• 综述与专论 • 下一篇
宋 钰1,2, 荆邵娟1,2, 余迪求1,*
收稿日期:
1900-01-01
修回日期:
1900-01-01
出版日期:
2009-09-10
发布日期:
2009-09-10
SONG Yu 1,2, JING Shaojuan 1,2 , YU Di-qiu 1,*
1 Laboratory of Plant Molecular Biology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; 2Graduate School of the Chinese Academy of Sciences, Beijing 100049, China; *Corresponding author, E-mail:
Received:
1900-01-01
Revised:
1900-01-01
Online:
2009-09-10
Published:
2009-09-10
摘要: WRKY转录调控因子的生物学功能涉及植物生长发育、物质代谢、抗病耐逆、氧化衰老等诸多方面。水稻全基因组测序完成后,水稻WRKY转录调控因子基因的功能研究随之逐渐开展,目前已经发现它在植物抗病、耐逆、衰老、糖代谢以及形态建成方面发挥重要作用。随着研究的深入,水稻WRKY基因的编号未能统一,很容易让人混淆,有必要进行校正。结合作者实验室的一些研究结果,对水稻WRKY基因家族的研究现状进行了综述,以期为进一步深入开展WRKY基因家族的研究提供帮助。
宋 钰, 荆邵娟, 余迪求,. 水稻WRKY转录调控因子基因功能研究进展[J]. 中国水稻科学 2009,23(5): 447-455 . , DOI: 10.3969/j.issn.10017216.2009.05.01 .
SONG Yu ,JING Shaojuan ,YU Di-qiu . Research Progress on Function Analysis of Rice WRKY Genes[J]. Chinese Journal of Rice Science 2009,23(5): 447-455 ., DOI: 10.3969/j.issn.10017216.2009.05.01 .
[1]Yu J, Wang J, Lin W, et al. The genomes of Oryza sativa: A history of duplications. PLoS Biol, 2005, 3(2): 266-281.
[2]Xiong Y Q, Liu T Y, Tian C G, et al. Transcription factors in rice: A genomewide comparative analysis between monocots and eudicots. Plant Mol Biol, 2005, 59: 191-203.
[3]Qu L J, Zhu Y X. Transcription factor families in Arabidopsis: Major progress and outstanding issues for future research. Curr Opin Plant Biol, 2006, 9(5): 544-549.
[4]Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5: 199-206.
[5]Qiu Y P, Jing S J, Fu J, et al. Cloning and analysis of expression profile of 13 WRKY genes in rice. Chin Sci Bull, 2004, 49(20): 2159-2168.
[6]Ciolkowski I, Wanke D, Birkenbihl R P, et al. Studies on DNAbinding selectivity of WRKY transcription factors lend structural clues into WRKYdomain function. Plant Mol Biol, 2008, 68(1/2): 81-92.
[7]Ramamoorthy R, Jiang S Y, Kumar N, et al. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol, 2008, 49(6): 865-879.
[8]Wu K L, Guo Z J, Wang H H, et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res, 2005, 12(1): 9-26.
[9]Kim C Y, Lee S H, Park H C, et al. Identification of rice blast fungal elicitorresponsive genes by differential display analysis. Mol Plant Microbe Interact, 2000, 13(4): 470-474.
[10]Shimizu T, Satoh K, Kikuchi S, et al. The repression of cell wall and plastidrelated genes and the induction of defenserelated genes in rice plants infected with rice dwarf virus. Mol Plant Microbe Interact, 2007, 20(3): 247-254.
[11]Ryu H S, Han M, Lee S K, et al. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep, 2006, 25(8): 836-847.
[12]Chujo T, Takai R, AkimotoTomiyama C, et al. Involvement of the elicitorinduced gene OsWRKY53 in the expression of defenserelated genes in rice. Biochim Biophys Acta, 2007, 1769(7/8): 497-505.
[13]Shimono M, Sugano S, Nakayama A, et al. Rice WRKY45 plays a crucial role in benzothiadiazoleinducible blast resistance. Plant Cell, 2007, 19(6): 2064-2076.
[14]Qiu Y P, Yu D Q. Overexpression of the stressinduced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ & Exp Bot, 2009, 65(1): 25-47.
