中国水稻科学
     首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  留言板  |  联系我们  |  English
中国水稻科学  2011, Vol. 25 Issue (1): 112-118     DOI:
综述与专论 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
细胞膜质子泵在水稻耐铵机制中的作用机理探讨
朱毅勇;曾后清;狄廷均;徐国华;沈其荣*
南京农业大学 资源与环境科学学院, 江苏 南京 210095;*通讯联系人, E-mail: shenqirong@njau.edu.cn
Investigation on the Mechanism of Adaption of Plasma Membrane H+ATPase to Ammonium Nutrition in Rice
ZHU Yi-yong;ZENG Hou-qing;DI Ting-jun;XU Guo-hua;SHEN Qi-rong*
Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing 210095, China; *Corresponding author, E-mail: shenqirong@njau.edu.cn
 全文: PDF (543 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 水稻是一种典型的耐铵植物。由于铵态氮营养条件会导致根系分泌大量的氢离子,对植物生长产生胁迫。因此,耐铵植物应具备耐酸的能力。细胞膜质子泵具有主动排出质子,调节细胞内外pH的功能。结合目前的研究结果,探讨了水稻根系细胞膜质子泵在铵态氮与低pH两个因素交叉作用下活性的变化及其调节机制,以阐明水稻耐铵的一个必要机制。上述结果对于丰富植物耐铵机制的研究具有重要的理论与实践意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱毅勇
曾后清
狄廷均
徐国华
沈其荣
关键词水稻   喜铵性   细胞膜质子泵   机制     
AbstractThe preference of paddy rice for NH4+ rather than NO3- is associated with its tolerance to low pH since a rhizosphere acidification occurs during NH4+ absorption. However, the adaptation of rice root to low pH has not been fully elucidated. The plasma membrane H+ATPase is a universal electronic H+ pump, which uses ATP as energy source to pump H+ across plasma membranes into the apoplast. The key function of this enzyme is to keep pH homeostasis of plant cells and generate a H+ electrochemical gradient, thereby providing the driving force for the active influx and efflux of ions and metabolites across the plasma membrane. The acclimation of plasma membrane H+ ATPase of rice root to low pH may be partly responsible for the preference of rice plants to NH4+ nutrition.
Key wordsrice   ammonium preference   H+ -ATPase   
收稿日期: 1900-01-01;
引用本文:   
朱毅勇,曾后清,狄廷均等. 细胞膜质子泵在水稻耐铵机制中的作用机理探讨[J]. 中国水稻科学, 2011, 25(1): 112-118 .
ZHU Yi-yong,ZENG Hou-qing,DI Ting-jun et al. Investigation on the Mechanism of Adaption of Plasma Membrane H+ATPase to Ammonium Nutrition in Rice[J]. , 2011, 25(1): 112-118 .
 
[1] Gigon A, Rorison I H. The response of some ecologically distinct plant species to nitrate- and ammonium-nitrogen. J Ecol, 1972, 60: 93-102.
[2] Arth I, Frenzel P. Denitrification coupled to nitrification in the rhizosphere of rice soils: The detection of processes by a new multi-channel electrode. Biol Fertil Soils, 2000, 31: 427-435.
[3] Britto D T, Glass A D M, Kronzucker H J, et al. Cytosolic concentrations and transmembrane fluxes of NH4+/NH3: An evaluation of recent proposals. Plant Physiol, 2001, 125: 523-526.
[4] Brix H, Dyhr-Jensen K, Lorenzen B. Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate. J Exp Bot, 2002, 53: 2441-2450.
[5] Loqué D, von Wirén N. Regulatory levels for the transport of ammonium in plant roots. J Exp Bot, 2004, 55: 1293-1305.
[6] Lewis O A M, James D M, Hewitt E J. Nitrogen assimilation in barley (Hordeum vulgare L. cv. Mazurka) in response to nitrate and ammonium nutrition. Ann Bot, 1982, 49: 39-49.
[7] Magalhaes J R, Ju G C, Rich P J, et al. Kinetics of 15NH4+ assimilation in Zea mays: Preliminary studies with a glutamate dehydrogenase (GDH1) null mutant. Plant Physiol, 1990, 94: 647-656.
[8] Kronzucker H J, Siddiqi M Y, Glass A D M. Analysis of 13NH4+ efflux in spruce roots(a test-case for phase identification in compartmental analysis). Plant Physiol, 1995, 109: 481-490.
[9] Pearson J, Stewart G R. The deposition of atmospheric ammonia and its effects on plants. New Phytol, 1993, 125: 283-305.
[10] Heber U. Advances in Photosynthesis Research. Hague: Nijhoff/Junk, 1984: 381-389.
[11] Holldampf B, Barker A V. Effects of ammonium on elemental nutrition of red spruce and indicator plants grown in acid soil. Commu Soil Sci Plant Anal, 1993, 24: 1945-1957.
[12] Cao W, Tibbits T W. Study of various NH4+/NO3- mixtures for enhancing growth of potatoes. J Plant Nutr, 1993, 16: 1691-1704.
