中国水稻科学 ›› 2025, Vol. 39 ›› Issue (1): 92-100.DOI: 10.16819/j.1001-7216.2025.240202
陈书融1, 朱练峰1,2,*(), 秦碧蓉1,3, 王婕1, 朱旭华2, 田文昊1, 朱春权1, 曹小闯1, 孔亚丽1, 张均华1, 金千瑜1
收稿日期:
2024-02-04
修回日期:
2024-05-09
出版日期:
2025-01-10
发布日期:
2025-01-14
通讯作者:
*E-mail: zlfnj@163.com基金资助:
CHEN Shurong1, ZHU Lianfeng1,2,*(), QIN Birong1,3, WANG Jie1, Zhu Xuhua2, TIAN Wenhao1, ZHU Chunquan1, CAO Xiaochuang1, KONG Yali1, ZHANG Junhua1, JIN Qianyu1
Received:
2024-02-04
Revised:
2024-05-09
Online:
2025-01-10
Published:
2025-01-14
Contact:
*E-mail: zlfnj@163.com摘要:
【目的】明确增氧灌溉下配施硝化抑制剂对水稻生长、产量形成和氮肥利用的影响。【方法】以中浙优8号为材料,试验设常规淹水灌溉(Conventional Flood Irrigation, CF)和微纳米气泡水增氧灌溉 (Micro-nano Bubble Water Oxygenation Irrigation, MB) 2种灌溉模式,单施尿素(U)和尿素配施硝化抑制剂(Nitrification inhibitor, NI) 2种氮肥处理。试验共设计4个处理:增氧灌溉下单施尿素(MB+U),增氧灌溉下尿素配施硝化抑制剂(MB+U+NI),淹水灌溉下单施尿素(CF+U),淹水灌溉下尿素配施硝化抑制剂(CF+U+NI)。分析了不同处理下水稻产量及其构成因子,水稻的茎蘖动态、叶面积指数和叶片叶绿素含量,不同生育期水稻茎、叶、穗各个部分氮累积量和水稻的氮素利用。【结果】增氧灌溉下施用硝化抑制剂能显著提高水稻产量,与淹水灌溉处理相比,增氧灌溉处理增幅为7.3%~10.0%;与单施尿素相比,配施硝化抑制剂各处理产量显著增加,增幅为2.9%~5.6%。各处理中增氧灌溉配施硝化抑制剂处理产量最高达到6756.4 kg/hm2。从产量构成因子来看,增氧灌溉和添加硝化抑制剂主要影响了有效穗数和结实率,对每穗粒数和千粒重影响较小。处理MB+U+NI与处理CF+U相比,有效穗数提高了9.4%,结实率提高了11.0%。增氧灌溉下配施硝化抑制剂显著提高水稻的氮积累量。齐穗期处理MB+U+NI较处理CF+U的茎秆氮积累量和叶片氮积累量分别增加4.5%和6.1%。成熟期在相同氮肥处理下,增氧灌溉较淹水灌溉能提高穗氮积累量8.6%,总氮积累量9.3%;而在相同灌溉条件下,配施硝化抑制剂较单施尿素能提高穗氮积累量3.4%,总氮积累量2.9%。处理MB+U+NI较其他处理显著提高水稻的氮收获指数、氮素籽粒生产效率、氮肥偏生产力及氮素利用率。【结论】增氧灌溉下配施硝化抑制剂能促进水稻分蘖而提高有效穗数,有助于水稻干物质积累,促进后期灌浆,进而显著提高水稻结实率和产量,而且增加了水稻氮积累量从而提高水稻氮肥利用率。
陈书融, 朱练峰, 秦碧蓉, 王婕, 朱旭华, 田文昊, 朱春权, 曹小闯, 孔亚丽, 张均华, 金千瑜. 增氧灌溉下配施硝化抑制剂对水稻生长、产量和氮肥利用的影响[J]. 中国水稻科学, 2025, 39(1): 92-100.
CHEN Shurong, ZHU Lianfeng, QIN Birong, WANG Jie, Zhu Xuhua, TIAN Wenhao, ZHU Chunquan, CAO Xiaochuang, KONG Yali, ZHANG Junhua, JIN Qianyu. Effects of Nitrification Inhibitors on Rice Growth, Yield and Nitrogen Use Efficiency Under Oxygenated Irrigation[J]. Chinese Journal OF Rice Science, 2025, 39(1): 92-100.
