中国水稻科学 ›› 2021, Vol. 35 ›› Issue (3): 225-237.DOI: 10.16819/j.1001-7216.2021.0719
收稿日期:
2020-07-28
修回日期:
2021-02-05
出版日期:
2021-05-10
发布日期:
2021-05-10
通讯作者:
崔瑾
基金资助:
Bo FANG, Tengwei XIAO, Nana SU, Yan XIA, Zhenguo SHEN, Jin CUI*()
Received:
2020-07-28
Revised:
2021-02-05
Online:
2021-05-10
Published:
2021-05-10
Contact:
Jin CUI
摘要:
随着土壤和大气沉降物中重金属污染的问题日益严峻,农作物重金属超标时有发生。土壤中的重金属难以降解,容易被植物根部吸收,在作物中积累;大气中的重金属沉降到叶片上,通过叶片吸收进入作物中,最终通过食物链被人类食用,危害人体健康。水稻是我国最重要的粮食作物,大米中存在镉超标问题。镉(Cd)是水稻的非必需元素,主要借助其他金属离子通道蛋白进入水稻根细胞,还可以通过叶片角质层的吸附内化和气孔的渗透作用进入水稻叶片。Cd依赖其他金属离子的转运体在水稻体内运输,Cd从土壤中吸收和植物内部的分配是一个动态过程,通过根吸收转运蛋白、根-地上部转运(木质部转运)和韧皮部的源-库转运(包括种子装载)驱动,实现器官间的转运分配。本文综述了水稻Cd的吸收与转运、器官间Cd的运输分配以及Cd向籽粒转运积累,以期为减少水稻籽粒中Cd含量的研究和解决我国南方部分种植地区Cd污染问题提供一些参考。
方波, 肖腾伟, 苏娜娜, 夏妍, 沈振国, 崔瑾. 水稻镉吸收及其在各器官间转运积累的研究进展[J]. 中国水稻科学, 2021, 35(3): 225-237.
Bo FANG, Tengwei XIAO, Nana SU, Yan XIA, Zhenguo SHEN, Jin CUI. Research Progress on Cadmium Uptake and Its Transport and Accumulation Among Organs in Rice[J]. Chinese Journal OF Rice Science, 2021, 35(3): 225-237.
转运体名称 Transporter name | 主要表达部位 Main expression location | 亚细胞定位 Subcellular localization | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
OsNramp1/5 | 根外皮层和内皮层 Exodermis and endodermis in root | 细胞膜 Plasma membrane | 根吸收Cd的主要转运体 The main transporters of Cd uptake by roots | [26-27] |
OsIRT1/2 | 根外皮层和内皮层 Exodermis and endodermis in root | 细胞膜 Plasma membrane | 参与根系Cd吸收 Involved in root Cd absorption | [28-29] |
OsCd1 | 根皮层细胞和中柱鞘细胞 Root cortex cells and pericycle cells | 细胞膜 Plasma membrane | 参与根细胞对Cd的吸收 Involved in Cd uptake by root cells | [31] |
OsABCG36 | 根细胞(除表皮细胞) Root cells (except epidermal cells) | 细胞膜 Plasma membrane | 将Cd排到细胞间隙 Discharge the Cd into the intercellular space | [32] |
OsHMA3 | 根细胞 Root cells | 液泡膜 Tonoplast | Cd被隔离到液泡 Transportation of Cd from cytoplasm to vacuoles | [34-36] |
OsHMA2 | 根部维管束组织中,茎节的韧皮部 Root vascular bundle and the phloem of the node | 细胞膜 Plasma membrane | 参与Cd的木质部/韧皮部装载 Participation in xylem/phloem loading of Cd | [57, 66] |
OsCCX2 | 茎节维管组织的木质部区域 Xylem region of node vascular tissue | 细胞膜 Plasma membrane | 负责将Cd装载到木质部导管中 Responsible for loading Cd into xylem vessels | [58] |
CAL1 | 根、胚芽鞘、剑叶鞘和茎节 Root, coleoptile, flag leaf sheath and stem node | - | 负责将Cd装载到木质部导管中 Responsible for loading Cd into xylem vessels | [59-60] |
OsLCT1 | 茎节和叶片 Stem nodes and leaf blades | 细胞膜 Plasma membrane | 参与Cd的韧皮部装载 Participation in phloem loading of Cd | [67] |
表1 水稻中Cd吸收转运相关转运体
Table 1 Cd uptake and transport related transporters in rice.