[13] Speer M, Brune A, Kaiser W M. Replacement of nitrate by ammonium as the nitrogen source increases the salt sensitivity of pea plants: Ⅰ. Ion concentrations in roots and leaves. Plant Cell & Environ, 1994, 17: 1215-1221.
[14] Barker A V, Volk R, Jackson W A. Root environment acidity as a regulatory factor in ammonium assimilation by the bean plant. Plant Physiol, 1966, 41: 1193-1199.
[15] Gerends J, Zhu Z, Bendixen R, et al. Physiological and biochemical processes related to ammonium toxicity in higher plants. Z Pflanzenernhr Bodenk, 1997, 160: 239-251.
[16] Bligny R, Gout E, Kaiser W, et al. pH regulation in acid-stressed leaves of pea plants grown in the presence of nitrate or ammonium salts: Studies involving 31P-NMR spectroscopy and chlorophyll fluorescence. Biochim Biophy Acta, 1997, 1320: 142-152.
[17] Marschner H, Rmheld V. In vivo measurement of root-induced pH changes at the soil-root interface: Effect of plant species and nitrogen source. Z Pflanzenernhr Bodenk, 1983, 111: 241-251.
[18] Raven J A. Biochemical disposal of excess H+ in growing plants? New Phytol, 1986, 104: 175-206.
[19] Kirkby E A, Mengel K. Ionic balance in different tissues of the tomato plants in relation to nitrate, urea and ammonium nutrition. Plant Physiol, 1967, 42: 6-14.
[20] Mengel K, Kirkby E A. Principles of Plant Nutrition. 3rd edn. London: Kluwer Academic Publishers, 1982.
[21] Wang M Y, Siddiqi M Y, Ruth T J, et al. Ammonium uptake by rice roots: Ⅱ. Kinetics of 13NH4+ influx across the plasmalemma. Plant Physiol, 1993, 103: 1259-1267.
[22] Miller A J, Cramer M D. Root nitrogen acquisition and assimilation. Plant & Soil, 2004, 274: 1-36.
[23] Kleiner D. The transport of NH3 and NH4+ across biological membranes. Biochim Biophys Acta, 1981, 639: 41-52.
[24] Howitt S M, Udvardi M K. Structure, function and regulation of ammonium transporters in plants. Biochim Biophys Acta, 2000, 1465: 152-170.
[25] Ludewig U, von Wirén N, Frommer W B. Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem, 2002, 277: 13548-13555.
[26] Schubert S, Schubert E, Mengel K. Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba). Plant & Soil, 1990, 124: 239-244.
[27] Fyson A. Angiosperms in acidic waters at pH 3 and below. Hydrobiologia, 2000, 433: 129-135.
[28] Begg C B M, Kirk G J D, MacKenzie A F, et al. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol, 1994, 128: 469-477.
[29] Schurkes J A A R, Kok C J, Den H C. Ammonium and nitrate uptake by aquatic plants from poorly buffered and acidified waters. Aquatic Bot, 1986, 24: 131-146.
[30] Wieder R K, Linton M N, Heston K P. Laboratory mesocosm studies of Fe, Al, Mn, Ca, and Mg dynamics in wetlands exposed to synthetic acid coal mine drainage. Water Air & Soil Pollution, 1990, 51: 181-196.
[31] Ishiyama K, Inoue E, Tabuchi M, et al. Biochemical background and compartmentatized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol, 2004, 45: 1640-1647.
[32] Britto D T, Siddiqi M Y, Glass A D M, et al. Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA, 2001, 98: 4255-4258.
[33] Britto D T, Kronzucker H J. Futile cycling at the plasma membrane: A hallmark of low-affinity nutrient transport. Trends Plant Sci, 2006, 11: 529-534.
[34] Yan F, Schubert S, Mengel K. Effect of low root medium pH on net proton release, root respiration, and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiol, 1992, 99: 415-421.
[35] Marschner H. Mineral nutrition of higher plants. 2nd edn. London: Academic Press, 1995: 231-254.
[36] Felle H. Short-term pH regulation in plants. Physiol Plant, 1988, 74: 583-591.
[37] Smith F A, Raven J A. Intracellular pH and its regulation. Ann Rev Plant Physiol, 1979, 30: 289-311.
[38] Davies D D. Control of and by pH//Symposium of the Society for Experimental Biology 27. Rate Control of Biological Processes. London: Cambridge University Press,1973: 513 529.
[39] Davies D D. The fine control of cytosolic pH. Physiol Plant, 1986, 67: 702-706.
[40] Crawford L A, Bown A W, Breitkreuz K E, et al. The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiol, 1994, 104: 865-871.
[41] Yang X, Rmheld V, Marschner H. Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza sativa L.). Plant & Soil, 1994, 164: 1-7.
[42] Raven J A. Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol, 1976, 76: 415-431.
[43] Serrano R. Recent molecular approaches to the physiology of the plasma membrane proton pump. Bot Acta, 1990, 103: 230-234.
[44] Schubert S. Proton release by plant roots//Plant Physiology and Biochemistry. New Delhi: Panina Publishing Corporation, 1995: 97-119.
