中国水稻科学 ›› 2021, Vol. 35 ›› Issue (6): 543-553.DOI: 10.16819/j.1001-7216.2021.201211
龚柯1, 薛炮1, 温小霞1, 廖飞飞1, 孙滨2, 彭泽群1, 程式华1, 曹立勇1, 张迎信1, 吴玮勋1, 孙廉平1,*(), 占小登1,*()
收稿日期:
2020-12-15
修回日期:
2021-02-09
出版日期:
2021-11-10
发布日期:
2021-11-10
通讯作者:
孙廉平,占小登
基金资助:
Ke GONG1, Pao XUE1, Xiaoxia WEN1, Feifei LIAO1, Bin SUN2, Zequn PENG1, Shihua CHENG1, Liyong CAO1, Yingxin ZHANG1, Weixun WU1, Lianping SUN1,*(), Xiaodeng ZHAN1,*()
Received:
2020-12-15
Revised:
2021-02-09
Online:
2021-11-10
Published:
2021-11-10
Contact:
Lianping SUN, Xiaodeng ZHAN
摘要:
【目的】特异种质资源的发掘与利用是水稻优质高产育种的重要手段之一。明确特大籽粒种质BG1(Big Grain 1)和育种上广泛配组的优质恢复系华占携带的部分粒形基因等位变异类型,并开发相应基因的功能标记,有助于加快粒形基因的育种应用,提高水稻粒形精准改良的效率。【方法】对BG1和华占中的9个主效粒形基因(GS3、qLGY3、qGL3、GW2、GW8、GW5、TGW3、TGW6、GS9)的目的片段进行测序分析。并根据GW2、GS3、qGL3、TGW3、TGW6、qLGY3、GW8和GW5的测序结果,开发了鉴定其基因分型的功能标记。【结果】与日本晴相比,特大粒种质BG1在检测的9个主效粒形基因中有5个表现为功能缺失型(gs3、GW8、gw2、tgw3、tgw6),1个稀有等位变异(qgl3)和1个外显子可变剪切型(qlgy3);与日本晴相比,华占在检测的9个主效粒形基因中有3个(gs3、GW8、GW5)存在差异。根据测序结果开发了GW2、GS3、qGL3、TGW3、TGW6、qLGY3、GW8和GW5的功能标记,并利用15个水稻种质进行检测,检测结果中除了TGW6 的标记TGW6-Del 仅可用于鉴定是否含有功能缺失型的等位变异tgw6外,另外7个标记均为可准确鉴定基因型。【结论】与日本晴相比,特大粒种质BG1中调控粒长的基因gs3、qgl3、qlgy3、tgw3、GW8和tgw6之间可能存在复杂的互作调控通路,而不是简单的效应累加,粒宽特征可能是gw2、GW8的累加效应。优质恢复系华占的细长粒形可能是gs3、GW5和 GW8的互作效应所致。本研究中开发的功能标记可以用于水稻分子标记辅助育种。
龚柯, 薛炮, 温小霞, 廖飞飞, 孙滨, 彭泽群, 程式华, 曹立勇, 张迎信, 吴玮勋, 孙廉平, 占小登. 水稻特大粒种质BG1和优质恢复系华占的粒形基因研究及相关功能标记开发[J]. 中国水稻科学, 2021, 35(6): 543-553.
Ke GONG, Pao XUE, Xiaoxia WEN, Feifei LIAO, Bin SUN, Zequn PENG, Shihua CHENG, Liyong CAO, Yingxin ZHANG, Weixun WU, Lianping SUN, Xiaodeng ZHAN. Distribution of Grain Shape Related Genes in Rice Big Grain Germplasm BG1 and Elite Restorer Line Huazhan and Development of Relevant Functional Markers[J]. Chinese Journal OF Rice Science, 2021, 35(6): 543-553.