处理 Treatment | 有效穗数 Effective panicle number(104/hm2) | 每穗粒数 Spikelets per panicle | 结实率 Seed setting rate (%) | 千粒重 1000-grain weight (g) | 产量 Yield (kg/hm2) | |
---|---|---|---|---|---|---|
MB+U | 178.7±1.8 b | 207.5±2.6 ab | 74.47±0.54 b | 22.45±0.22 a | 6565.6±121.5 a | |
MB+U+NI | 183.9±2.6 a | 205.6±2.2 b | 79.36±1.37 a | 22.41±0.14 a | 6756.4±93.2 a | |
CF+U | 168.2±2.2 c | 212.8±3.5 a | 71.47±1.19 c | 22.25±0.18 a | 5963.9±68.9 c | |
CF+U+NI | 172.5±2.0 d | 209.5±3.5 ab | 72.80±1.51 bc | 22.46±0.14 a | 6297.9±95.4 b | |
F值 | I | 5.81* | ns | ns | ns | 14.85** |
Fvalue | N | ns | ns | 14.47** | ns | ns |
I×N | ns | ns | 6.41* | ns | ns |
表1 增氧灌溉下配施硝化抑制剂对水稻产量及其构成因子的影响
Table 1. Effects of nitrification inhibitors on rice yield and its components under oxygenated irrigation
处理 Treatment | 有效穗数 Effective panicle number(104/hm2) | 每穗粒数 Spikelets per panicle | 结实率 Seed setting rate (%) | 千粒重 1000-grain weight (g) | 产量 Yield (kg/hm2) | |
---|---|---|---|---|---|---|
MB+U | 178.7±1.8 b | 207.5±2.6 ab | 74.47±0.54 b | 22.45±0.22 a | 6565.6±121.5 a | |
MB+U+NI | 183.9±2.6 a | 205.6±2.2 b | 79.36±1.37 a | 22.41±0.14 a | 6756.4±93.2 a | |
CF+U | 168.2±2.2 c | 212.8±3.5 a | 71.47±1.19 c | 22.25±0.18 a | 5963.9±68.9 c | |
CF+U+NI | 172.5±2.0 d | 209.5±3.5 ab | 72.80±1.51 bc | 22.46±0.14 a | 6297.9±95.4 b | |
F值 | I | 5.81* | ns | ns | ns | 14.85** |
Fvalue | N | ns | ns | 14.47** | ns | ns |
I×N | ns | ns | 6.41* | ns | ns |
图1 增氧灌溉下配施硝化抑制剂对水稻的茎蘖动态、叶面积指数和叶绿素含量的影响 TS: 分蘖期;ATS: 分蘖盛期;FHS: 齐穗期;FS: 灌浆期;不同字母表示在0.05水平上差异显著; 下同。
Fig. 1. Stem tiller dynamics, leaf area index and chlorophyll content of rice with nitrification inhibitors under oxygenation irrigation TS, Tillering stage; ATS, Active tillering stage; FHS, Full heading stage; FS, Filling stage; Different letters indicate significant differences at the 0.05 level. The same below.
