• 综述与专论 • 上一篇
朱毅勇;曾后清;狄廷均;徐国华;沈其荣*
收稿日期:
1900-01-01
修回日期:
1900-01-01
出版日期:
2011-01-10
发布日期:
2011-01-10
ZHU Yi-yong;ZENG Hou-qing;DI Ting-jun;XU Guo-hua;SHEN Qi-rong*
Received:
1900-01-01
Revised:
1900-01-01
Online:
2011-01-10
Published:
2011-01-10
摘要: 水稻是一种典型的耐铵植物。由于铵态氮营养条件会导致根系分泌大量的氢离子,对植物生长产生胁迫。因此,耐铵植物应具备耐酸的能力。细胞膜质子泵具有主动排出质子,调节细胞内外pH的功能。结合目前的研究结果,探讨了水稻根系细胞膜质子泵在铵态氮与低pH两个因素交叉作用下活性的变化及其调节机制,以阐明水稻耐铵的一个必要机制。上述结果对于丰富植物耐铵机制的研究具有重要的理论与实践意义。
朱毅勇,曾后清,狄廷均,徐国华,沈其荣. 细胞膜质子泵在水稻耐铵机制中的作用机理探讨[J]. 中国水稻科学 2011,25(1): 112-118 . .
ZHU Yi-yong,ZENG Hou-qing,DI Ting-jun,XU Guo-hua,SHEN Qi-rong*. Investigation on the Mechanism of Adaption of Plasma Membrane H+ATPase to Ammonium Nutrition in Rice[J]. Chinese Journal of Rice Science 2011,25(1): 112-118 ..
[1]Gigon A, Rorison I H. The response of some ecologically distinct plant species to nitrate- and ammonium-nitrogen. J Ecol, 1972, 60: 93-102.
[2]Arth I, Frenzel P. Denitrification coupled to nitrification in the rhizosphere of rice soils: The detection of processes by a new multi-channel electrode. Biol Fertil Soils, 2000, 31: 427-435.
[3]Britto D T, Glass A D M, Kronzucker H J, et al. Cytosolic concentrations and transmembrane fluxes of NH4+/NH3: An evaluation of recent proposals. Plant Physiol, 2001, 125: 523-526.
[4]Brix H, Dyhr-Jensen K, Lorenzen B. Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate. J Exp Bot, 2002, 53: 2441-2450.
[5]Loqué D, von Wirén N. Regulatory levels for the transport of ammonium in plant roots. J Exp Bot, 2004, 55: 1293-1305.
[6]Lewis O A M, James D M, Hewitt E J. Nitrogen assimilation in barley (Hordeum vulgare L. cv. Mazurka) in response to nitrate and ammonium nutrition. Ann Bot, 1982, 49: 39-49.
[7]Magalhaes J R, Ju G C, Rich P J, et al. Kinetics of 15NH4+ assimilation in Zea mays: Preliminary studies with a glutamate dehydrogenase (GDH1) null mutant. Plant Physiol, 1990, 94: 647-656.
[8]Kronzucker H J, Siddiqi M Y, Glass A D M. Analysis of 13NH4+ efflux in spruce roots(a test-case for phase identification in compartmental analysis). Plant Physiol, 1995, 109: 481-490.
[9]Pearson J, Stewart G R. The deposition of atmospheric ammonia and its effects on plants. New Phytol, 1993, 125: 283-305.
[10]Heber U. Advances in Photosynthesis Research. Hague: Nijhoff/Junk, 1984: 381-389.
[11]Holldampf B, Barker A V. Effects of ammonium on elemental nutrition of red spruce and indicator plants grown in acid soil. Commu Soil Sci Plant Anal, 1993, 24: 1945-1957.
[12]Cao W, Tibbits T W. Study of various NH4+/NO3- mixtures for enhancing growth of potatoes. J Plant Nutr, 1993, 16: 1691-1704.
[13]Speer M, Brune A, Kaiser W M. Replacement of nitrate by ammonium as the nitrogen source increases the salt sensitivity of pea plants: Ⅰ. Ion concentrations in roots and leaves. Plant Cell & Environ, 1994, 17: 1215-1221.
[14]Barker A V, Volk R, Jackson W A. Root environment acidity as a regulatory factor in ammonium assimilation by the bean plant. Plant Physiol, 1966, 41: 1193-1199.
[15]Gerends J, Zhu Z, Bendixen R, et al. Physiological and biochemical processes related to ammonium toxicity in higher plants. Z Pflanzenernhr Bodenk, 1997, 160: 239-251.
[16]Bligny R, Gout E, Kaiser W, et al. pH regulation in acid-stressed leaves of pea plants grown in the presence of nitrate or ammonium salts: Studies involving 31P-NMR spectroscopy and chlorophyll fluorescence. Biochim Biophy Acta, 1997, 1320: 142-152.