引物名称 Primer name | 前引物 Forward primer | 后引物 Reverse primer | 产物大小 Product size/bp |
---|---|---|---|
GS3-seq | ACTGTATGCTCAAAGCATCT | TGCTTTACTTTTTTTTTTGC | 1593 |
GL3.1-seq | GCCACTCATGCACCATAACTAC | ACCTCCTCGTAGACCTCCATAA | 435 |
LGY3-cds-1 | GCTGAAGCGGATCGAGAACAA | GCCGGATGGGATGTGTTCATT | 744 |
LGY3-YZ | ACTTGTTACCACATCCAAAACGG | AATCCTGACAATAATTCGCCCA | 522 |
GW2-cds-1 | CAGGGACATCGACCAGAAGAA | TACAACCATGCCAACCCTTG | 1199 |
GW5-indel-3 | TCCATGCAGTACTTGGTTTCC | AGATCTGAGCGGTAACTTTCTC | 938/2150 |
GW8-indel-2 | AGCTACAGAATCCAGAAACAAACCA | CTGGCCCCTTCCCCTTGG | 611 |
GS9-seq | GTTCCAACGCCAACAGCAC | CTTCGCGGTAGCGATCCAAT | 2601 |
TGW3-cds-1 | CCGGCTAGTTCGGTTGAATG | AGACGTTCGATGGCTTCTGG | 1153/1233 |
TGW6-cds-1 | CCACAGCCACAACGAGAATG | CGACTCCGACATACGGCAAT | 947 |
表1 本研究所用的测序引物
Table 1 Sequencing primers used in the study.
引物名称 Primer name | 前引物 Forward primer | 后引物 Reverse primer | 产物大小 Product size/bp |
---|---|---|---|
GS3-seq | ACTGTATGCTCAAAGCATCT | TGCTTTACTTTTTTTTTTGC | 1593 |
GL3.1-seq | GCCACTCATGCACCATAACTAC | ACCTCCTCGTAGACCTCCATAA | 435 |
LGY3-cds-1 | GCTGAAGCGGATCGAGAACAA | GCCGGATGGGATGTGTTCATT | 744 |
LGY3-YZ | ACTTGTTACCACATCCAAAACGG | AATCCTGACAATAATTCGCCCA | 522 |
GW2-cds-1 | CAGGGACATCGACCAGAAGAA | TACAACCATGCCAACCCTTG | 1199 |
GW5-indel-3 | TCCATGCAGTACTTGGTTTCC | AGATCTGAGCGGTAACTTTCTC | 938/2150 |
GW8-indel-2 | AGCTACAGAATCCAGAAACAAACCA | CTGGCCCCTTCCCCTTGG | 611 |
GS9-seq | GTTCCAACGCCAACAGCAC | CTTCGCGGTAGCGATCCAAT | 2601 |
TGW3-cds-1 | CCGGCTAGTTCGGTTGAATG | AGACGTTCGATGGCTTCTGG | 1153/1233 |
TGW6-cds-1 | CCACAGCCACAACGAGAATG | CGACTCCGACATACGGCAAT | 947 |
种质 | 千粒重 | 增幅 | 长宽比 | 增幅 | 粒长 | 增幅 | 粒宽 | 增幅 |
---|---|---|---|---|---|---|---|---|
Germplasm | TGW/g | Increase/% | GL/GW | Increase/% | GL/mm | Increase/% | GW/mm | Increase/% |
日本晴Nipponbare | 26.11 ± 0.33 | 2.19 ± 0.01 | 6.98 ± 0.01 | 3.19 ± 0.01 | ||||
BG1 | 62.97 ± 0.01 | 141.17 | 2.85 ± 0.04 | 30.14 | 12.18 ± 0.04 | 74.45 | 4.27 ± 0.06 | 33.86 |
华占Huazhan | 18.44 ± 0.13 | -29.38 | 3.85 ± 0.03 | 75.80 | 8.28 ± 0.08 | 16.62 | 2.15 ± 0.04 | -32.60 |
表2 日本晴、BG1和华占的粒形性状
Table 2 Grain shape characters of Nipponbare, BG1 and HZ.