处理 Treatment | 地上部干物质积累量Dry matter accumulation of aboveground part(t/hm2) | 收获指数 | ||||
---|---|---|---|---|---|---|
TS | ATS | FHS | FS | MS | Harvest index(%) | |
MB+U | 1.32±0.02 b | 6.06±0.09 b | 10.92±0.25 b | 13.66±0.35 b | 15.55±0.15 b | 39.47±1.25 b |
MB+U+NI | 1.38±0.03 ab | 6.32±0.06 a | 11.08±0.32 a | 14.27±0.27 a | 15.86±0.05 a | 40.96±0.76 a |
CF+U | 1.23±0.01 c | 5.60±0.08 cd | 10.74±0.29 c | 12.60±0.41 c | 14.92±0.16 d | 38.20±0.54 c |
CF+U+NI | 1.29±0.01 bc | 5.70±0.12 c | 10.65±0.14 bc | 13.13±0.12 c | 15.30±0.29 c | 39.20±0.47 bc |
表2 增氧灌溉下配施硝化抑制剂的水稻地上部干物质积累
Table 2. Dry matter accumulation in the aboveground part of rice plants with nitrification inhibitors under oxygenation irrigation
处理 Treatment | 地上部干物质积累量Dry matter accumulation of aboveground part(t/hm2) | 收获指数 | ||||
---|---|---|---|---|---|---|
TS | ATS | FHS | FS | MS | Harvest index(%) | |
MB+U | 1.32±0.02 b | 6.06±0.09 b | 10.92±0.25 b | 13.66±0.35 b | 15.55±0.15 b | 39.47±1.25 b |
MB+U+NI | 1.38±0.03 ab | 6.32±0.06 a | 11.08±0.32 a | 14.27±0.27 a | 15.86±0.05 a | 40.96±0.76 a |
CF+U | 1.23±0.01 c | 5.60±0.08 cd | 10.74±0.29 c | 12.60±0.41 c | 14.92±0.16 d | 38.20±0.54 c |
CF+U+NI | 1.29±0.01 bc | 5.70±0.12 c | 10.65±0.14 bc | 13.13±0.12 c | 15.30±0.29 c | 39.20±0.47 bc |
图2 增氧灌溉下配施硝化抑制剂的水稻各生育期茎、叶、穗和总氮积累量
Fig. 2. Stem, leaf, grains and total nitrogen accumulation in rice with nitrification inhibitors under oxygen irrigation
处理 Treatment | 氮收获指数 N harvest index (%) | 氮转运效率 N transportation efficiency (%) | 氮转运贡献率 N transportation contribution rate (%) | 氮素籽粒生产效率 N grain production efficiency (g/g) | 氮肥偏生产力N Partial factor productivity (g/g) | 氮素利用率 N recovery efficiency (%) |
---|---|---|---|---|---|---|
MB+U | 62.99±2.02 b | 52.18±1.71 b | 65.50±2.76 bc | 40.85±0.23 ab | 43.65±0.09 b | 41.03±0.20 b |
MB+U+NI | 65.66±0.42 a | 50.43±1.22 b | 64.65±1.83 c | 42.04±0.17 a | 46.10±1.18 a | 43.71±1.43 a |
CF+U | 60.79±1.96 c | 54.93±2.14 a | 67.70±0.54 a | 38.64±1.04 c | 41.18±2.17 c | 36.64±1.73 c |
CF+U+NI | 62.71±0.67 b | 56.42±0.98 a | 67.37±1.62 ab | 40.27±2.02 b | 43.32±0.82 b | 37.24±0.42 c |
表3 增氧灌溉下配施硝化抑制剂对水稻氮素利用的影响
Table 3. Nitrogen utilization of rice under different nitrogen fertilizer and irrigation treatments
处理 Treatment | 氮收获指数 N harvest index (%) | 氮转运效率 N transportation efficiency (%) | 氮转运贡献率 N transportation contribution rate (%) | 氮素籽粒生产效率 N grain production efficiency (g/g) | 氮肥偏生产力N Partial factor productivity (g/g) | 氮素利用率 N recovery efficiency (%) |
---|---|---|---|---|---|---|
MB+U | 62.99±2.02 b | 52.18±1.71 b | 65.50±2.76 bc | 40.85±0.23 ab | 43.65±0.09 b | 41.03±0.20 b |
MB+U+NI | 65.66±0.42 a | 50.43±1.22 b | 64.65±1.83 c | 42.04±0.17 a | 46.10±1.18 a | 43.71±1.43 a |
CF+U | 60.79±1.96 c | 54.93±2.14 a | 67.70±0.54 a | 38.64±1.04 c | 41.18±2.17 c | 36.64±1.73 c |