转运体名称 Transporter name | 主要表达部位 Main expression location | 亚细胞定位 Subcellular localization | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
OsNramp1/5 | 根外皮层和内皮层 Exodermis and endodermis in root | 细胞膜 Plasma membrane | 根吸收Cd的主要转运体 The main transporters of Cd uptake by roots | [26-27] |
OsIRT1/2 | 根外皮层和内皮层 Exodermis and endodermis in root | 细胞膜 Plasma membrane | 参与根系Cd吸收 Involved in root Cd absorption | [28-29] |
OsCd1 | 根皮层细胞和中柱鞘细胞 Root cortex cells and pericycle cells | 细胞膜 Plasma membrane | 参与根细胞对Cd的吸收 Involved in Cd uptake by root cells | [31] |
OsABCG36 | 根细胞(除表皮细胞) Root cells (except epidermal cells) | 细胞膜 Plasma membrane | 将Cd排到细胞间隙 Discharge the Cd into the intercellular space | [32] |
OsHMA3 | 根细胞 Root cells | 液泡膜 Tonoplast | Cd被隔离到液泡 Transportation of Cd from cytoplasm to vacuoles | [34-36] |
OsHMA2 | 根部维管束组织中,茎节的韧皮部 Root vascular bundle and the phloem of the node | 细胞膜 Plasma membrane | 参与Cd的木质部/韧皮部装载 Participation in xylem/phloem loading of Cd | [57, 66] |
OsCCX2 | 茎节维管组织的木质部区域 Xylem region of node vascular tissue | 细胞膜 Plasma membrane | 负责将Cd装载到木质部导管中 Responsible for loading Cd into xylem vessels | [58] |
CAL1 | 根、胚芽鞘、剑叶鞘和茎节 Root, coleoptile, flag leaf sheath and stem node | - | 负责将Cd装载到木质部导管中 Responsible for loading Cd into xylem vessels | [59-60] |
OsLCT1 | 茎节和叶片 Stem nodes and leaf blades | 细胞膜 Plasma membrane | 参与Cd的韧皮部装载 Participation in phloem loading of Cd | [67] |
[1] | 杨红霞, 陈俊良, 刘崴. 镉对植物的毒害及植物解毒机制研究进展[J]. 江苏农业科学, 2019, 47(2): 1-8. |
Yang H X, Chen J L, Liu W.Research progress on the toxicity of cadmium to plants and the mechanism of plant detoxification[J]. Jiangsu Agricultural Sciences, 2019, 47(2): 1-8. (in Chinese) | |
[2] | 何俊瑜, 王阳阳, 任艳芳, 周国强, 杨良静. 镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响[J]. 生态环境学报, 2009, 18(5): 1863-1868. |
He J Y, Wang Y Y, Ren Y F, Zhou G Q, Yang L J.Effects of cadmium stress on morphological and physiological characteristics of seedling roots of different rice varieties.Journal of Eco-Environment, 2009, 18(5): 1863-1868. (in Chinese with English abstract) | |
[3] | 张利红, 李培军, 李雪梅, 孟雪莲, 徐成斌. 镉胁迫对小麦幼苗生长及生理特性的影响[J]. 生态学杂志, 2005, 24(4): 458-460. |
Zhang L H, Li P J, Li X M, Meng X L, Xu C B.Effects of cadmium stress on the growth and physiological characteristics of wheat seedlings[J]. Chinese Journal of Ecology, 2005, 24(4): 458-460. (in Chinese with English abstract) | |
[4] | 陈良, 隆小华, 郑晓涛, 刘兆普. 镉胁迫下两种菊芋幼苗的光合作用特征及镉吸收转运差异的研究[J]. 草业学报, 2011, 20(6): 60-67. |
Chen L, Long X H, Zheng X T, Liu Z P.Effect on the photosynthetic characteristics of Cd uptake and translocation in seedlings of two Helianthus tuberosus varieties[J]. Acta Prataculturae Sinica, 2011, 20(6): 60-67.(in Chinese with English abstract) | |
[5] | Zhang F, Shi W, Jin Z, Shen Z.Response of antioxidative enzymes in cucumber chloroplasts to cadmium toxicity[J]. Journal of Plant Nutrition, 2003, 26(9): 1779-1788. |
[6] | 任安芝, 高玉葆, 刘爽. 铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J]. 应用与环境生物学报, 2000(2): 112-116. |
Ren A Z, Gao Y B, Liu S.Effects of Cr, Cd and Pb on free proline content etc in leaves of Brassica Chinensis L[J]. Chinese Journal of Applied & Environmental Biology, 2000(2): 112-116. (in Chinese with English abstract) | |
[7] | Clemens S, Aarts M G M, Thomine S, Verbruggen N. Plant science: The key to preventing slow cadmium poisoning[J]. Trends in Plant Science, 2013, 18(2): 92-99. |
[8] | 金永芹, 陈海霞, 阎观玲. 环境中的镉污染及其对人体的危害[J]. 决策探索: 上半月, 2007(7): 54. |