种质 | 千粒重 | 增幅 | 长宽比 | 增幅 | 粒长 | 增幅 | 粒宽 | 增幅 |
---|---|---|---|---|---|---|---|---|
Germplasm | TGW/g | Increase/% | GL/GW | Increase/% | GL/mm | Increase/% | GW/mm | Increase/% |
日本晴Nipponbare | 26.11 ± 0.33 | 2.19 ± 0.01 | 6.98 ± 0.01 | 3.19 ± 0.01 | ||||
BG1 | 62.97 ± 0.01 | 141.17 | 2.85 ± 0.04 | 30.14 | 12.18 ± 0.04 | 74.45 | 4.27 ± 0.06 | 33.86 |
华占Huazhan | 18.44 ± 0.13 | -29.38 | 3.85 ± 0.03 | 75.80 | 8.28 ± 0.08 | 16.62 | 2.15 ± 0.04 | -32.60 |
图2 调控粒长的基因检测结果 A-GS3的测序结果;B-qGL3的测序结果;C-qLGY3的测序结果;D-BG1中qLGY3的外显子结构。Nip-seq-日本晴的基因组序列;Nip-cds-日本晴的CDS序列;BG1-seq-BG1的基因组序列;BG1-cds-BG1的CDS序列;HZ-seq-华占的基因组序列;HZ-cds-华占的CDS序列。Nip-日本晴;BG1-大粒1;HZ-华占。
Fig. 2. Detection results of genes for grain length. A, Sequence of GS3; B, Sequence of qGL3; C, Sequence of qLGY3; D, Exons structure of qLGY3 in BG1. Nip-seq, Genomic sequence of Nipponbare; Nip-cds, CDS sequence of Nipponbare; BG1-seq, Genome sequence of BG1; BG1-cds, CDS sequence of BG1; HZ-seq, Genome sequence of Huazhan; HZ-cds, CDS sequence of Huazhan. Nip, Nipponbare. BG1, Big Grain 1. HZ, Huazhan.
图3 调控粒宽的基因检测结果 A-GW2的测序结果;B-GW5琼脂糖凝胶电泳检测结果;C-GW8的测序结果;D-GS9的测序结果;Nip-seq-日本晴的基因组序列;Nip-cds-日本晴的CDS序列; BG1-seq-BG1的基因组序列;BG1-cds-BG1的CDS序列;HZ-seq-华占的基因组序列;HZ-cds-华占的CDS序列;Nip-日本晴;HZ-华占;BG1-大粒1。
Fig. 3. Detection results of genes for grain width. A, Sequence of GW2; B, Agarose gel test of GW5; C, Sequence of GW8; D, Sequence of GS9. Nip-seq, Genomic sequence of Nipponbare; Nip-cds, Sequence of Nipponbare; BG1-seq, Genome sequence of BG1; BG1-cds, CDS sequence of BG1; HZ-seq, Genome sequence of Huazhan. HZ-cds, CDS sequence of Huazhan. Nip, Nipponbare. HZ, Huazhan.
图4 调控千粒重的基因检测结果 A-TGW3的CDS测序结果;B-TGW3的外显子结构图;C-TGW6的CDS测序结果;Nip-seq-日本晴的基因组序列;Nip-cds-日本晴的CDS序列;BG1-cds-BG1的CDS序列;HZ-cds-华占的CDS序列;Nip-日本晴;BG1-大粒1。
Fig. 4. Detection results of genes for 1000-grain weight. A, CDS sequence of TGW3. B, Exons structure of TGW3. C, CDS sequence of TGW6. Nip-seq, Genomic sequence of Nipponbare. Nip-cds, CDS sequence of Nipponbare. BG1-cds, CDS sequence of BG1. HZ-cds, CDS sequence of Huazhan. Nip, Nipponbare.
材料Material | GS3 | qGL3 | qLGY3 | GW2 | GW8 | GW5 | GS9 | TGW3 | TGW6 |
---|---|---|---|---|---|---|---|---|---|
日本晴Nipponbare | - | - | - | - | gw8 | gw5 | - | - | - |
BG1 | gs3 | qgl3 | qlgy3 | gw2 | - | gw5 | - | tgw3 | tgw6 |
华占Huazhan | gs3 | - | - | - | - | - | - | - | - |
表3 日本晴、BG1与华占粒形相关的基因型
Table 3 Genotypes of grain-shape-related genes in Nipponbare, BG1 and Huazhan.