CF+U+NI | 62.71±0.67 b | 56.42±0.98 a | 67.37±1.62 ab | 40.27±2.02 b | 43.32±0.82 b | 37.24±0.42 c |
[1] | 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践[J]. 中国农业科学, 2015, 48(17): 3404-3414. |
Zhu D F, Zhang Y P, Chen H Z, Xiang J, Zhang Y K. Innovation and practice of high-yield rice cultivation technology in China[J]. Scientia Agricultura Sinica, 2015, 48(17): 3404-3414. (in Chinese with English abstract) | |
[2] | 刘学, 朱练峰, 陈琛, 王会民, 欧阳由男, 禹盛苗, 金千瑜. 超微气泡增氧灌溉对水稻生育特性及产量的影响[J]. 灌溉排水学报, 2009, 28(5): 89-91. |
Liu X, Zhu L F, Chen C, Wang H M, Ouyang Y N, Yu S M, Jin Q Y. Effects of ultramicro bubble aerated irrigation on growth characters and yield of rice[J]. Journal of Irrigation and Drainage, 2009, 28(5): 89-91. (in Chinese with English abstract) | |
[3] | Hodge A, Berta G, Doussan C, Merchan F, Crespi M. Plant root growth, architecture and function[J]. Plant and Soil, 2009, 321(1-2): 153-187. |
[4] | 赵锋, 王丹英, 徐春梅, 张卫建, 李凤博, 毛海军, 章秀福. 根际增氧模式的水稻形态、生理及产量响应特征[J]. 作物学报, 2010, 36(2): 303-312. |
Zhao F, Wang D Y, Xu C M, Zhang W J, Li F B, Mao H J, Zhang X F. Response of morphological, physiological and yield characteristics of rice (Oryza sativa L.) to different oxygen-increasing patterns in rhizosphere[J]. Acta Agronomica Sinica, 2010, 36(2): 303-312. (in Chinese with English abstract) | |
[5] | 张露, 陈书融, 吴龙龙, 黄晶, 田仓, 张均华, 曹小闯, 朱春权, 孔亚丽, 金千瑜, 朱练峰. 减施氮肥和增氧灌溉对水稻氮代谢关键酶活性及氮素利用的影响[J]. 农业工程学报, 2022, 38(9): 81-90. |
Zhang L, Chen S R, Wu L L, Huang J, Tian C, Zhang J H, Cao X C, Zhu C Q, Kong Y L, Jin Q Y, Zhu L F. Effects of nitrogen fertilizer reduction and oxygen-enhancing irrigation on the key enzyme activities of nitrogen metabolism and nitrogen utilization in rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 81-90. (in Chinese with English abstract) | |
[6] | 胡志华, 朱练峰, 林育炯, 张均华, 胡继杰, 禹盛苗, 曹小闯, 金千瑜. 根部增氧模式对水稻产量与氮素利用的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1503-1512. |
Hu Z H, Zhu L F, Lin Y J, Zhang J H, Hu J J, Yu S M, Cao X C, Jin Q Y. Effect of root aeration methods on rice yield and nitrogen utilization[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1503-1512. (in Chinese with English abstract) | |
[7] | Oliveira H C, Freschi L, Sodek L. Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency[J]. Plant Physiology and Biochemistry, 2013, 66: 141-149. |
[8] | Modolo L V, da-Silva C J, Brandão D S, Chaves I S. A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s[J]. Journal of Advanced Research, 2018, 13: 29-37. |
[9] | 孙海军, 闵炬, 施卫明, 冯彦房, 李卫正, 初磊. 硝化抑制剂施用对水稻产量与氨挥发的影响[J]. 土壤, 2015, 47(6): 1027-1033. |
Sun H J, Min J, Shi W M, Feng Y F, Li W Z, Chu L. Effects of nitrification inhibitor on rice production and ammonia volatilization in paddy rice field[J]. Soils, 2015, 47(6): 1027-1033. (in Chinese with English abstract) | |