[15]Wu X L, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep, 2009, 28(1): 21-30.
[16]Jing S J, Zhou X, Song Y, et al. Heterologous expression of OsWRKY23 gene enhances pathogen defense and cell senescence in Arabidopsis. Plant Growth Regul, 2009, 58(2): 181-190.
[17]Sperotto R A, Boff T, Duarte G L, et al. Increased senescenceassociated gene expression and lipid peroxidation induced by iron deficiency in rice roots. Plant Cell Rep, 2008, 27(1): 183-195.
[18]Liu L, Zhou Y, Zhou G, et al. Identification of early senescenceassociated genes in rice flag leaves. Plant Mol Biol, 2008, 67(1/2): 37-55.
[19]宋钰, 刘冬梅, 余迪求. 高表达水稻WRKY72基因影响拟南芥生长素信号传导. 云南植物研究, 2008, 30(6): 699-705.
[20]Zhang J, Peng Y L, Guo Z J. Constitutive expression of pathogeninducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res, 2008, 18: 508-521.
[21]Zhang Z L, Xie Z, Zou X L, et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol, 2004, 134(4): 1500-1513.
[22]Xie Z, Zhang Z L, Zou X L, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol, 2005, 137(1): 176-189.
[23]Zhang Y J, Wang L J. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants. BMC Evol Biol, 2005, 5(1): 1-12.
[24]Ross C A, Liu Y, Shen Q X J. The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol, 2007, 49(6): 827-842.
[25]Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol, 2007, 10(4): 366-371.
[26]Liu X Q, Bai X Q, Qian Q, et al. OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res, 2005, 15(8): 593-603.
[27]Qiu D Y, Xiao J, Ding X H, et al. OsWRKY13 mediates rice disease resistance by regulating defenserelated genes in salicylate and jasmonatedependent signaling. Mol Plant Microbe Interact, 2007, 20(5): 492-499.
[28]Liu X Q, Bai X Q, Wang X J, et al. OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol, 2007, 164(8): 969-979.
[29]Chujo T, Kato T, Yamada K, et al. Characterization of an elicitorinduced rice WRKY gene, OsWRKY71. Biosci Biotech Biochem, 2008, 72(1): 240-245.
[30]Wang H H, Hao J J, Chen X J, et al. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol, 2007, 65(6): 799-815.
[31]Chujo T, Takai R, Kaku H, et al. Isolation and characterization of two elicitorresponsive genes encoding WRKY DNAbinding proteins from rice. Plant Cell Physiol, 2004, 45: S51-S51.
[32]Chujo T, Okada K, Kaku I, et al. Characterization of elicitorresponsive genes encoding WRKY DNAbinding proteins from rice. Plant Cell Physiol, 2005, 46: S175-S175.
[33]Chujo T, Takai R, Minami E, et al. Characterization of elicitorresponsive WRKY transcription factor, OsWRKY71, from rice. Plant Cell Physiol, 2006, 47: S82-S82.
[34]Shimono M, Sugano S, Jiang C J, et al. A WRKY transcription factor plays a role in BTHinducible disease resistance in rice. Plant Cell Physiol, 2006, 47: S83-S83.
[35]Wen N, Chu Z, Wang S. Three types of defenseresponsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Mol Genet Gen, 2003, 269(3): 331-339.
[36]Cao Y L, Ding X H, Cai M, et al. The expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Gene, 2007, 177: 523-533.
[37]Cai M, Qiu D Y, Yuan T, et al. Identification of novel pathogenresponsive ciselements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ, 2008, 31(1): 86-96.
[38]Gloria M C. Analysis of the interaction transcriptome during biotrophic invasion by the blast fungus, Magnaporthe oryzae[PhD dissertation]. Kansas, USA: Kansas State University, 2007: 88-90.
[39]Wang H H, Xie K, Wu K L, et al. Isolation of a rice WRKY gene OsWRKY52, whose expression is induced by Magnaporthe grisea. Prog Biochem Biophys, 2005, 32(10): 937-946.
[40]Swarbrick P J, Huang K, Liu G, et al. Global patterns of gene expression in rice cultivars undergoing a susceptible or resistant interaction with the parasitic plant Striga hermonthica. New Phytol, 2008, 179(2): 515-529.