材料Material | GS3 | qGL3 | qLGY3 | GW2 | GW8 | GW5 | GS9 | TGW3 | TGW6 |
---|---|---|---|---|---|---|---|---|---|
日本晴Nipponbare | - | - | - | - | gw8 | gw5 | - | - | - |
BG1 | gs3 | qgl3 | qlgy3 | gw2 | - | gw5 | - | tgw3 | tgw6 |
华占Huazhan | gs3 | - | - | - | - | - | - | - | - |
引物名称 Primer name | 前引物 Forward primer | 后引物 Reverse primer | 内切酶 Enzyme | 产物长度 Product size/bp |
---|---|---|---|---|
GS3-SNP | GGATCCACGCTGCCTCCAGATGGTG | TTGCCAAGGTTTTATAATCAATGGT | Hph Ⅰ | 225/203 |
TGW3-SNP | CTACGATCCGTGGCCGAAA | TTACAATGAAAAAGCCACAGGCGTA | Rsa Ⅰ | 206/185 |
qGL3-SNP | CGATTCTATCTGGTTCAGTGGTAGA | AAACAGGTTTTCTTACCTCCTCGT | Acc Ⅰ | 212/192/170 |
GW2-InDel | CAACTCACACTGCTCAGCCTACA | ATACTCCACAGCATAACTGGGAGTCT | Pst Ⅰ | 133/99 |
TGW6-InDel | AGCCCCAGCTACACGAAAAACAAGTCCGCG | CCCATTGGTGAAGCGAAGTG | Sac Ⅱ | 221/196 |
LGY3-InDel | GGGCCTAATTTTGTCTTTGTTATTC | GTCTGCTGCTTCATTGCTCA | Sty Ⅰ | 162/85/77 |
GW8-InDel | GCGTCAACACACAGCTCAAG | CGGCATCTTGAGATCCCACTC | 89/79 | |
GW5-InDel3 | TCCATGCAGTACTTGGTTTCC | AGATCTGAGCGGTAACTTTCTC | 2150/938 |
表4 主效粒形基因的功能标记信息
Table 4 Function marker information of major grain shape genes.
引物名称 Primer name | 前引物 Forward primer | 后引物 Reverse primer | 内切酶 Enzyme | 产物长度 Product size/bp |
---|---|---|---|---|
GS3-SNP | GGATCCACGCTGCCTCCAGATGGTG | TTGCCAAGGTTTTATAATCAATGGT | Hph Ⅰ | 225/203 |
TGW3-SNP | CTACGATCCGTGGCCGAAA | TTACAATGAAAAAGCCACAGGCGTA | Rsa Ⅰ | 206/185 |
qGL3-SNP | CGATTCTATCTGGTTCAGTGGTAGA | AAACAGGTTTTCTTACCTCCTCGT | Acc Ⅰ | 212/192/170 |
GW2-InDel | CAACTCACACTGCTCAGCCTACA | ATACTCCACAGCATAACTGGGAGTCT | Pst Ⅰ | 133/99 |
TGW6-InDel | AGCCCCAGCTACACGAAAAACAAGTCCGCG | CCCATTGGTGAAGCGAAGTG | Sac Ⅱ | 221/196 |
LGY3-InDel | GGGCCTAATTTTGTCTTTGTTATTC | GTCTGCTGCTTCATTGCTCA | Sty Ⅰ | 162/85/77 |
GW8-InDel | GCGTCAACACACAGCTCAAG | CGGCATCTTGAGATCCCACTC | 89/79 | |
GW5-InDel3 | TCCATGCAGTACTTGGTTTCC | AGATCTGAGCGGTAACTTTCTC | 2150/938 |
种质名称 Germplasm | 粒型特征 Grain morphology | 基因分型 Genotype | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TGW | GL/GW | GL | GW | GS3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5 | |||
日本晴 | 25.39±0.20 | 2.20±0.01 | 7.01±0.02 | 3.20±0.01 | GS3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | gw8 | gw5 | ||
9311 | 28.47±0.22 | 3.58±0.01 | 9.07±0.03 | 2.55±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5/gw5 | ||
中恢9308 | 20.15±0.24 | 3.08±0.01 | 7.70±0.03 | 2.51±0.01 | GS3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | gw5 | ||
中恢8015 | 37.03±0.33 | 3.29±0.01 | 10.03±0.01 | 3.05±0.01 | gs3 | TGW3 | qGL3 | GW2 | tgw6 | qLGY3 | GW8 | GW5 | ||
长粒粳 | 29.72±0.15 | 3.59±0.01 | 9.51±0.01 | 2.66±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | gw8 | GW5/gw5 | ||
BG1 | 62.97±0.01 | 2.85±0.04 | 12.18±0.04 | 4.27±0.06 | gs3 | tgw3 | qgl3 | gw2 | tgw6 | qlgy3 | GW8 | gw5 | ||
IR6 | 23.23±0.29 | 4.06±0.02 | 9.20±0.04 | 2.27±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5/gw5 | ||
华占 | 19.03±0.38 | 3.88±0.02 | 8.29±0.03 | 2.15±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5 | ||
中花11 | 23.94±0.21 | 2.19±0.01 | 6.92±0.01 | 3.17±0.02 | GS3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | gw8 | gw5 | ||