[17]Marschner H, Rmheld V. In vivo measurement of root-induced pH changes at the soil-root interface: Effect of plant species and nitrogen source. Z Pflanzenernhr Bodenk, 1983, 111: 241-251.
[18]Raven J A. Biochemical disposal of excess H+ in growing plants? New Phytol, 1986, 104: 175-206.
[19]Kirkby E A, Mengel K. Ionic balance in different tissues of the tomato plants in relation to nitrate, urea and ammonium nutrition. Plant Physiol, 1967, 42: 6-14.
[20]Mengel K, Kirkby E A. Principles of Plant Nutrition. 3rd edn. London: Kluwer Academic Publishers, 1982.
[21]Wang M Y, Siddiqi M Y, Ruth T J, et al. Ammonium uptake by rice roots: Ⅱ. Kinetics of 13NH4+ influx across the plasmalemma. Plant Physiol, 1993, 103: 1259-1267.
[22]Miller A J, Cramer M D. Root nitrogen acquisition and assimilation. Plant & Soil, 2004, 274: 1-36.
[23]Kleiner D. The transport of NH3 and NH4+ across biological membranes. Biochim Biophys Acta, 1981, 639: 41-52.
[24]Howitt S M, Udvardi M K. Structure, function and regulation of ammonium transporters in plants. Biochim Biophys Acta, 2000, 1465: 152-170.
[25]Ludewig U, von Wirén N, Frommer W B. Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem, 2002, 277: 13548-13555.
[26]Schubert S, Schubert E, Mengel K. Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba). Plant & Soil, 1990, 124: 239-244.
[27]Fyson A. Angiosperms in acidic waters at pH 3 and below. Hydrobiologia, 2000, 433: 129-135.
[28]Begg C B M, Kirk G J D, MacKenzie A F, et al. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol, 1994, 128: 469-477.
[29]Schurkes J A A R, Kok C J, Den H C. Ammonium and nitrate uptake by aquatic plants from poorly buffered and acidified waters. Aquatic Bot, 1986, 24: 131-146.
[30]Wieder R K, Linton M N, Heston K P. Laboratory mesocosm studies of Fe, Al, Mn, Ca, and Mg dynamics in wetlands exposed to synthetic acid coal mine drainage. Water Air & Soil Pollution, 1990, 51: 181-196.
[31]Ishiyama K, Inoue E, Tabuchi M, et al. Biochemical background and compartmentatized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol, 2004, 45: 1640-1647.
[32]Britto D T, Siddiqi M Y, Glass A D M, et al. Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA, 2001, 98: 4255-4258.
[33]Britto D T, Kronzucker H J. Futile cycling at the plasma membrane: A hallmark of low-affinity nutrient transport. Trends Plant Sci, 2006, 11: 529-534.
[34]Yan F, Schubert S, Mengel K. Effect of low root medium pH on net proton release, root respiration, and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiol, 1992, 99: 415-421.
[35]Marschner H. Mineral nutrition of higher plants. 2nd edn. London: Academic Press, 1995: 231-254.
[36]Felle H. Short-term pH regulation in plants. Physiol Plant, 1988, 74: 583-591.
[37]Smith F A, Raven J A. Intracellular pH and its regulation. Ann Rev Plant Physiol, 1979, 30: 289-311.
[38]Davies D D. Control of and by pH//Symposium of the Society for Experimental Biology 27. Rate Control of Biological Processes. London: Cambridge University Press,1973: 513 529.
[39]Davies D D. The fine control of cytosolic pH. Physiol Plant, 1986, 67: 702-706.
[40]Crawford L A, Bown A W, Breitkreuz K E, et al. The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiol, 1994, 104: 865-871.
[41]Yang X, Rmheld V, Marschner H. Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza sativa L.). Plant & Soil, 1994, 164: 1-7.
[42]Raven J A. Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol, 1976, 76: 415-431.
[43]Serrano R. Recent molecular approaches to the physiology of the plasma membrane proton pump. Bot Acta, 1990, 103: 230-234.
[44]Schubert S. Proton release by plant roots//Plant Physiology and Biochemistry. New Delhi: Panina Publishing Corporation, 1995: 97-119.
[45]Yan F, Feuerle R, Schaffer S, et al. Adaptation of active proton pumping and plasmalemma ATPase activity of corn roots to low root medium pH. Plant Physiol, 1998, 117: 311-319.
[46]狄廷均, 朱毅勇, 仇美华, 等.水稻根系细胞膜H+-ATPase对铵硝营养的响应差异. 中国水稻科学, 2007, 21: 360-366.
[47]Palmgren M G. Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 817-845.
[48]Sze H, Li X, Palmgren M G. Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis. Plant Cell & Environ, 1999, 11: 677-689.
