect of nitrogen application rate on carbon and nitrogen metabolism and nitrogen use efficiency of summer maize[J]. Plant Nutrition and Fertilizer Science, 2008, 14(4): 630-637. (in Chinese with English abstract) | |
[19] | 谢金兰, 王维赞, 朱秋珍, 刘晓燕, 梁强, 李毅杰, 罗亚伟, 梁阗. 氮肥施用方式对甘蔗产量及土壤养分变化的影响[J]. 南方农业学报, 2013, 44(4): 607-610. |
Xie J L, Wang W Z, Zhu Q Z, Liu X Y, Liang Q, Li Y J, Luo Y W, Liang T.Effects of nitrogen fertilizer application mode on sugarcane yield and soil nutrient change[J]. Journal of Southern Agriculture, 2013, 44(4): 607-610. (in Chinese with English abstract) | |
[20] | 侯云鹏, 韩立国, 孔丽丽, 尹彩侠, 秦裕波, 李前, 谢佳贵. 不同施氮水平下水稻的养分吸收、转运及土壤氮素平衡[J]. 植物营养与肥料学报, 2015, 21(4): 836-845. |
Hou Y P, Han L G, Kong L L, Yin C X, Qin Y B, Li Q, Xie J G.Nutrient absorption,translocation in rice and soil nitrogen equilibrium under different nitrogen application doses[J]. Journal of Plant Nutrition & Fertilizer, 2015, 21(4): 836-845. | |
[21] | 姚小萌, 周正朝, 田霄鸿, 王淑娟, 党珍珍. 长期机械化秸秆全量还田对土壤养分分层的影响[J]. 土壤通报, 2015, 46(1): 198-202. |
Yao X M, Zhou Z C, Tian X H, Wang S J, Dang Z Z.Effects of long-term all straw return to field with machine on the stratifications of soil nutrients[J]. Chinese Journal of Soil Science, 2015, 46(1): 198-202. (in Chinese with English abstract) | |
[22] | 王若水, 康跃虎, 万书勤, 孙甲霞. 水分调控对盐碱地土壤盐分与养分含量及分布的影响[J]. 农业工程学报, 2014, 30(14): 96-104. |
Wang R S, Kang Y H, Wan S Q, Sun J X.Effects of water regulation methods on soil salt, nutrient content and its distribution in overlying saline wasteland[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(14): 96-104. (in Chinese with English abstract) | |
[23] | 葛顺峰, 许海港, 季萌萌, 姜远茂. 土壤碳氮比对平邑甜茶幼苗生长和碳氮分配的影响[J]. 植物生态学报, 2013, 37(10): 942-949. |
Ge S F, Xu H G, Ji M M, Jiang Y M.Effects of soil C:N on growth and distribution of nitrogen and carbon of Malus hupehensis seedlings[J]. Chinese Journal of Plant Ecology, 2013, 37(10): 942-949. (in Chinese with English abstract) | |
[24] | 郑克武, 邹江石, 吕川根. 氮肥和栽插密度对杂交稻"两优培九"产量及氮素吸收利用的影响[J]. 作物学报, 2006, 32(6): 885-893. |
Zheng K W, Zou J S, Lv C G.Effects of Transplanting Density and nitrogen fertilizer on yield formation and N absorption in a two-line intersubspecific hybrid rice "Liangyoupeijiu"[J]. Acta Agronomica Sinica, 2006, 32(6): 885-893. (in Chinese with English abstract) | |
[25] | 曹胜彪, 张吉旺, 董树亭, 刘鹏, 赵斌, 杨今胜. 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响[J]. 植物营养与肥料学报, 2012, 18(6): 1343-1353. |
Cao S B, Zhang J W, Dong S T, Liu P, Zhao B, Yang J S.Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize[J]. Journal of Plant Nutrition & Fertilizer, 2012, 18(6): 1343-1353. (in Chinese with English abstract) | |
[26] | 晏娟, 尹斌, 张绍林, 沈其荣, 朱兆良. 不同施氮量对水稻氮素吸收与分配的影响[J]. 植物营养与肥料学报, 2008, 14(5): 835-839. |
Yan J, Yin B, Zhang S L, Shen Q R, Zhu Z L.Effect of nitrogen application rate on nitrogen uptake and distribution in rice[J]. Plant Nutrition and Fertilizer Science, 2008, 14(5): 835-839. (in Chinese with English abstract) | |
[27] | 孙永健, 孙园园, 李旭毅, 郭翔, 马均. 水氮互作下水稻氮代谢关键酶活性与氮素利用的关系[J]. 作物学报, 2009, 35(11): 2055-2063. |
Sun Y J, Sun Y Y, Li X Y, Guo X, Ma J.Relationship of activities of key enzymes involved in nitrogen metabolism with nitrogen utilization in rice under water-nitrogen interaction[J]. Acta Agronomica Sinica, 2009, 35(11): 2055-2063. (in Chinese with English abstract) | |
[28] | 李鹏程, 董合林, 刘爱忠, 刘敬然, 孙淼, 王国平, 刘绍东, 赵新华, 李亚兵. 种植密度氮肥互作对棉花产量及氮素利用效率的影响[J]. 农业工程学报, 2015, 31(23): 122-130. |
Li P C, Dong H L, Liu A Z, Liu J R, Sun M, Wang G P, Liu S D, Zhao X H, Li Y B.Effects of planting density and nitrogen fertilizer interaction on yield and nitrogen use efficiency of cotton[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23): 122-130. (in Chinese with English abstract) | |
[29] | 鲁叶江, 王开运, 杨万勤, 吴福忠. 缺苞箭竹群落密度对土壤养分库的影响[J]. 应用生态学报, 2005, 16(6):996-1001. |