02428 | 23.86±0.20 | 2.32±0.02 | 6.87±0.01 | 2.98±0.02 | GS3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | gw8 | gw5 | ||
NJ11 | 25.34±0.13 | 2.59±0.01 | 7.49±0.01 | 2.90±0.01 | GS3 | TGW3 | qGL3 | GW2 | tgw6 | qLGY3 | GW8 | gw5 | ||
玉针香 | 27.17±0.07 | 5.63±0.02 | 11.65±0.04 | 2.08±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5/gw5 | ||
IR24 | 24.49±0.09 | 3.63±0.02 | 8.81±0.04 | 2.44±0.02 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5/gw5 | ||
IR26 | 23.93±0.10 | 3.6±0.01 | 8.76±0.03 | 2.44±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5/gw5 | ||
IR64 | 24.57±0.12 | 4.01±0.02 | 9.07±0.03 | 2.27±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5/gw5 |
表5 15个水稻种质的粒型考查与基因分型
Table 5 Grain morphology and genotyping of 15 germplasm.
种质名称 Germplasm | 粒型特征 Grain morphology | 基因分型 Genotype | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TGW | GL/GW | GL | GW | GS3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5 | |||
日本晴 | 25.39±0.20 | 2.20±0.01 | 7.01±0.02 | 3.20±0.01 | GS3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | gw8 | gw5 | ||
9311 | 28.47±0.22 | 3.58±0.01 | 9.07±0.03 | 2.55±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5/gw5 | ||
中恢9308 | 20.15±0.24 | 3.08±0.01 | 7.70±0.03 | 2.51±0.01 | GS3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | gw5 | ||
中恢8015 | 37.03±0.33 | 3.29±0.01 | 10.03±0.01 | 3.05±0.01 | gs3 | TGW3 | qGL3 | GW2 | tgw6 | qLGY3 | GW8 | GW5 | ||
长粒粳 | 29.72±0.15 | 3.59±0.01 | 9.51±0.01 | 2.66±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | gw8 | GW5/gw5 | ||
BG1 | 62.97±0.01 | 2.85±0.04 | 12.18±0.04 | 4.27±0.06 | gs3 | tgw3 | qgl3 | gw2 | tgw6 | qlgy3 | GW8 | gw5 | ||
IR6 | 23.23±0.29 | 4.06±0.02 | 9.20±0.04 | 2.27±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5/gw5 | ||
华占 | 19.03±0.38 | 3.88±0.02 | 8.29±0.03 | 2.15±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5 | ||
中花11 | 23.94±0.21 | 2.19±0.01 | 6.92±0.01 | 3.17±0.02 | GS3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | gw8 | gw5 | ||
02428 | 23.86±0.20 | 2.32±0.02 | 6.87±0.01 | 2.98±0.02 | GS3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | gw8 | gw5 | ||
NJ11 | 25.34±0.13 | 2.59±0.01 | 7.49±0.01 | 2.90±0.01 | GS3 | TGW3 | qGL3 | GW2 | tgw6 | qLGY3 | GW8 | gw5 | ||
玉针香 | 27.17±0.07 | 5.63±0.02 | 11.65±0.04 | 2.08±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5/gw5 | ||
IR24 | 24.49±0.09 | 3.63±0.02 | 8.81±0.04 | 2.44±0.02 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5/gw5 | ||
IR26 | 23.93±0.10 | 3.6±0.01 | 8.76±0.03 | 2.44±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5/gw5 | ||
IR64 | 24.57±0.12 | 4.01±0.02 | 9.07±0.03 | 2.27±0.01 | gs3 | TGW3 | qGL3 | GW2 | TGW6 | qLGY3 | GW8 | GW5/gw5 |
图5 8个粒形基因dCAPS功能标记检测分型1~15分别为日本晴、9311、中恢9308、中恢8015、长粒粳、BG1、IR56、华占、中花11、02428、南京11、玉针香、IR24、IR26、IR64。
Fig. 5. Typing of eight grain shape genes detected by dCAPS functional marker. 1-15 are the germplasm number in this test, as follows: 1, Nipponbare; 2, 9311; 3, Zhonghui 9308; 4, Zhonghui 8015; 5, Changlijing; 6, BG1; 7, IR56; 8, Huazhan; 9, Zhonghua 11; 10, 02428; 11, Nanjing 11; 12, Yuzhenxiang; 13, IR24; 14, IR26; 15, IR64.