[45] Yan F, Feuerle R, Schaffer S, et al. Adaptation of active proton pumping and plasmalemma ATPase activity of corn roots to low root medium pH. Plant Physiol, 1998, 117: 311-319.
[46] 狄廷均, 朱毅勇, 仇美华, 等.水稻根系细胞膜H+-ATPase对铵硝营养的响应差异. 中国水稻科学, 2007, 21: 360-366. 浏览
[47] Palmgren M G. Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 817-845.
[48] Sze H, Li X, Palmgren M G. Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis. Plant Cell & Environ, 1999, 11: 677-689.
[49] Oufattole M, Arango M, Boutry M. Identification and expression of three new Nicotiana plumbaginifolia genes which encode isoforms of a plasma-membrane H+-ATPase, and one of which is induced by mechanical stress. Planta, 2000, 210: 715-722.
[50] Arango M, Gevaudant F D R, Oufattole M, et al. The plasma membrane proton pump ATPase: The significance of gene subfamilies. Planta, 2003, 216: 355-365.
[51] Michelet B, Lukaszewiez M, Dupriez V. A plant plasma membrane proton-ATPase gene is regulated by development and environment and shows signs of translational regulation. Plant Cell & Environ, 1994, 6: 1375-1389.
[52] Houlne G, Boutry M. Identification of an Arabidopsis thaliana gene encoding a plasma membrane H+-ATPase whose expression is restricted to anther tissue. Plant J, 1994, 5: 311-317.
[53] Harper J F, Manney L, Sussman M R. The plasma membrane H+-ATPase gene family in Arabidopsis: Genomic sequence of AHA10 which is expressed primarily in developing seeds. Mol Gen Genet, 1994, 244: 572-587.
[54] Niu X, Damsz B, Kononowicz A K, et al. NaCl-induced alterations in both cell structure and tissue-specific plasma membrane H+-ATPase gene expression. Plant Physiol, 1996, 111: 679-686.
[55] Vitart V, Baxter I, Doerner P, et al. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant J, 2001, 27: 191-201.
[56] Yan F, Zhu Y, Mueller C, et al. Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol, 2002, 129: 50-63.
[57] Ahn S J, Sivaguru M, Osawa H, et al. Aluminum inhibits the H+-ATPase activity by permanently altering the PM surface potentials in squash roots. Plant Physiol, 2001, 126: 1381-1390.
[58] Ahn S J, Sivaguru M, Chung G C, et al. Aluminum-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo). J Exp Bot, 2002, 53: 1959-1966.
[59] Shen H, He L F, Sasaki T, et al. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress: Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol, 2005, 138: 287-296.
[60] Janicka-Russak M, Kabala K, Burzynski M, et al. Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot, 2008, 59: 3721-3728.
[61] Santi S, Locci G, Monte R, et al. Induction of nitrate uptake in maize roots: Expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. J Exp Bot, 2003, 54: 1851-1864.
[62] Yamashita K, Kasai M, Ezaki B, et al. Stimulation of H+ extrusion and plasma membrane H+-ATPase activity of barley roots by ammonium-treatment. Soil Sci Plant Nutri, 1995, 41: 133-140.
[63] Quaggiotti S, Ruperti B, Borsa P, et al. Expression of a putative high-affinity NO3- transporter and of an H+-ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. J Exp Bot, 2003, 54: 1023-1031.
[64] Shen H, Chen J, Wang Z, et al. Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation. J Exp Bot, 2006, 57: 1353-1362.
[65] Song K M, Jiao X Z, Li L, et al. The relationship between phosphate uptake and changes in plasmalemma H+-ATPase activities from the roots of tomato seedlings during phosphate starvation. Acta Phytophy Sin, 2001, 27: 87-93.
[66] Robert A G, Michael G P, Karin S. Plant proton pumps. FEBS Lett, 2007, 581: 2204-2214.
[67] Palmgren M G, Sommarin M, Serrano R. Identification of an autoinhibitory domain in the C-terminal region of the plantplasma membrane H+-ATPase. J Biol Chem, 1991, 266: 20470-20475.
[68] Jelich-Ottmann C, Weiler E W, Oecking C. Binding of regulatory 14-3-3 proteins to the C terminus of the plant plasma membrane H+-ATPase involves part of its autoinhibitory region. J Biol Chem, 2001, 276: 9852-9857.
[69] Kim Y S, Min J K, Kim D, et al. A soluble auxin binding protein, ABP57: Purification with anti-bovine serum albumin antibody and characterization of its mechanistic role in auxin effect on plant plasma membrane H+-ATPase. J Biol Chem, 2001, 276: 10730-10736.
[70] Zhu Y Y, Di T J, Xu G H, et al. Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell & Environ, 2009, 99: 415-421.
[71] Matson P A, Boone R D. Natural disturbance and nitrogen mineralization: Wave-form dieback of mountain Hemlock in the Oregon Cascades. Ecology, 1984, 65: 1511-1516.
[72] Kidd P S, Proctor J. Why plants grow poorly on very acid soils: Are ecologists missing the obvious? J Exp Bot, 2001, 52: 791-799.