[10] | Folina A, Tataridas A, Mavroeidis A, Kousta A, Katesenios N, Efthimiadou A, Travlos I S, Roussis I, Darawsheh M K, Papastylianou P, Kakabouk I. Evaluation of various nitrogen indices in N-fertilizers with inhibitors in field crops: A review[J]. Agronomy, 2021, 11(3): 418. |
[11] | 张忠庆, 高强. 硝化抑制剂2-氯-6-三氯甲基吡啶在农业中应用研究进展及其影响因素[J]. 中国土壤与肥料, 2022(4): 249-258. |
Zhang Z Q, Gao Q. Effects of nitrification inhibitor nitrapyrin application in agricultural ecosystems and influencing factors: A review[J]. Soil and Fertilizer Sciences in China, 2022(4): 249-258. (in Chinese with English abstract) | |
[12] | 田发祥, 纪雄辉, 官迪, 谢运河, 柳赛花, 刘昭兵. 氮肥增效剂的研究进展[J]. 杂交水稻, 2020, 35(5): 7-13. |
Tian F X, Ji X H, Guan D, Xie Y H, Liu S H, Liu Z B. Advances of research on nitrogen inhibitors[J]. Hybrid Rice, 2020, 35(5): 7-13. (in Chinese with English abstract) | |
[13] | Eriksen A B, Kjeldby M, Nilsen S. The effect of intermittent flooding on the growth and yield of wetland rice and nitrogen-loss mechanism with surface applied and deep placed urea[J]. Plant and Soil, 1985, 84(3): 387-401. |
[14] | Sah R N, Mikkelsen D S. Availability and utilization of fertilizer nitrogen by rice under alternate flooding: I. Kinetics of available nitrogen under rice culture[J]. Plant and Soil, 1983, 75(2): 221-226. |
[15] | 徐国伟, 王贺正, 翟志华, 孙梦, 李友军. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响[J]. 农业工程学报, 2015, 31(10): 132-141. |
Xu G W, Wang H Z, Zhai Z H, Sun M, Li Y J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 132-141. (in Chinese with English abstract) | |
[16] | 胡继杰, 朱练峰, 钟楚, 张均华, 曹小闯, 禹盛苗, Allen B J, 金千瑜. 溶解氧对稻田土壤氮素转化及水稻氮代谢影响研究进展[J]. 生态学杂志, 2017, 36(7): 2019-2028. |
Hu J J, Zhu L F, Zhong C, Zhang J H, Cao X C, Yu S M, Allen B J, Jin Q Y. Effects of dissolved oxygen on nitrogen transformation in paddy soil and nitrogen metabolism of rice: A review[J]. Chinese Journal of Ecology, 2017, 36(7): 2019-2028. (in Chinese with English abstract) | |
[17] | Sang H, Jiao X, Wang S, Guo W H, Salahou M K, Liu K H. Effects of micro-nano bubble aerated irrigation and nitrogen fertilizer level on tillering, nitrogen uptake and utilization of early rice[J]. Plant, Soil and Environment, 2018, 64(7): 297-302. |
[18] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press, 2000. (in Chinese) | |
[19] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000. |
Lu R K. Methods for Soil Agrochemical Analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese with English abstract) | |
[20] | 潘圣刚, 曹凑贵, 蔡明历, 汪金平, 王若涵, 原保忠, 翟晶. 不同灌溉模式下氮肥水平对水稻氮素利用效率、产量及其品质的影响[J]. 植物营养与肥料学报, 2009, 15(2): 283-289. |
Pan S G, Cao C G, Cai M L, Wang J P, Wang R H, Yuan B Z, Zhai J. Effects of nitrogen application on nitrogen use efficiency grain yields and qualities of rice under different water regimes[J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 283-289. (in Chinese with English abstract) | |