[1] | Li N, Xu R, Duan P G, Li Y H.Control of grain size in rice[J]. Plant Reproduction, 2018, 31(3): 237-251. |
[2] | Mao H L, Sun S Y, Yao J L, Yu S B, Xu C G, Li X H, Zhang Q F.Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19579-19584. |
[3] | Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171. |
[4] | Fan C C, Yu S B, Wang C R, Xing Y Z.A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker[J]. Theoretical and Applied Genetics, 2009, 118(3): 465-472. |
[5] | Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustaamante C, Yoshimura A, Kazuyuki. Evolutionary history of GS3, a gene conferring grain length in rice[J]. Genetics, 2009, 182(4):1323-1334. |
[6] | Wang C R, Chen S, Yu S B.Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice[J]. Theoretical and Applied Genetics, 2011, 122(5): 905-913. |
[7] | Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X.The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22(12): 1666-1680. |
[8] | Gao X Y, Zhang J Q, Zhang X J, Zhou J, Jiang Z S, Huang P, Tang Z B, Bao Y M, Cheng J P, Tang H J, Zhang W H, Zhang H H, Huang J.Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling[J]. Plant Cell, 2019, 31(5): 1077-1093. |
[9] | Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S.Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21534-21539. |
[10] | Hu Z J, He H H, Zhang S Y, Sun F, Xin X Y, Wang W X, Qian X, Yang J S, Luo X J.A Kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice.Journal of Integrative Plant Biology, 2012, 54(12): 979-990. |
[11] | Liu Q, Han R X, Wu K, Zhang J Q, Ye Y F, Wang S S, Chen J F, Pan Y J, Li Q, Xu X P, Zhou J W, Tao D Y, Wu Y J, Fu X D.G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nature Communications, 2018, 9(1): 852. |
[12] | Wang C S, Tang S C, Zhan Q L, Hou Q Q, Zhao Y, Zhao Q, Feng Q, Zhou C C, Lyu D F, Cui L L, Li Y, Miao J S, Zhu C R, Lu Y Q, Wang Y C, Wang Z Q, Zhu J J, Shangguan Y Y, Gong J Y, Yang S H, Wang W Q, Zhang J F, Xie H A, Huang X H, Han B.Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy[J]. Nature Communications, 2019, 10(1): 2982. |
[13] | Song X J, Huang W, Shi M, Zhu M Z, Lin H X.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.Nature Genetics, 2007, 39(5): 623-630. |
[14] | Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M.GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice[J]. Nature Plants, 2017, 10(4): 17043. |
[15] | Duan P G, Xu J G, Zeng D L, Zhang B L, Geng M F, Zhang G Z, Huang K, Huang L J, Xu R, Ge S, Qian Q, Li Y H.Natural variation in the promoter of GSE5 contributes to grain size diversity in rice[J]. Molecular Plant, 2017, 10(5): 685-694. |