[73] Lucassen E C H E T, Bobbink R, Smolders A J P, et al. Interactive effects of low pH and high ammonium levels responsible for the decline of Cirsium dissectum (L.) Hill. Plant Ecol, 2002, 65: 1511-1516.
[74] van den Berg L J L, Dorland E, Vergeer P, et al. Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytol, 2005, 166: 551-564.
[75] Guo J H, Liu X J, Zhang J L, et al. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010.
[1] 徐建军1, 2, 赵强3, 汤在祥1, 赵元凤1, 朱磊1, 徐辰武1, 顾铭洪1, 韩斌3 . 利用重测序的染色体片段代换系群体定位水稻粒型QTL[J]. 中国水稻科学, 2011, 25(4): 365-369.
[2] 马翠, 范晓荣*, 徐国华. 武运粳7号超表达OsNRT1.2 后对硝酸盐的响应[J]. 中国水稻科学, 2011, 25(4): 349-356.
[3] 李育红1, 2, 戴正元1, 李爱宏1, 陈夕军2, 王宝和1, 赵步洪1, 刘广青1, 潘学彪2,张洪熙1,*. 水稻骨干亲本BG90-2在扬稻系列培育中的作用及对白叶枯病抗性 [J]. 中国水稻科学, 2011, 25(4): 439-442.
[4] 辛明月, 殷红 *,张涛, 张美玲 . 基于高光谱遥感的水稻冠层吸收光合有效辐射的估算研究[J]. 中国水稻科学, 2011, 25(4): 443-446.
[5] 黄兴国1, 2,汪广勇1,#,余金洪1,丁毅1,*. 水稻同核异质雄性不育系的细胞质遗传效应与细胞学研究[J]. 中国水稻科学, 2011, 25(4): 370-380.
[6] 徐福荣1, 2, 董超1, 杨文毅1, 汤翠凤1, 阿新祥1, 张恩来1, 杨雅云1, 张斐斐1, 戴陆园1, *, 张红生2, *. 利用微卫星标记比较云南元阳哈尼梯田两个不同时期种植的水稻地方品种的遗传多样性[J]. 中国水稻科学, 2011, 25(4): 381-386.
[7] 于萍, 袁筱萍, 徐群, 王彩红, 余汉勇, 王一平, 魏兴华*. 中国常规稻主栽品种的遗传结构及籼粳组分变化[J]. 中国水稻科学, 2011, 25(4): 387-391.
[8] 张亚洁, 华晶晶, 李亚超, 陈莹莹, 杨建昌*. 不同种植方式下磷素营养对陆稻和水稻米质的影响[J]. 中国水稻科学, 2011, 25(4): 399-406.
[9] 刘国坤, 王玉, 肖顺, 张绍升*. 水稻根结线虫病的病原鉴定及其侵染源的研究[J]. 中国水稻科学, 2011, 25(4): 420-426.
[10] 汤亮1, 李艳大1, 2, 张玉屏1, 3, 朱相成1, 刘小军1, 曹卫星1, 朱艳1, *. 水稻冠层光分布模拟与应用[J]. 中国水稻科学, 2011, 25(4): 427-434.
[11] 龚金龙1, 张洪程1, *, 李杰1, 常勇1, 戴其根1, 霍中洋1, 许轲1, 魏海燕1, 李德剑2, 李炳维2, 沙安勤2, 周有炎2, 罗学超2, 朱镇3. 施磷量对超级稻南粳44产量和品质的影响[J]. 中国水稻科学, 2011, 25(4): 447-451.
[12] 李 鹏, ,葛 滢,吴龙华,沈丽波,谭维娜,骆永明. 两种籽粒镉含量不同水稻的镉吸收转运及其生理效应差异初探
[J]. 中国水稻科学, 2011, 25(3): 291-296 .
[13] 张水清, 钟旭华, 黄农荣, 吕国安. 稻草覆盖还田对华南双季晚稻物质生产和产量的影响[J]. 中国水稻科学, 2011, 25(3): 284-290 .
[14] 张志勇,王冬兰,张存政,吴长付,刘贤进. 苯醚甲环唑在水稻和稻田中的残留[J]. 中国水稻科学, 2011, 25(3): 339-342 .
[15] 赵艳,罗园园,张晓丽,郭龙彪, 钱前, 董禹然. 一种简便的获得无标记耐盐转基因水稻植株的NaCl有效筛选浓度选择法[J]. 中国水稻科学, 2011, 25(3): 243-248 .
[16] 吴绍华,薛晶晶,张红宇,徐培洲,吴先军. 双胚苗水稻单倍体及其杂交后代基因组DNA甲基化特异位点的分析及功能探讨[J]. 中国水稻科学, 2011, 25(3): 249-255 .
[17] 吴 超,付亚萍,胡国成,斯华敏,刘旭日,孙宗修,程式华,刘文真, . 一个水稻类病变黄叶突变体的鉴定和精细定位[J]. 中国水稻科学, 2011, 25(3): 256-260 .