[21] | Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M. Mechanisms for coping with submergence and waterlogging in rice[J]. Rice, 2012, 5(1): 2. |
[22] | 朱练峰, 刘学, 禹盛苗, 欧阳由男, 金千瑜. 增氧灌溉对水稻生理特性和后期衰老的影响[J]. 中国水稻科学, 2010, 24(3): 257-263. |
Zhu L F, Liu X, Yu S M, Ouyang Y N, Jin Q Y. Effects of aerated irrigation on physiological characteristics and senescence at late growth stage of rice[J]. Chinese Journal of Rice Science, 2010, 24(3): 257-263. (in Chinese with English abstract) | |
[23] | Li Y, Niu W, Cao X, Wang J, Zhang M, Duan X, Zhang Z. Effect of soil aeration on root morphology and photosynthetic characteristics of potted tomato plants (Solanum lycopersicum) at different NaCl salinity levels[J]. BMC Plant Biology, 2019, 19(1): 331. |
[24] | Hussain S, Aslam Z, Rafiq M, Abbas A, Saqib M, Rauf A, Hano C, Elesawi M A. Impact of different water management regimes on the growth, productivity, and resource use efficiency of dry direct seeded rice in central Punjab-Pakistan[J]. Agronomy, 2021, 11(6): 1151. |
[25] | 胡德勇, 廖健程, 陈哲, 丁鑫, 罗东城, 游峻松. 控制灌溉增氧对超级稻生理生化特性及水分利用效率的影响[J]. 排灌机械工程学报, 2020, 38(5): 500-516. |
Hu D Y, Liao J C, Chen Z, Ding X, Luo D C, You J S. Effects of controlled irrigation and oxygenation on physiological and biochemical characteristics and water use efficiency of super rice[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(5): 500-516. (in Chinese with English abstract) | |
[26] | 杨秀霞, 商庆银, 陈柳燕, 李甜, 张学友, 王天舒. 新型氮肥增效剂在水稻上的节肥增产效果研究[J]. 江西农业大学学报, 2016, 38(4): 616-622. |
Yang X X, Shang Q Y, Chen L Y, Li T, Zhang X Y, Wang T S. Effects of the new synergist of entrench on grain yield and fertilizer-saving for rice[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(4): 616-622. (in Chinese with English abstract) | |
[27] | 石柱, 张丹, 杨奇志, 杨勇. 不同氮肥增效剂对水稻产量和养分利用率的影响[J]. 作物研究, 2016, 30(1): 14-17. |
Shi Z, Zhang D, Yang Q Z, Yang Y. Effects of different nitrogen fertilizer synergists on yield and nutrients use efficiency in rice[J]. Crop Research, 2016, 30(1): 14-17. (in Chinese with English abstract) | |
[28] | 曹小闯, 吴龙龙, 朱春权, 朱练峰, 孔亚丽, 陆若辉, 孔海民, 胡兆平, 戴锋, 张均华, 金千瑜. 不同灌溉和施肥模式对水稻产量、氮利用和稻田氮转化特征的影响[J]. 中国农业科学, 2021, 54(7): 1482-1498. |
Cao X C, Wu L L, Zhu C Q, Zhu L F, Kong Y L, Lu R H, Kong H M, Hu Z P, Dai F, Zhang J H, Jin Q Y. Effects of different irrigation and nitrogen application regimes on the yield, nitrogen utilization of rice and nitrogen transformation in paddy soil[J]. Science Agricultura Sinica, 2021, 54(7): 1482-1498. (in Chinese with English abstract) | |
[29] | Belder P, Bouman B A M, Cabangon R, Lu G, Quilang E J P, Li Y H, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia[J]. Agricultural Water Management, 2004, 65(3): 193-210. |