Jin Y Q, Chen H X, Yan G L.Cadmium pollution in the environment and its harm to human body[J]. Policy Research & Exploration, 2007(7): 54. (in Chinese) | |
[9] | Nawrot T S, Staessen J A, Roels H A, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters H, Vangronsveld J.Cadmium exposure in the population: From health risks to strategies of prevention[J]. Biometals, 2010, 23(5): 769-782. |
[10] | 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践[J]. 中国农业科学, 2015, 48(17): 3404-3414. |
Zhu D F, Zhang Y P, Chen H Z, Xiang J, Zhang Y K.Innovation and practice of high-yield rice cultivation technology in China[J]. Scientia Agricultura Sinica, 2015, 48(17): 3404-3414. (in Chinese with English abstract) | |
[11] | 田艳芬, 史锟. 镉对水稻等作物的毒害作用[J]. 垦殖与稻作, 2003(5): 26-28. |
Tian Y F, Shi K. Poisonous effects on rice and vegetables by cadmium[J]. Reclaiming and Rice Cultivation, 2003(5): 26-28. (in Chinese) | |
[12] | 何俊瑜, 任艳芳, 严玉萍, 朱诚, 蒋德安. 镉胁迫对水稻幼苗生长和根尖细胞分裂的影响[J]. 土壤学报, 2010, 47(1): 138-144. |
He J Y, Ren Y F, Yan Y P, Zhu C, Jiang D A.Impacts of cadmium stress on the growth of rice seedlings and division of their root tip cells[J]. Acta Pedologica Sinica, 2010, 47(1): 138-144. (in Chinese with English abstract) | |
[13] | 孙亚莉, 刘红梅, 徐庆国. 镉胁迫对不同水稻品种苗期光合特性与生理生化特性的影响[J]. 华北农学报, 2017, 32(4): 176-181. |
Sun Y L,Liu H M, Xu Q G.Effect of cadmium stress on photosynthetic characteristics and physiological and biochemical traits during seedling stage of different rice cultivars[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(4): 176-181. | |
[14] | 甄燕红, 成颜君, 潘根兴, 李恋卿. 中国部分市售大米中Cd、Zn、Se的含量及其食物安全评价[J]. 安全与环境学报, 2008(1): 119-122. |
Zhen Y H, Cheng Y J, Pan G X, Li L Q. Cd, Zn and Se content of the polished rice samples from some Chinese open markets and their relevance to food safety[J]. Journal of Safety and Environment, 2008(1): 119-122. (in Chinese with English abstract) | |
[15] | 胡艳美, 王旭军, 党秀丽. 改良剂对农田土壤重金属镉修复的研究进展[J]. 江苏农业科学, 2020, 48(6): 17-23. |
Hu Y M, Wang X J, Dang X L.Research progress of amendments on remediation of heavy metal cadmium in farmland soil[J]. Jiangsu Agricultural Sciences, 2020, 48(6): 17-23. (in Chinese) | |
[16] | 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 环境教育, 2014: 8-10. |
Ministry of Environmental Protection, Ministry of Land and Resources. National survey bulletin of soil pollution status[J]. Environmental Education, 2014: 8-10. (in Chinese) | |
[17] | Luo L, Ma Y, Zhang S, Wei D, Zhu Y.An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8): 2524-2530. |
[18] | Connan O, Maro D, Hébert D, Roupsard P, Goujon R, Letellier B, Le Cavelier S. Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France[J]. Atmospheric Environment, 2013(67): 394-403. |
[19] | Fujimaki H, Suzui N, Ishioka N S, Kawachi N, Ito S, Chino M, Nakamura S.Tracing cadmium from culture to spikelet: Noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152: 1796-1806. |
[20] | 邓湘雄, 王慧中, 徐祥彬, 薛大伟. 水稻镉耐性研究进展[J]. 杭州师范大学学报: 自然科学版, 2009, 8(6): 457-462. |
Deng X X, Wang H Z, Xu X B, Xue D W.Research advances of heavy mental cadmium tolerance of rice (Oryza sativa L.)[J]. Journal of Hangzhou Normal University: Natural Sciences Edition, 2009, 8(6): 457-462. (in Chinese with English abstract) | |
[21] | 杨春刚, 廖西元, 章秀福, 朱智伟, 陈铭学, 王丹英, 牟仁祥, 陈温福, 周淑清. 不同基因型水稻籽粒对镉积累的差异[J]. 中国水稻科学, 2006, 20(6): 660-662. |