Lu Y J, Wang K Y, Yang W Q, Wu F Z.Effects of Fargesia denudata density on soil nutrient pool[J]. Chinese Journal of Applied Ecology, 2005, 16(6): 996-1001. (in Chinese with English abstract) | |
[30] | 赵双, 朱小荣. 不同栽培密度对水稻产量影响的研究[J]. 中国盐业, 2016(15): 56-57. |
ZHAO S, ZHU X R.Study on the influence of different cultivation density on rice yield[J]. China Salt Industry, 2016(15): 56-57. (in Chinese with English abstract) | |
[31] | 何虎, 曾勇军, 贾维强, 潘晓华, 石庆华. 栽插密度对天优华占辐射利用及产量的影响[J]. 杂交水稻, 2015, 30(4): 65-70. |
He H, Zeng Y J, Jia W Q, Pan X H, Shi Q H.Effects of planting density on radiation use and grain yield of tianyou huazhan[J]. Hybrid Rice, 2015, 30(4): 65-70. (in Chinese with English abstract) | |
[32] | 刘洁, 胡冬华. 水稻基础产量与土壤速效养分含量的相关性[J]. 作物研究, 2015(3): 277-280. |
Liu J, Hu D H.Correlation between basic yield of rice and soil available nutrient content[J]. Crop Research, 2015(3): 277-280. (in Chinese with English abstract) | |
[33] | 曹倩, 贺明荣, 代兴龙, 门洪文, 王成雨. 密度、氮肥互作对小麦产量及氮素利用效率的影响[J]. 植物营养与肥料学报, 2011, 17(4): 815-822. |
Cao Q, He M R, Dai X L, Men H W, Wang C Y.Effects of interaction between density and nitrogen on grain yield and nitrogen use efficiency of winter wheat[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 815-822. (in Chinese with English abstract) | |
[34] | 张娟, 武同华, 代兴龙, 王西芝, 李洪梅, 蒋明洋, 贺明荣. 种植密度和施氮水平对小麦吸收利用土壤氮素的影响[J]. 应用生态学报, 2015, 26(6): 1727-1734. |
Zhang J, Wu T H, Dai X L, Wang X Z, Li H M, Jiang M Y, He M R.Effects of plant density and nitrogen level on nitrogen uptake and utilization of winter wheat[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1727-1734. (in Chinese with English abstract) |
[1] | WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan. Sterility Mechanism of Photoperiod/Thermo-sensitive Genic Male Sterile Lines and Development and Prospects of Two-line Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 463-474. |
[2] | XU Yongqiang, XU Jun, FENG Baohua, XIAO Jingjing, WANG Danying, ZENG Yuxiang, FU Guanfu. Research Progress of Pollen Tube Growth in Pistil of Rice and Its Response to Abiotic stress [J]. Chinese Journal OF Rice Science, 2024, 38(5): 495-506. |
[3] | HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong. Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515. |
[4] | LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao. Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524. |
[5] | YANG Hao, HUANG Yanyan, WANG Jian, YI Chunlin, SHI Jun, TAN Chutian, REN Wenrui, WANG Wenming. Development and Application of Specific Molecular Markers for Eight Rice Blast Resistance Genes in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 525-534. |
[6] | JIANG Peng, ZHANG Lin, ZHOU Xingbing, GUO Xiaoyi, ZHU Yongchuan, LIU Mao, GUO Chanchun, XIONG Hong, XU Fuxian. Yield Formation Characteristics of Ratooning Hybrid Rice Under Simplified Cultivation Practices in Winter Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 544-554. |
[7] | YANG Mingyu, CHEN Zhicheng, PAN Meiqing, ZHANG Bianhong, PAN Ruixin, YOU Lindong, CHEN Xiaoyan, TANG Lina, HUANG Jinwen. Effects of Nitrogen Reduction Combined with Biochar Application on Stem and Sheath Assimilate Translocation and Yield Formation in Rice Under Tobacco-rice Rotation [J]. Chinese Journal OF Rice Science, 2024, 38(5): 555-566. |
[8] | XIONG Jiahuan, ZHANG Yikai, XIANG Jing, CHEN Huizhe, XU Yicheng, WANG Yaliang, WANG Zhigang, YAO Jian, ZHANG Yuping. Effect of Biochar-based Fertilizer Application on Rice Yield and Nitrogen Utilization in Film- mulched PaddyFields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 567-576. |
[9] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[10] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[11] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[12] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[13] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[14] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[15] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||