[49]Oufattole M, Arango M, Boutry M. Identification and expression of three new Nicotiana plumbaginifolia genes which encode isoforms of a plasma-membrane H+-ATPase, and one of which is induced by mechanical stress. Planta, 2000, 210: 715-722.
[50]Arango M, Gevaudant F D R, Oufattole M, et al. The plasma membrane proton pump ATPase: The significance of gene subfamilies. Planta, 2003, 216: 355-365.
[51]Michelet B, Lukaszewiez M, Dupriez V. A plant plasma membrane proton-ATPase gene is regulated by development and environment and shows signs of translational regulation. Plant Cell & Environ, 1994, 6: 1375-1389.
[52]Houlne G, Boutry M. Identification of an Arabidopsis thaliana gene encoding a plasma membrane H+-ATPase whose expression is restricted to anther tissue. Plant J, 1994, 5: 311-317.
[53]Harper J F, Manney L, Sussman M R. The plasma membrane H+-ATPase gene family in Arabidopsis: Genomic sequence of AHA10 which is expressed primarily in developing seeds. Mol Gen Genet, 1994, 244: 572-587.
[54]Niu X, Damsz B, Kononowicz A K, et al. NaCl-induced alterations in both cell structure and tissue-specific plasma membrane H+-ATPase gene expression. Plant Physiol, 1996, 111: 679-686.
[55]Vitart V, Baxter I, Doerner P, et al. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant J, 2001, 27: 191-201.
[56]Yan F, Zhu Y, Mueller C, et al. Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol, 2002, 129: 50-63.
[57]Ahn S J, Sivaguru M, Osawa H, et al. Aluminum inhibits the H+-ATPase activity by permanently altering the PM surface potentials in squash roots. Plant Physiol, 2001, 126: 1381-1390.
[58]Ahn S J, Sivaguru M, Chung G C, et al. Aluminum-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo). J Exp Bot, 2002, 53: 1959-1966.
[59]Shen H, He L F, Sasaki T, et al. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress: Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol, 2005, 138: 287-296.
[60]Janicka-Russak M, Kabala K, Burzynski M, et al. Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot, 2008, 59: 3721-3728.
[61]Santi S, Locci G, Monte R, et al. Induction of nitrate uptake in maize roots: Expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. J Exp Bot, 2003, 54: 1851-1864.
[62]Yamashita K, Kasai M, Ezaki B, et al. Stimulation of H+ extrusion and plasma membrane H+-ATPase activity of barley roots by ammonium-treatment. Soil Sci Plant Nutri, 1995, 41: 133-140.
[63]Quaggiotti S, Ruperti B, Borsa P, et al. Expression of a putative high-affinity NO3- transporter and of an H+-ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. J Exp Bot, 2003, 54: 1023-1031.
[64]Shen H, Chen J, Wang Z, et al. Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation. J Exp Bot, 2006, 57: 1353-1362.
[65]Song K M, Jiao X Z, Li L, et al. The relationship between phosphate uptake and changes in plasmalemma H+-ATPase activities from the roots of tomato seedlings during phosphate starvation. Acta Phytophy Sin, 2001, 27: 87-93.
[66]Robert A G, Michael G P, Karin S. Plant proton pumps. FEBS Lett, 2007, 581: 2204-2214.
[67]Palmgren M G, Sommarin M, Serrano R. Identification of an autoinhibitory domain in the C-terminal region of the plantplasma membrane H+-ATPase. J Biol Chem, 1991, 266: 20470-20475.
[68]Jelich-Ottmann C, Weiler E W, Oecking C. Binding of regulatory 14-3-3 proteins to the C terminus of the plant plasma membrane H+-ATPase involves part of its autoinhibitory region. J Biol Chem, 2001, 276: 9852-9857.
[69]Kim Y S, Min J K, Kim D, et al. A soluble auxin binding protein, ABP57: Purification with anti-bovine serum albumin antibody and characterization of its mechanistic role in auxin effect on plant plasma membrane H+-ATPase. J Biol Chem, 2001, 276: 10730-10736.
[70]Zhu Y Y, Di T J, Xu G H, et al. Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell & Environ, 2009, 99: 415-421.
[71]Matson P A, Boone R D. Natural disturbance and nitrogen mineralization: Wave-form dieback of mountain Hemlock in the Oregon Cascades. Ecology, 1984, 65: 1511-1516.
[72]Kidd P S, Proctor J. Why plants grow poorly on very acid soils: Are ecologists missing the obvious? J Exp Bot, 2001, 52: 791-799.
[73]Lucassen E C H E T, Bobbink R, Smolders A J P, et al. Interactive effects of low pH and high ammonium levels responsible for the decline of Cirsium dissectum (L.) Hill. Plant Ecol, 2002, 65: 1511-1516.
[74]van den Berg L J L, Dorland E, Vergeer P, et al. Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytol, 2005, 166: 551-564.
[75]Guo J H, Liu X J, Zhang J L, et al. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||