Yang C G, Liao X Y, Zhang X F, Zhu Z W, Chen M X, Wang D Y, Mou R X, Chen W F, Zhou S Q.Genotypic difference in cadmium accumulation in brown rice[J]. Chinese Journal of Rice Science, 2006, 20(6): 660-662. (in Chinese with English abstract) | |
[22] | 吴启堂, 陈卢, 王广寿. 水稻不同品种对Cd吸收累积的差异和机理研究[J]. 生态学报, 1999(1): 3-5. |
Wu Q T, Chen L, Wang G S.Differences on Cd uptake and accumulation among rice cultivars and its mechanism[J]. Acta Ecologica Sinica, 1999(1): 3-5. (in Chinese with English abstract) | |
[23] | 鄂志国, 张玉屏, 王磊. 水稻镉胁迫应答分子机制研究进展[J]. 中国水稻科学, 2013, 27(5): 539-544. |
E Z G, Zhang Y P, Wang L. Molecular mechanism of rice responses to cadmium stress[J]. Chinese Journal of Rice Science, 2013, 27(5): 539-544. (in Chinese with English abstract) | |
[24] | Xiong J, An L, Lu H, Zhu C.Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall[J]. Planta, 2009, 230(4): 755-765. |
[25] | Li H, Zheng X, Tao L, Yang Y, Gao L, Xiong J.Aeration increases cadmium (Cd) retention by enhancing iron plaque formation and regulating pectin synthesis in the roots of rice (Oryza sativa) seedlings[J]. Rice, 2019, 12: 28. |
[26] | Sasaki A, Yamaji N, Yokosho K, Ma J F.Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2155-2167. |
[27] | Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K.Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2(1): 286. (in Chinese with English abstract) |
[28] | Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa N K.Rice plants take up iron as an Fe3+ phytosiderophore and as Fe2+[J]. The Plant Journal, 2006, 45(3): 335-346. |
[29] | Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K.Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469. |
[30] | Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa N K.Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice[J]. Plant Signaling & Behavior, 2011, 6(11): 1813-1816. |
[31] | Yan H, Xu W, Xie J, Gao Y, Wu L, Sun L, Feng L, Chen X, Zhang T, Dai C, Li T, Lin X, Zhang Z, Wang X, Li F, Zhu X, Li J, Li Z, Chen C, Ma M, Zhang H, He Z.Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies[J]. Nature Communications, 2019, 10: 2562. (in Chinese with English abstract) |
[32] | Fu S, Lu Y, Zhang X, Yang G, Chao D, Wang Z, Shi M, Chen J, Chao D, Li R, Ma J F, Xia J.The ABC transporter ABCG36 is required for cadmium tolerance in rice[J]. Journal of Experimental Botany, 2019, 70(20): 5909-5918. |
[33] | Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Ma J F.Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of Sciences, 2010, 107(38): 16500-16505. |
[34] | Miyadate H, Adachi S, Hiraizumi A, Kawamoto T, Katou K, Kodama I, Satoh-Nagasawa, Namiko, Watanabe, Fujimura A, Tatsuhito, Hiromo. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011, 189(1): 190-199. (in Chinese with English abstract) |
[35] | Sasaki A, Yamaji N, Ma J F.Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. Journal of Experimental Botany, 2014, 65(20): 6013-6021. |
[36] | Lu C, Zhang L, Tang Z, Huang X, Ma J F, Zhao F.Producing cadmium-free indica rice by overexpressing OsHMA3[J]. Environment International, 2019, 126: 619-626. |
[37] | Bondada B R, Tu S, Ma L Q.Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)[J]. Science of the Total Environment, 2004, 332(1-3): 61-70. |
[38] | Schreck E, Foucault Y, Sarret G, Sobanska S, Cécillon L, Castrec-Rouelle M, Uzu G, Dumat C. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead[J]. Science of The Total Environment, 2012, 427-428: 253-262. |