[18] 方云霞,宋修娟,彭友林,董国军,郭龙彪,曾大力,张光恒,颜红岚,钱 前,. 水稻皱曲叶突变体rtl1的遗传分析与分子定位[J]. 中国水稻科学, 2011, 25(3): 261-266 .
[19] 周振玲, ,魏祥进, 江 玲 ,刘 凯,徐大勇,翟虎渠,万建民 . 我国西南地区粳稻品种抽穗期的遗传分析[J]. 中国水稻科学, 2011, 25(3): 267-276 .
[20] 董明辉,谢裕林,乔中英 ,刘晓斌,吴翔宙,赵步洪,杨建昌,. 水稻不同粒位籽粒淀粉与蛋白质累积动态差异[J]. 中国水稻科学, 2011, 25(3): 297-306 .
[21] 范宏环,王林友,张礼霞,于 新,王 曦,金庆生,王建军. 通过分子标记辅助选择技术选育携有水稻白叶枯病抗性基因Xa23的水稻株系[J]. 中国水稻科学, 2011, 25(3): 331-334 .
[22] 张顺堂,张桂莲 ,陈立云,肖应辉 . 高温胁迫对水稻剑叶净光合速率和叶绿素荧光参数的影响[J]. 中国水稻科学, 2011, 25(3): 335-338 .
[23] 顾建伟, 刘婧, 薛彦久, 臧新, 谢先芝. 光敏色素在水稻生长发育中的作用[J]. 中国水稻科学, 2011, 25(2): 130-135 .
[24] 陈夕军, ,刘晓维,左示敏,童蕴慧,潘学彪,徐敬友, . 水稻多聚半乳糖醛酸酶抑制蛋白基因(Ospgip1)原核表达及编码产物生物信息学分析[J]. 中国水稻科学, 2011, 25(2): 136-142 .
[25] 马健阳, 陈孙禄, , 张建辉, , 董彦君, 滕胜, . 一个水稻类病条纹斑突变体的鉴定和遗传定位[J]. 中国水稻科学, 2011, 25(2): 150-156 .
[26] 姜华, 赵江红, 郭龙彪, 姜亮, 薛大伟, 曾大力, 钱前, 孙国昌,. 水稻高节位分蘖的QTL定位和互作分析[J]. 中国水稻科学, 2011, 25(2): 157-162 .
[27] 李生强, 崔国昆, 关成冉, 王俊, 梁国华. 基于水稻单片段代换系的粒形QTL定位[J]. 中国水稻科学, 2011, 25(2): 163-168 .
[28] 兰艳荣, 王俊义, 王弋, 牟同敏 . 分子标记辅助选择改良水稻光温敏核不育系华201S的白叶枯病抗性[J]. 中国水稻科学, 2011, 25(2): 169-174 .
[29] 董超, 徐福荣, 杨文毅, 张恩来, 杨雅云, 汤翠凤, 阿新祥, 戴陆园,. 布朗族当前种植稻作地方品种的SSR位点多样性分析[J]. 中国水稻科学, 2011, 25(2): 175-181 .
[30] 唐文邦,张桂莲,肖应辉,邓化冰,范 科,刘国华,陈立云. 三个C两优杂交稻组合的株型及干物质生产特性[J]. 中国水稻科学, 2011, 25(2): 189-194 .
[31] 赵锋,徐春梅,张卫建,章秀福,程建平,王丹英. 根际溶氧量与氮素形态对水稻根系特征及氮素积累的影响[J]. 中国水稻科学, 2011, 25(2): 195-200 .
[32] 邹成佳,唐芳,杨媚,贺晓霞,李献军,周而勋. 华南3省(区)水稻纹枯病菌的生物学性状与致病力分化研究[J]. 中国水稻科学, 2011, 25(2): 206-202 .
[33] 徐德进,顾中言,徐广春,许小龙,范鹏. 药液表面张力与喷雾方法对雾滴在水稻植株上沉积的影响[J]. 中国水稻科学, 2011, 25(2): 213-218 .
[34] 刘寿东, 史佩剑, 江晓东, 姚克敏, 胡凝. 转基因水稻B2花粉活力的温度模型[J]. 中国水稻科学, 2011, 25(2): 219-222 .
[35] 应兴华,徐霞,杨仕华,朱智伟,陈铭学,王磊,程本义,夏俊辉. 水稻籽粒农药残留的品种间差异性[J]. 中国水稻科学, 2011, 25(2): 227-230 .
[36] 章松柏, 罗汉刚, 张求东, 张长青, 吴祖建 , 谢联辉. 湖北发生的水稻矮缩病是南方水稻黑条矮缩病毒引起的 [J]. 中国水稻科学, 2011, 25(2): 223-226 .
[37] 谢金水, 邵彩虹, 唐秀英, 石庆华,. 养分胁迫对籽粒灌浆期水稻叶片衰老影响的蛋白质组学分析[J]. 中国水稻科学, 2011, 25(2): 143-149 .
[38] 裴庆利,王春连,刘丕庆,王坚,赵开军,. 分子标记辅助选择在水稻抗病虫基因聚合上的应用[J]. 中国水稻科学, 2011, 25(2): 119-129 .