[30] | Matczuk D, Siczek A. Effectiveness of the use of urease inhibitors in agriculture: A review[J]. International Agrophysics, 2021, 35(2): 197-208. |
[31] | Mishra A, Salokhe V M. The effects of planting pattern and water regime on root morphology, physiology and grain yield of rice[J]. Journal of Agronomy and Crop Science, 2010, 196(5): 11. |
[32] | 张露, 梁青铎, 吴龙龙, 黄晶, 田仓, 张均华, 曹小闯, 朱春权, 孔亚丽, 金千瑜, 朱练峰. 减氮和增氧灌溉对水稻产量和氮素利用的影响[J]. 中国水稻科学, 2023, 37(1): 78-88. |
Zhang L, Liang Q D, Wu L L, Huang J, Tian C, Zhang J H, Cao X C, Zhu C Q, Kong Y L, Jin Q Y, Zhu L F. Effects of nitrogen-reducing and oxygen-increasing irrigation on rice yield and nitrogen use efficiency[J]. Chinese Journal of Rice Science, 2023, 37(1): 78-88. (in Chinese with English abstract) | |
[33] | 彭玉, 孙永健, 蒋明金, 徐徽, 秦俭, 杨志远, 马均. 不同水分条件下缓/控释氮肥对水稻干物质量和氮素吸收、运转及分配的影响[J]. 作物学报, 2014, 40(5): 859-870. |
Peng Y, Sun Y J, Jiang M J, Xu H, Qin J, Yang Z Y, Ma J. Effects of water management and slow/controlled release nitrogen fertilizer on biomass and nitrogen accumulation, translocation, and distribution in rice[J]. Acta Agronomica Sinica, 2014, 40(5): 859-870. (in Chinese with English abstract) |
[1] | 吴金水, 唐江英, 谭立, 过志强, 杨娟, 张鑫臻, 陈桂芳, 王建龙, 施婉菊. 水稻对砷的吸收与转运机理及农艺阻控策略 [J]. 中国水稻科学, 2025, 39(2): 143-155. |
[2] | 马唯一, 朱济邹, 朱旺, 耿孝宇, 张翔, 刁刘云, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 戴其根, 韦还和. 盐害和干旱对稻米品质形成的影响及生理机制研究进展 [J]. 中国水稻科学, 2025, 39(2): 156-170. |
[3] | 张来桐, 杨乐, 刘洪, 赵学明, 程涛, 徐振江. 水稻香味物质的研究进展 [J]. 中国水稻科学, 2025, 39(2): 171-186. |
[4] | 冯涛, 张朝阳, 黄新妮, 王月, 钟旭志, 冯志明, 刘欣, 左示敏, 欧阳寿强. Osa-miR166i-3p介导活性氧积累途径正调控水稻纹枯病抗性 [J]. 中国水稻科学, 2025, 39(2): 187-196. |
[5] | 龚蒙萌, 宋书锋, 邱牡丹, 董皓, 张龙辉, 李磊, 李斌, 谌伟军, 李懿星, 王天抗, 雷东阳, 李莉. 水稻叶色基因OsClpP6的功能研究 [J]. 中国水稻科学, 2025, 39(2): 197-208. |
[6] | 闫影, 王凯, 张丽霞, 胡泽军, 叶俊华, 杨航, 顾春军, 吴书俊. 利用分子聚合育种培育优质多抗粳稻新品种沪香粳216 [J]. 中国水稻科学, 2025, 39(2): 209-219. |
[7] | 徐月梅, 彭诗燕, 孙志伟, 王志琴, 朱宽宇, 杨建昌. 不同耐低磷水稻品种的内源激素水平差异及其与产量和磷利用率的关系 [J]. 中国水稻科学, 2025, 39(2): 231-244. |
[8] | 唐承翰, 王晶卿, 陈惠哲, 张玉屏, 向镜, 张义凯, 王志刚, 怀燕, 陈佳峰, 王亚梁. 杂交稻条播育秧机插秧苗素质对产量的影响 [J]. 中国水稻科学, 2025, 39(2): 245-254. |
[9] | 舒傲, 解嘉鑫, 曹威, 周传名, 李蓓蕾, 陈嘉馨, 李莉, 曹放波, 陈佳娜, 黄敏. 氮肥运筹对优质杂交中稻产量和品质的影响 [J]. 中国水稻科学, 2025, 39(2): 255-263. |
[10] | 随晶晶, 赵桂龙, 金欣, 卜庆云, 唐佳琦. 水稻孕穗期耐冷调控的分子及生理机制研究进展[J]. 中国水稻科学, 2025, 39(1): 1-10. |
[11] | 任宁宁, 孙永建, 申聪聪, 朱双兵, 李慧菊, 张志远, 陈凯. 水稻中胚轴研究进展[J]. 中国水稻科学, 2025, 39(1): 11-23. |
[12] | 张丰勇, 应晓平, 张健, 杨隆维, 应杰政. 半矮秆基因sd1调控水稻重要农艺性状的研究进展[J]. 中国水稻科学, 2025, 39(1): 24-32. |
[13] | 陈智慧, 陶亚军, 范方军, 许扬, 王芳权, 李文奇, 古丽娜尔·巴合提别克, 蒋彦婕, 朱建平, 李霞, 杨杰. 水稻抽穗期调控基因Hd6功能标记的开发及应用[J]. 中国水稻科学, 2025, 39(1): 47-54. |
[14] | 胡风越, 王健, 王春, 王克剑, 刘朝雷. 水稻DMP1、DMP2、DMP3基因突变体的创制及其单倍体诱导能力鉴定[J]. 中国水稻科学, 2025, 39(1): 55-66. |
[15] | 吴猛, 倪川, 康钰莹, 毛雨欣, 叶苗, 张祖建. 水稻分蘖早发特性的品种间差异及其氮素响应[J]. 中国水稻科学, 2025, 39(1): 101-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||