[41]Marè C, Mazzucotelli E, Crosatti C, et al. HvWRKY38: A new transcription factor involved in cold and droughtresponse in barley. Plant Mol Biol, 2004, 55(3): 399-416.
[42]Zou X L, Shen Q X J, Neuman D. An ABA inducible WRKY gene integrates responses of creosote bush (Larrea tridentata) to elevated CO2 and abiotic stresses. Plant Sci, 2007, 172(5): 997-1004.
[43]Robatzek S, Somssich I E. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence and defenserelated processes. Plant J, 2001, 28(2): 123-133.
[44]Miao Y, Laun T, Zimmermann P, et al. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol, 2004, 55(6): 853-867.
[45]Ulker B, Mukhtar M S, Somssich I E. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta, 2007, 226(1): 125-137.
[46]Ishiguro S, Nakamura K. Characterization of a cDNAencoding a novel DNAbinding protein, SPF1, that recognizes Sp8 sequences in the 5′upstream regions of genescoding for sporamin and betaamylase from sweetpotato. Mol Gen Genet, 1994, 244(6): 563-571.
[47]Sun C X, Palmqvist S, Olsson H, et al. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugarresponsive elements of the iso1 promoter. Plant Cell, 2003, 15(9): 2076-2092.
[48]Xie Z, Zhang Z L, Hanzlik S, et al. Salicylic acid inhibits gibberellininduced alphaamylase expression and seed germination via a pathway involving an abscisicacidinducible WRKY gene. Plant Mol Biol, 2007, 64(3): 293-303.
[49]Zhang Z L, Shin M, Zou X, et al. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells. Plant Mol Biol, 2009, 10 70(1/2): 139-151.
[50]Xie Z, Zhang Z L, Zou X L, et al. Interactions of two abscisicacid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J, 2006, 46(2): 231-242.
[51]Wang H J, Wan A R, Hsu C M, et al. Transcriptomic adaptations in rice suspension cells under sucrose starvation. Plant Mol Biol, 2007, 63(4): 441-463.
[52]Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell, 2002, 14(6): 1359-1375.
[53]Ishida T, Hattori S, Sano R, et al. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell, 2007, 19(8): 2531-2543.
[54]Devaiah B N, Karthikeyan A S, Raghothama K G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol, 2007, 143(4): 1789-1801.
[55]Dai Y, Wang H Z, Li B H, et al. Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell, 2006, 18(2): 308-320.
[56]Sun C X, Hglund A S, Olsson H, et al. Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: Identification of SUSIBA2 as a transcriptional activator in plant sugar signaling. Plant J, 2005, 44(1): 128-138.
[57]Yuan Y X, Zhong S H, Li Q, et al. Functional analysis of rice NPR1like genes reveals that OsNPR1/NH1 is the rice ortholog conferring disease resistance with enhanced herbivore susceptibility. Plant Biotech J, 2007, 5(2): 313-324.
[58]Nemoto T, Okada A, Okada K, et al. Promoter analysis of the rice stemar13ene synthase gene OsDTC2, which is involved in the biosynthesis of the phytoalexin oryzalexin S. Biochim Biophys Acta, 2007, 1769(11/12): 678-683.
[59]Ulker B, Somssich I E. WRKY transcription factors: From DNA binding towards biological function. Curr Opin Plant Biol, 2004, 7(5): 491-498.
[60]Grunewald W, Karimi M, Wieczorek K, et al. A role for AtWRKY23 in feeding site establishment of plantparasitic nematodes. Plant Physiol, 2008, 148(1): 358-368.
[61]Skibbe M, Qu N, Galis I, et al. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell, 2008, 20(7): 1984-2000.
[62]Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant, 2008, 133(3): 481-489.
[63]Contento A L, Kim S J, Bassham D C. Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol, 2004, 135(4): 2330-2347.
[64]Palmieri M C, Sell S, Huang X, et al. Nitric oxideresponsive genes and promoters in Arabidopsis thaliana: A bioinformatics approach. J Exp Bot, 2008, 59(2): 177-186. [65]Nemhauser J L, Hong F X, Chory J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell, 2006, 126(3): 467-475. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||