[39] 郭士伟, 王永飞, 马三梅, 李霞,高东迎.

一个水稻叶片白化转绿叶突变体的遗传分析和精细定位

[J]. 中国水稻科学, 2011, 25(1): 95-98 .
[40] 季英华,高瑞珍, ,张野,程兆榜,周彤,范永坚,周益军, . 一种快速同步检测水稻黑条矮缩病毒和南方水稻黑条矮缩病毒的方法[J]. 中国水稻科学, 2011, 25(1): 91-94 .
[41] 林洪鑫,潘晓华,石庆华,彭春瑞,吴建富,雷享亮. 行株距配置对超高产早晚稻产量的影响[J]. 中国水稻科学, 2011, 25(1): 79-85 .
[42] 张鼎鼎, 邹丽芳, 赵梅勤, 邹华松, 陈功友. hrcQ基因决定水稻条斑病菌在非寄主烟草上的过敏性反应和在寄主水稻上的致病性[J]. 中国水稻科学, 2011, 25(1): 11-18 .
[43] 陈树林,王海燕,丁震乾,王秀娥 ,陈忠明,. 2个杂交籼稻和2个粳稻品种SSR指纹图谱的构建及双重PCR技术的初步研究[J]. 中国水稻科学, 2011, 25(1): 19-24 .
[44] 潘建红,陈峰,何佳春,赖风香,傅强. 不同致害性褐飞虱种群刺吸电位图(EPG)的比较
[J]. 中国水稻科学, 2011, 25(1): 86-90 .
[45] 杨亚春 ,倪大虎,宋丰顺,李泽福,易成新,杨剑波,. 不同生态地点下稻米外观品质性状的QTL定位分析 [J]. 中国水稻科学, 2011, 25(1): 43-51 .
[46] 冯跃华,邹应斌,Roland J. BURESH. 免耕移栽对两系杂交水稻两优培九若干群体特征的影响 [J]. 中国水稻科学, 2011, 25(1): 65-70 .
[47] 叶世超,林忠成, 戴其根,贾玉书,顾海燕 ,陈京都,许露生,吴福观,张洪程, 霍中洋, 许轲, 魏海燕 . 施氮量对稻季氨挥发特点与氮素利用的影响 [J]. 中国水稻科学, 2011, 25(1): 71-78 .
[48] 高清松,张丹,徐亮,徐辰武. 水稻ABC1基因家族的鉴定及在非生物胁迫下的表达分析[J]. 中国水稻科学, 2011, 25(1): 1-10 .
[49] 盘毅,罗丽华,邓化冰,张桂莲,唐文邦,陈立云,肖应辉 . 水稻开花期高温胁迫下的花粉育性QTL定位[J]. 中国水稻科学, 2011, 25(1): 99-102 .
[50] 殷得所,夏明元,李进波,万丙良,査中萍,杜雪树,戚华雄. 抗稻瘟病基因Pi9的STS连锁标记开发及在分子标记辅助育种中的应用[J]. 中国水稻科学, 2011, 25(1): 25-30 .
[51] 高菊生,曹卫东,董春华,徐明岗,曾希柏,文石林,. 长期稻-稻-绿肥轮作对水稻产量的影响[J]. 中国水稻科学, 2010, 24(6): 672-676 .
[52] 孙川, 陈刚,饶玉春,张光恒,高振宇,刘坚,鞠培娜,胡江,郭龙彪,钱前,曾大力,. 水稻基因组DNA简易制备方法[J]. 中国水稻科学, 2010, 24(6): 677-680 .
[53] 李睿,赵姝丽,毛艇, 徐正进,陈温福. 水稻剑叶气孔性状QTL分析[J]. 中国水稻科学, 2010, 24(6): 659-62 .
[54] 陆永良, 彭于发,王渭霞,孙兴强,陈丽娟,余柳青, . 抗除草剂转基因水稻基因漂移至常规栽培稻的频率研究初报 [J]. 中国水稻科学, 2010, 24(6): 663-666 .
[55] 杨迎青,杨媚,李明海,李勇,贺晓霞,周而勋. 根癌农杆菌介导的水稻纹枯病菌转化系统的建立 [J]. 中国水稻科学, 2010, 24(6): 617-622 .
[56] 宁永强,丁沃娜,朱世华,余红卫,於宏,陆开形 . 水稻短根突变体ksr1的遗传分析和基因定位[J]. 中国水稻科学, 2010, 24(6): 652-654 .
[57] 陈析丰,顾志敏,刘峰,马伯军,张红生,. 生物与非生物胁迫下水稻CIPK基因的鉴定分析 [J]. 中国水稻科学, 2010, 24(6): 567-574 .
[58] 柳武革,王丰,肖汉祥,刘振荣,李金华,廖亦龙, 朱满山,黄慧君,黄炳超,张扬. 利用分子标记辅助选择改良水稻恢复系的稻瘿蚊抗性[J]. 中国水稻科学, 2010, 24(6): 581-586 .