[39] | Xiong T, Leveque T, Austruy A, Goix S, Schreck E, Dappe V, Sobanska S, Foucault Y, Dumat C.Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter[J]. Environmental Geochemistry and Health, 2014, 36(5): 897-909. |
[40] | Salim R, Al-Subu M M, Atallah A. Effects of root and foliar treatments with lead, cadmium, and copper on the uptake distribution and growth of radish plants[J]. Environment International, 1993, 19(4): 393-404. |
[41] | Wojcik P.Uptake of mineral nutrients from foliar fertilization[J]. Journal of Fruit and Ornamental Plant Research, 2004, 12(1): 201-218. |
[42] | Fageria N K, Barbosa Filho M P, Moreira A, Guimaraes C M. Foliar fertilization of crop plants[J]. Journal of Plant Nutrition, 2009, 32(6): 1044-1064. |
[43] | Levi E, Dalschaert X, Wilmer J B M. Retention and absorption of foliar applied Cr[J]. Plant and Soil, 1973. |
[44] | Natasha, Shahid M, Khalid S. Foliar application of lead and arsenic solutions to Spinacia oleracea: Biophysiochemical analysis and risk assessment[J]. Environmental Science and Pollution Research, 2020, 23(15): 39763-39773. |
[45] | Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark W J, Günther D, Limbach L K.No evidence for cerium dioxide nanoparticle translocation in maize plants[J]. Environmental Science & Technology, 2010, 44(22): 8718-8723. |
[46] | Chamel A, Pineri M, Escoubes M.Quantitative- determination of water sorption by plant cuticles[J]. Plant Cell and Environment, 1991, 14(1): 87-95. |
[47] | Eichert T, Kurtz A, Steiner U, Goldbach H E.Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles[J]. Physiologia Plantarum, 2008, 134(1): 151-160. |
[48] | Nair R, Varghese S H, Nair B G, Maekawa T, Yoshida Y, Kumar D S.Nanoparticulate material delivery to plants[J]. Plant Science, 2010, 179(3): 154-163. |
[49] | Carini F, Bengtsson G.Post-deposition transport of radionuclides in fruit[J]. Journal of Environmental Radioactivity, 2001, 52(2): 215-236. |
[50] | Schreiber L, Schonherr J.Water and Solute Permeability of Plant Cuticles: Measurement and Data Analysis[M]. Berlin, Heidelberg: Springer, 2009. |
[51] | Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G.Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation[J]. Journal of Hazardous Materials, 2014, 264: 98-106. |
[52] | Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cecillon L, Ouerdane L, Legros S, Sarret G.Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure[J]. Journal of Hazardous Materials, 2014, 273: 17-26. |
[53] | Roth-Nebelsick A.Computer-based studies of diffusion through stomata of different architecture[J]. Annals of Botany, 2007, 100(1): 23-32. |
[54] | Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi N K.Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake[J]. Journal of Hazardous Materials, 2017, 325: 36-58. |
[55] | 宋瑜, 马艳华, 唐希望, 何鑫. 重金属镉(Cd)在植物体内转运途径研究进展[J]. 中国环境管理干部学院学报, 2019, 29(3): 56-59. |
Song Y, Ma Y H, Tang X W, He X.Research progress of cadmium transference pathway in plant[J]. Journal of Environmental Management College of China, 2019, 29(3): 56-59. (in Chinese with English abstract) | |
[56] | Clemens S, Ma J F.Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology, 2016, 67(1): 489-512. |
[57] | Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H.Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant and Cell Physiology, 2012, 53(1): 213-224. |