[16] | Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D.Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[17] | Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q.GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature Communications, 2018, 9(1): 1240. |
[18] | Hu Z J, Lu S J, Wang M J, He H H, Sun L, Wang H R, Liu X H, Jiang L, Sun J L, Xin X Y, Kong W, Chu C C, Xue H W, Yang J S, Luo X J, Liu J X.A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant, 2018, 11(5): 736-749. |
[19] | Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J.TGW3, a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant, 2018, 11(5): 750-753. |
[20] | Xia D, Zhou H, Liu R J, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q.GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice[J]. Molecular Plant, 2018, 11(5): 754-756. |
[21] | Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E.Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 2013, 45(6): 707-711. |
[22] | Gao X Y, Zhang X J, Lan H X, Huang J, Wang J F, Zhang H S.The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons[J]. BMC Plant Biology, 2015, 15:156. |
[23] | Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D.The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954. |
[24] | 陈杰, 朱业宝, 孙新立, 翁群清, 张国杰, 梁康迳. 一个特大粒水稻种质粒形相关基因的检测[J]. 分子植物育种, 2017, 15(2): 576-581. |
Chen J, Zhu Y B, Sun X L, Weng Q Q, Zhang G J, Liang K J.Detection of grain shape related genes in a large grain rice germplasm[J]. Molecular Plant Breeding, 2017, 15(2): 576-581. | |
[25] | Rogers S O, Bendich A J.Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues[J]. Plant Molecular Biology, 1985, 5(2): 69-76. |
[26] | Neff M M, Turk E, Kalishman M.Web-based primer design for single nucleotide polymorphism analysis[J]. Trends in Genetics, 2002, 18(12): 613-615. |
[27] | Zhang L, Ma B, Bian Z, Li X Y, Zhang C Q, Liu J Y, Li Q, Liu Q Q, He Z H.Grain size selection using novel functional markers targeting 14 genes in rice[J]. Rice, 2020, 13(1): 63. |
[28] | 肖国樱, 肖友伦, 李锦江, 邓力华, 翁绿水, 孟秋成, 于江辉. 高效是当前水稻育种的主导目标[J].中国水稻科学, 2019, 33(4): 287-292. |
Xiao G Y, Xiao Y L, Li J J, Deng L H, Weng L S, Meng Q C, Yu J H.High efficiency is the leading goal of rice breeding at present[J]. Chinese Journal of Rice Science, 2019, 33(4): 287-292. (in Chinese with English abstract) | |
[29] | 裔传灯, 王德荣, 蒋伟, 李玮, 成晓俊, 王颖, 周勇, 梁国华, 顾铭洪. 水稻粒形基因GW8的功能标记开发和单体型鉴定[J]. 作物学报, 2016, 42(9): 1291-1297. |
Yi C D, Wang D R, Jiang W, Li W, Cheng X J, Wang Y, Zhou Y, Liang G H, Gu M H.Development of functional markers and haplotype identification of rice grain shape gene GW8[J]. Acta Agronomica Sinica, 2016, 42(9): 1291-1297. (in Chinese with English abstract) | |
[30] | 刘李鑫哲, 何宇涵, 炎会敏, 李俊周, 赵全志. 水稻粒宽基因GW5和GW8功能标记的开发与多重PCR检测[J]. 分子植物育种, 2019, 17(13):4280-4288. |
LiuLi X Z, He Y H, Yan H M, Li J Z, Zhao Q Z. Development of functional markers of rice grain width genes GW5 and GW8 and detection of multiple PCR[J]. Molecular Plant Breeding, 2019, 17(13): 4280-4288. | |
[31] | 陈深广, 周屹峰, 赵霏, 金亮, 沈圣泉. 利用Wx和fgr基因双功能性标记高效选育优质水稻保持系[J]. 中国水稻科学, 2011, 25(1): 31-36. |
Chen S G, Zhou Y F, Zhao F, Jin L, Shen S Q.High quality rice maintainer lines were selected by using bifunctional markers of Wx and fgr genes[J]. Chinese Journal of Rice Science, 2011, 25(1): 31-36. (in Chinese with English abstract) | |
[32] | 李扬, 徐小艳, 严明, 冯芳君, 马孝松, 梅捍卫. 利用GS3基因功能性分子标记改良水稻粒型的研究[J]. 上海农业学报, 2016, 32(1): 1-5. |
Li Y, Xu X Y, Yan M, Feng F J, Ma X S, Mei H W.Study on the improvement of rice grain shape by functional molecular markers of GS3 gene[J]. Shanghai Journal of Agriculture, 2016, 32(1):1-5. (in Chinese with English abstract) |
[1] | 侯本福, 杨传铭, 张喜娟, 杨贤莉, 王立志, 王嘉宇, 李红宇, 姜树坤. 利用龙稻5号/中优早8号RIL群体定位粒形QTL[J]. 中国水稻科学, 2024, 38(1): 13-24. |
[2] | 王军, 周晶, 陶亚军, 李文奇, 朱建平, 范方军, 王芳权, 许扬, 陈智慧, 蒋彦婕, 李霞, 杨杰. 基于HRM技术开发水稻糊化温度基因ALK功能标记[J]. 中国水稻科学, 2024, 38(1): 106-110. |
[3] | 马兆惠, 石一涵, 程海涛, 宋文雯, 路连吉, 刘仁广, 吕文彦. 水稻种子胚形态与胚乳组成对稻米留胚特性的影响[J]. 中国水稻科学, 2023, 37(3): 265-275. |
[4] | 王石光, 陆展华, 刘维, 卢东柏, 王晓飞, 方志强, 巫浩翔, 何秀英. 应用CRISPR/Cas9技术与分子标记辅助选择创制广东丝苗米新种质[J]. 中国水稻科学, 2023, 37(1): 29-36. |
[5] | 徐云姬, 唐树鹏, 简超群, 蔡文璐, 张伟杨, 王志琴, 杨建昌. 多胺与乙烯对水稻籽粒灌浆、粒重和品质的调控作用[J]. 中国水稻科学, 2022, 36(4): 327-335. |
[6] | 黄涛, 王燕宁, 钟奇, 程琴, 杨朦朦, 王鹏, 吴光亮, 黄诗颖, 李才敬, 余剑峰, 贺浩华, 边建民. 利用染色体片段置换系群体定位和分析水稻粒重和粒型QTL[J]. 中国水稻科学, 2022, 36(2): 159-170. |
[7] | 闫浩亮, 王松, 王雪艳, 党程成, 周梦, 郝蓉蓉, 田小海. 不同水稻品种在高温逼熟下的表现及其与气象因子的关系[J]. 中国水稻科学, 2021, 35(6): 617-628. |
[8] | 曹煜东, 肖湘谊, 叶乃忠, 丁晓雯, 易晓璇, 刘金灵, 肖应辉. 生长素调控因子OsGRF4协同调控水稻粒形和稻瘟病抗性[J]. 中国水稻科学, 2021, 35(6): 629-638. |
[9] | 杜成兴, 张华丽, 戴冬青, 吴明月, 梁敏敏, 陈俊宇, 马良勇. 水稻粒重粒形QTL的定位及qTGW1.2/qGL1.2的验证[J]. 中国水稻科学, 2021, 35(4): 359-372. |
[10] | 邓雪梅, 胡鹏, 王月影, 文艺, 谭义青, 伍豪, 吴凯雄, 王俊格, 侯琳琳, 朱黎欣, 朱丽, 陈光, 曾大力, 张光恒, 郭龙彪, 高振宇, 任德勇, 钱前, 胡江. 水稻粒宽突变体gw4的鉴定与基因定位[J]. 中国水稻科学, 2021, 35(3): 259-268. |
[11] | 王广达, 高鹏, 杨文艳, 崔傲, 赵剑华, 冯志明, 曹文磊, 陈宗祥, 左示敏. 金粳818抗咪唑啉酮类除草剂基因的功能标记开发与应用[J]. 中国水稻科学, 2020, 34(4): 316-324. |
[12] | 李盼盼, 朱玉君, 郭梁, 庄杰云, 樊叶杨. 利用剩余杂合体衍生的近等基因系精细定位水稻粒长微效QTL qGL1.1[J]. 中国水稻科学, 2020, 34(2): 125-134. |
[13] | 朱安东, 孙志超, 朱玉君, 张荟, 牛小军, 樊叶杨, 张振华, 庄杰云. 应用剩余杂合体衍生群体定位水稻粒重粒形QTL[J]. 中国水稻科学, 2019, 33(2): 144-151. |
[14] | 黄海祥, 钱前. 水稻粒形遗传与长粒型优质粳稻育种进展[J]. 中国水稻科学, 2017, 31(6): 665-672. |
[15] | 裔传灯, 王德荣, 蒋伟, 李玮, 成晓俊, 王颖, 周勇, 梁国华, 顾铭洪. 水稻粒宽基因GS5的功能标记开发和单倍型鉴定[J]. 中国水稻科学, 2016, 30(5): 487-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||