[59] 张红林,程建峰,刘跃清,钟晓英,张瑞祥,刘海平,张璞. 白化转斑叶籼型水稻不育系高光A的创制及特征特性[J]. 中国水稻科学, 2010, 24(6): 587-594 .
[60] 左娇,强胜,宋小玲. 温室条件下抗除草剂转基因水稻与杂草稻杂交和回交后代的适合度分析[J]. 中国水稻科学, 2010, 24(6): 608-616 .
[61] 陈立云,雷东阳,唐文邦,肖应辉. 两系法杂交水稻研究和应用中若干问题的思与行[J]. 中国水稻科学, 2010, 24(6): 641-646 .
[62] 王玲,黄雯雯,黄世文,刘连盟,刘恩勇, . 皖鄂地区水稻纹枯病菌致病力分化研究[J]. 中国水稻科学, 2010, 24(6): 623-629 .
[63] 余初浪,杨勇,王栩鸣,严成其,陈剑平. 水稻与病原物互作蛋白质组学研究进展[J]. 中国水稻科学, 2010, 24(6): 647-651 .
[64] 沈玮玮,宋成丽,陈洁,付亚萍,吴建利,江绍玫,. 转菰候选基因克隆获得抗白叶枯病水稻植株 [J]. 中国水稻科学, 2010, 24(5): 447-452 .
[65] 王彦荣,代贵金,大杉立, 山岸辙,程式华. 水稻苗期氮素吸收及其相关性状的QTL分析[J]. 中国水稻科学, 2010, 24(5): 463-468 .
[66] 徐群,袁筱萍,余汉勇,王一平,汤圣祥,魏兴华. 水稻苗期抗旱性的QTL分析[J]. 中国水稻科学, 2010, 24(5): 469-473 .
[67] 宋爱梅,黄新朋,孙淑斌,张亚丽,徐国华. 氮高效水稻品种苗期耐低磷种质的筛选与鉴定[J]. 中国水稻科学, 2010, 24(5): 479-486 .
[68] 毛艇,徐海,郭艳华,朱春杰,陈凯,王嘉宇,姜树坤,徐正进 . 籼粳交重组自交系的亚种属性与稻米品质性状的关系 [J]. 中国水稻科学, 2010, 24(5): 474-478 .
[69] 张玉烛,刘洋,曾翔,陈恺林,黄泽辉,谢洪科. 覆盖方式对旱作水稻后期冠层生理生态特性及产量的影响 [J]. 中国水稻科学, 2010, 24(5): 487-492 .
[70] 肖冬来,贾东升,吴建国,杜振国,谢荔岩,吴祖建,谢联辉.

水稻条纹病毒NS3蛋白与水稻 3-磷酸甘油醛脱氢酶(GAPDH)

[J]. 中国水稻科学, 2010, 24(5): 493-496 .
[71] 管泽鑫,唐健,杨保军,周营烽,范德耀,姚青, . 基于图像的水稻病害识别方法研究 [J]. 中国水稻科学, 2010, 24(5): 497-497~502 .
[72] 彭代亮,黄敬峰,孙华生 ,王福民. 基于Terra与Aqua MODIS增强型植被指数的县级水稻总产遥感估算 [J]. 中国水稻科学, 2010, 24(5): 516-522 .
[73] 钱俊朝,罗琼 ,王云月, 卢建欢,赵广娟,罗燕. 混合间栽水稻品种间基因流研究[J]. 中国水稻科学, 2010, 24(5): 527-530 .
[74] 曾宇翔,李西明,马良勇,季芝娟,杨长登. 水稻纹枯病抗性基因定位及抗性资源发掘的研究进展[J]. 中国水稻科学, 2010, 24(5): 544-550 .
[75] 徐正进,韩勇,邵国军,张学军,全成哲,潘国君,闫平,陈温福. 东北三省水稻品质性状比较研究[J]. 中国水稻科学, 2010, 24(5): 531-534 .
[76] 盛仙俏,张发成,徐红星,郑许松,陈桂华,吕仲贤,. 水稻品种(组合)对褐飞虱抗性的田间表现 [J]. 中国水稻科学, 2010, 24(5): 535-538 .
[77] 张集文. 水稻苯达松敏感突变研究进展[J]. 中国水稻科学, 2010, 24(5): 551-558 .
[78] 李卫国,李花,. 利用HJ-1A卫星遥感影像进行水稻产量分级监测预报研究 [J]. 中国水稻科学, 2010, 24(4): 385-390 .
[79] 栗海俊,李勇,杨秀霞,沈其荣,郭世伟. 不同形态氮素营养和水分条件对苗期水稻生长及渗透调节能力的影响 [J]. 中国水稻科学, 2010, 24(4): 403-409 .
[80] 白晓娟,刘丽娟,张春华,葛滢程旺大. H2O2预处理对不同水稻品种Cd耐性的影响[J]. 中国水稻科学, 2010, 24(4): 391-397 .