[58] | Hao X, Zeng M, Wang J, Zeng Z, Dai J, Xie Z, Yang Y, Tian L, Chen L, Li D.A Node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice[J]. Frontiers in Plant Science, 2018, 9: 476. (in Chinese with English abstract) |
[59] | Luo J, Huang J, Zeng D, Peng J, Zhang G, Ma H, Guan Y, Yi H, Fu Y, Han B, Lin H, Qian Q, Gong J.A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications, 2018, 9(1): 645. (in Chinese with English abstract) |
[60] | Zhao F, Huang X.Cadmium phytoremediation: Call rice CAL1[J]. Molecular Plant, 2018, 11(5): 640-642. |
[61] | Tanaka K, Fujimaki S, Fujiwara T, Yoneyama T, Hayashi H.Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.)[J]. Soil Science and Plant Nutrition, 2007, 53(1): 72-77. |
[62] | Reeves P G, Chaney R L.Bioavailability as an issue in risk assessment and management of food cadmium: A review[J]. Science of the Total Environment, 2008, 398(1-3): 13-19. |
[63] | Khan M A, Castro-Guerrero N, Mendoza-Cozatl D G. Moving toward a precise nutrition: Preferential loading of seeds with essential nutrients over non-essential toxic elements[J]. Frontiers in Plant Science, 2014, 5: 51. (in Chinese with English abstract) |
[64] | Yamaguchi N, Ishikawa S, Abe T, Baba K, Arao T, Terada Y.Role of the node in controlling traffic of cadmium, zinc, and manganese in rice[J]. Journal of Experimental Botany, 2012, 63(7): 2729-2737. |
[65] | Yamaji N, Ma J F.The node, a hub for mineral nutrient distribution in graminaceous plants[J]. Trends in Plant Science, 2014, 19(9): 556-563. |
[66] | Yamaji N, Xia J, Mitani-Ueno N, Yokosho K, Feng M J.Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2[J]. Plant Physiology, 2013, 162(2): 927-939. |
[67] | Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T.Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences, 2011, 108(52): 20 959-20 964. |
[68] | 刘松梅. 水稻镉运输基因OsLCT1和OsNramp5的特征与突变分析[D]. 杭州: 浙江大学, 2019. |
Liu S M.Characterization and mutational analysis of cadmium transport genes OsLCTl and OsNrampS in rice. Hangzhou: Zhejiang University[D], 2019. (in Chinese with English abstract) | |
[69] | Liu J G, Qian M, Cai G L, Yang J C, Zhu Q S.Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain[J]. Journal of Hazardous Materials, 2007, 143(1-2): 443-447. |
[70] | Kashiwagi T, Shindoh K, Hirotsu N, Ishimaru K.Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice[J]. BMC Plant Biology, 2009, 9: 8. |
[71] | Rodda M S, Li G, Reid R J.The timing of grain Cd accumulation in rice plants: The relative importance of remobilisation within the plant and root Cd uptake post-flowering[J]. Plant and Soil, 2011, 347: 105-114. |
[72] | Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa N K.Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(15): 5727-5734. |
[73] | Cao Z Z, Lin X Y, Yang Y J, Guan M Y, Xu P, Chen M X.Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq[J]. BMC Plant Biology, 2019, 19: 250. (in Chinese with English abstract) |
[74] | Pan X, Li Y, Liu W, Liu S, Min J, Xiong H, Dong Z, Duan Y, Yu Y, Li X.QTL mapping and candidate gene analysis of cadmium accumulation in polished rice by genome-wide association study[J]. Scientific Reports, 2020, 10: 11791. (in Chinese with English abstract) |
[75] | Wang Q, Zeng X, Song Q, Sun Y, Feng Y, Lai Y.Identification of key genes and modules in response to Cadmium stress in different rice varieties and stem nodes by weighted gene co-expression network analysis[J]. Scientific Reports, 2020, 10(1): 9525. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||