[81] 杨艳华,张亚东,朱镇,赵凌,陈涛,赵庆勇,王才林. 赤霉素(GA3)和脱落酸(ABA)对不同水稻品种生长和生理特性及GA20ox2GA3ox2基因表达的影响

[J]. 中国水稻科学, 2010, 24(4): 433-437 .
[82] 谭新中,彭喜旭,胡耀军,唐新科,周平兰,邓小波,王海华. 镍处理下水稻酚酸和酚多聚物含量的变化与白叶枯病诱导抗性的关系[J]. 中国水稻科学, 2010, 24(4): 438-442 .
[83] 王保菊徐红星,郑许松,傅强,吕仲贤,. 温度对水稻抗褐飞虱特性的影响[J]. 中国水稻科学, 2010, 24(4): 443-446 .
[84] 黄国平,汪琳,陈克平, . 转基因水稻外源蛋白检测技术研究进展 [J]. 中国水稻科学, 2010, 24(4): 410-416 .
[85] 龚金龙, 张洪程,李杰,戴其根霍中洋许轲李德剑,华正雄,沙安勤,周有炎,罗学超,刘国林. 水稻超高产栽培模式及系统理论的研究进展[J]. 中国水稻科学, 2010, 24(4): 417-424 .
[86] 周彤,吴丽娟,王英,程兆榜,季英华,范永坚,周益军. 灰飞虱从冷冻病叶获得水稻黑条矮缩病毒方法的研究初报[J]. 中国水稻科学, 2010, 24(4): 425-428 .
[87] 刘连盟,王玲,黄雯雯,刘恩勇,黄世文. 水稻稻曲病菌G蛋白β亚基基因的克隆、表达与序列分析[J]. 中国水稻科学, 2010, 24(4): 353-359 .
[88] 王维,吴超,刘梅, 刘旭日,胡国成,斯华敏 ,孙宗修,刘文真付亚萍,. 转中国对虾抗菌肽基因水稻抗白叶枯病效应初析[J]. 中国水稻科学, 2010, 24(4): 335-340 .
[89] 姚姝陈涛,张亚东,朱镇,赵凌, 赵庆勇,周丽慧,王才林,. 分子标记辅助选择聚合水稻暗胚乳突变基因Wx-mq和抗条纹叶枯病基因Stv-bi[J]. 中国水稻科学, 2010, 24(4): 341-347 .
[90] 刘希玲,邹华松,邹丽芳,陈功友 . 水稻白叶枯病菌hrcU基因缺失突变体构建及功能研究[J]. 中国水稻科学, 2010, 24(4): 348-352 .
[91] 刘波,胡桂萍,郑雪芳,张建福,谢华安,. 利用磷脂脂肪酸(PLFAs)生物标记法分析水稻根际土壤微生物多样性[J]. 中国水稻科学, 2010, 24(3): 278-288 .
[92] 刘小军,曹静,汤亮,曹卫星,朱艳. 基于模型和GIS的水稻生产管理决策支持系统构建与应用 [J]. 中国水稻科学, 2010, 24(3): 297-302 .
[93] 丁维龙,刘畅,张玉屏,朱德峰,章谦元,古辉. 基于弯曲变形计算的水稻穗空间形态模拟研究[J]. 中国水稻科学, 2010, 24(3): 309-314 .
[94] 马琳,余显权,赵福胜. 贵州地方水稻品种的SSR遗传多样性分析[J]. 中国水稻科学, 2010, 24(3): 237-243 .
[95] 梁云涛,王春连,赖凤香,刘丕庆,王坚,傅强,赵开军,. 水稻抗褐飞虱基因Bph18(t)的STS标记开发及有效性验证
[J]. 中国水稻科学, 2010, 24(3): 244-250 .
[96] 邸玉婷,赵国臣徐克章武志海,张治安,凌凤楼, 姜楠. 吉林省47年水稻品种遗传改良过程中植株各器官生物量的变化 [J]. 中国水稻科学, 2010, 24(3): 251-256 .
[97] 孟杰,王人民, 万吉丽,付力成. 不同锌效率水稻基因型及其杂种一代幼苗生长和抗氧化酶活性对Zn2+活度的反应[J]. 中国水稻科学, 2010, 24(3): 289-296 .
[98] 石春林,冯慧慧金之庆,王华. 水稻发育期模型的比较[J]. 中国水稻科学, 2010, 24(3): 303-308 .
[99] 林忠成, 叶世超,戴其根 陈京都,顾海燕 ,赵洪祥, 赵小华, 张洪程,霍中洋, 许轲,魏海燕. 太湖地区定位施氮与耗竭后施氮对水稻产量及氮肥利用率的影响[J]. 中国水稻科学, 2010, 24(3): 271-277 .
[100] 郑文静刘志恒张燕之,刘欣,王昌华,赵家铭. 水稻恢复系C224对条纹叶枯病的抗性遗传模型分析[J]. 中国水稻科学, 2010, 24(3): 228-232 .
版权所有 © 《中国水稻科学》编辑部 浙ICP备05004719号-5
地 址:浙江省杭州市体育场路359号   邮 编:310006   电 话:0571-63370278   E-mail:cjrs@263.net
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn