中国水稻科学 ›› 2023, Vol. 37 ›› Issue (5): 507-517.DOI: 10.16819/j.1001-7216.2023.220908
姚晓云, 陈春莲, 熊运华, 黄永萍, 彭志勤, 刘进, 尹建华*()
收稿日期:
2022-09-30
修回日期:
2022-12-08
出版日期:
2023-09-10
发布日期:
2023-09-13
通讯作者:
*email: 基金资助:
YAO Xiaoyun, CHEN Chunlian, XIONG Yunhua, HUANG Yongping, PENG Zhiqing, LIU Jin, YIN Jianhua*()
Received:
2022-09-30
Revised:
2022-12-08
Online:
2023-09-10
Published:
2023-09-13
Contact:
*email: 摘要:
【目的】 稻米加工与外观品质是影响水稻生产效益和商品价值的关键因素,发掘相关性状主效QTL有助于进一步阐明水稻品质性状的分子遗传机制,也可为水稻优质育种提供材料。【方法】 以优质粳稻龙稻5号为母本和高产籼稻中优早8号为父本杂交衍生的重组自交系群体为试验材料,在3个环境条件下对稻米加工和外观品质进行性状比较和QTL分析。【结果】 检测到37个与加工和外观品质相关的QTL,分布在12条染色体上,三个环境分别发现15、15和21个QTL,其中仅10个QTL在2个环境中稳定表达,2个QTL在3个环境中重复检测到。加工和外观品质相关QTL具有明显的遗传重叠效应,第2、6、7、10和11染色体上存在主效QTL簇,对加工和外观品质存在明显的调控作用。【结论】 第7染色体RM1306−RM420区间存在一个新的QTL qMAQ7(qChlak7),该区间对垩白粒率和垩白度具有较强的调控效应;此外,上位性互作也是调控加工和外观品质的重要组成部分,主效QTL参与上位性互作效应。
姚晓云, 陈春莲, 熊运华, 黄永萍, 彭志勤, 刘进, 尹建华. 水稻加工和外观品质性状QTL鉴定[J]. 中国水稻科学, 2023, 37(5): 507-517.
YAO Xiaoyun, CHEN Chunlian, XIONG Yunhua, HUANG Yongping, PENG Zhiqing, LIU Jin, YIN Jianhua. Identification of QTL for Milling and Appearance Quality Traits in Rice (Oryza sativa L.)[J]. Chinese Journal OF Rice Science, 2023, 37(5): 507-517.
性状 Trait | 环境 Environment | 亲本 Parent | 重组自交系群体 RIL population | ||||||
---|---|---|---|---|---|---|---|---|---|
龙稻5 LD5 | 中优早8 ZYZ8 | 差值 Difference | 均值±标准误 Mean±SD | 变幅 Range | 峰度 Skewness | 偏度 Kurtosis | |||
糙米率 | E1 | 74.28 | 77.67 | 3.39 | 77.50±3.30 | 61.60−89.00 | −1.59 | 1.84 | |
BR | E2 | 80.65 | 77.15 | −3.50 | 78.42±2.51 | 61.70−83.60 | −2.17 | 1.62 | |
E3 | 79.65 | 78.65 | −1.00 | 76.93±2.18 | 68.98−80.90 | −0.80 | 0.63 | ||
精米率 | E1 | 72.36 | 58.06 | −14.30** | 58.29±5.82 | 41.90−78.90 | −0.26 | 0.69 | |
MR | E2 | 74.45 | 67.70 | −6.75* | 64.30±4.00 | 51.40−72.10 | −0.82 | 0.95 | |
E3 | 70.34 | 63.66 | −6.68** | 63.98±3.47 | 52.23−71.54 | −0.78 | 1.09 | ||
整精米率 | E1 | 52.72 | 39.74 | −12.98** | 39.97±13.02 | 11.70−78.30 | −0.17 | −0.62 | |
HR | E2 | 70.03 | 42.28 | −4.33* | 53.82±9.68 | 22.90−70.10 | −1.10 | 1.14 | |
E3 | 44.62 | 30.42 | −14.20** | 54.92±7.36 | 26.73−66.60 | −1.16 | 1.65 | ||
长宽比 | E1 | 2.01 | 2.76 | 0.75** | 2.00±0.11 | 1.60−2.61 | 0.45 | 0.09 | |
MLW | E2 | 2.15 | 2.80 | 0.65** | 2.12±0.09 | 1.82−2.75 | 0.30 | 0.10 | |
E3 | 2.23 | 2.65 | 0.42** | 2.17±0.21 | 1.64−2.69 | 0.50 | −0.03 | ||
垩白粒率 | E1 | 45.17 | 88.88 | 43.71** | 66.79±22.74 | 9.40−99.80 | −0.52 | −0.42 | |
PGWC | E2 | 17.59 | 44.21 | 26.62** | 52.71±20.04 | 8.20−98.40 | 0.11 | −0.42 | |
E3 | 10.60 | 27.50 | 16.90** | 31.39±21.04 | 5.57−96.79 | 1.10 | 0.78 | ||
垩白度 | E1 | 13.76 | 44.03 | 30.27** | 29.03±15.44 | 2.50−65.60 | 0.41 | −0.58 | |
DGWC | E2 | 3.75 | 11.20 | 7.45* | 17.96±9.97 | 2.60−51.70 | 1.05 | 0.99 | |
E3 | 1.20 | 15.17 | 13.97* | 8.92±7.59 | 1.57−46.00 | 2.06 | 1.27 |
表1 亲本和RIL群体加工和外观品质表型分析
Table 1. Milling and appearance quality traits of the parents and RIL populations.
性状 Trait | 环境 Environment | 亲本 Parent | 重组自交系群体 RIL population | ||||||
---|---|---|---|---|---|---|---|---|---|
龙稻5 LD5 | 中优早8 ZYZ8 | 差值 Difference | 均值±标准误 Mean±SD | 变幅 Range | 峰度 Skewness | 偏度 Kurtosis | |||
糙米率 | E1 | 74.28 | 77.67 | 3.39 | 77.50±3.30 | 61.60−89.00 | −1.59 | 1.84 | |
BR | E2 | 80.65 | 77.15 | −3.50 | 78.42±2.51 | 61.70−83.60 | −2.17 | 1.62 | |
E3 | 79.65 | 78.65 | −1.00 | 76.93±2.18 | 68.98−80.90 | −0.80 | 0.63 | ||
精米率 | E1 | 72.36 | 58.06 | −14.30** | 58.29±5.82 | 41.90−78.90 | −0.26 | 0.69 | |
MR | E2 | 74.45 | 67.70 | −6.75* | 64.30±4.00 | 51.40−72.10 | −0.82 | 0.95 | |
E3 | 70.34 | 63.66 | −6.68** | 63.98±3.47 | 52.23−71.54 | −0.78 | 1.09 | ||
整精米率 | E1 | 52.72 | 39.74 | −12.98** | 39.97±13.02 | 11.70−78.30 | −0.17 | −0.62 | |
HR | E2 | 70.03 | 42.28 | −4.33* | 53.82±9.68 | 22.90−70.10 | −1.10 | 1.14 | |
E3 | 44.62 | 30.42 | −14.20** | 54.92±7.36 | 26.73−66.60 | −1.16 | 1.65 | ||
长宽比 | E1 | 2.01 | 2.76 | 0.75** | 2.00±0.11 | 1.60−2.61 | 0.45 | 0.09 | |
MLW | E2 | 2.15 | 2.80 | 0.65** | 2.12±0.09 | 1.82−2.75 | 0.30 | 0.10 | |
E3 | 2.23 | 2.65 | 0.42** | 2.17±0.21 | 1.64−2.69 | 0.50 | −0.03 | ||
垩白粒率 | E1 | 45.17 | 88.88 | 43.71** | 66.79±22.74 | 9.40−99.80 | −0.52 | −0.42 | |
PGWC | E2 | 17.59 | 44.21 | 26.62** | 52.71±20.04 | 8.20−98.40 | 0.11 | −0.42 | |
E3 | 10.60 | 27.50 | 16.90** | 31.39±21.04 | 5.57−96.79 | 1.10 | 0.78 | ||
垩白度 | E1 | 13.76 | 44.03 | 30.27** | 29.03±15.44 | 2.50−65.60 | 0.41 | −0.58 | |
DGWC | E2 | 3.75 | 11.20 | 7.45* | 17.96±9.97 | 2.60−51.70 | 1.05 | 0.99 | |
E3 | 1.20 | 15.17 | 13.97* | 8.92±7.59 | 1.57−46.00 | 2.06 | 1.27 |
环境Environment | 性状Trait | 糙米率BR | 精米率MR | 整精米率HR | 长宽比MLW | 垩白粒率PGC |
---|---|---|---|---|---|---|
早稻 | 精米率MR * | 0.482** | ||||
E1 | 整精米率HR | 0.159* | 0.482** | |||
长宽比MLW | −0.191* | −0.021 | 0.019 | |||
垩白粒率PGWC | 0.125* | −0.63* | −0.025 | −0.303** | ||
垩白度DGWC | 0.118 | −0.216** | −0.042 | −0.315** | 0.929** | |
晚稻 | 精米率MR | 0.672** | ||||
E2 | 整精米率HR | 0.313** | 0.560** | |||
长宽比MLW | −0.136* | 0.007 | 0.019 | |||
垩白粒率PGWC | 0.075 | −0.222** | −0.233* | −0.335** | ||
垩白度DGWC | 0.333** | −0.261** | −0.285** | −0.310** | 0.927** | |
海南 | 精米率MR | 0.572** | ||||
E3 | 整精米率HR | 0.061 | 0.557** | |||
长宽比MLW | −0.120* | −0.029 | 0.077 | |||
垩白粒率PGWC | −0.281** | −0.282** | −0.252** | −0.300** | ||
垩白度DGWC | −0.299** | −0.252** | 0.166* | −0.278** | 0.938** |
表2 不同环境下稻米加工和外观品质性状间相关性
Table 2. Correlation coefficients of the milling and appearance quality under multi-environments.
环境Environment | 性状Trait | 糙米率BR | 精米率MR | 整精米率HR | 长宽比MLW | 垩白粒率PGC |
---|---|---|---|---|---|---|
早稻 | 精米率MR * | 0.482** | ||||
E1 | 整精米率HR | 0.159* | 0.482** | |||
长宽比MLW | −0.191* | −0.021 | 0.019 | |||
垩白粒率PGWC | 0.125* | −0.63* | −0.025 | −0.303** | ||
垩白度DGWC | 0.118 | −0.216** | −0.042 | −0.315** | 0.929** | |
晚稻 | 精米率MR | 0.672** | ||||
E2 | 整精米率HR | 0.313** | 0.560** | |||
长宽比MLW | −0.136* | 0.007 | 0.019 | |||
垩白粒率PGWC | 0.075 | −0.222** | −0.233* | −0.335** | ||
垩白度DGWC | 0.333** | −0.261** | −0.285** | −0.310** | 0.927** | |
海南 | 精米率MR | 0.572** | ||||
E3 | 整精米率HR | 0.061 | 0.557** | |||
长宽比MLW | −0.120* | −0.029 | 0.077 | |||
垩白粒率PGWC | −0.281** | −0.282** | −0.252** | −0.300** | ||
垩白度DGWC | −0.299** | −0.252** | 0.166* | −0.278** | 0.938** |
性状 Trait | 位点 Locus | 标记 Marker | LOD值LOD value | 贡献率PVE / % | 加性效应Additive effect | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E1 | E2 | E3 | E1 | E2 | E3 | |||||
糙米率BR | qBR1 | RM6547−RM1198 | 2.91 | 6.67 | −0.93 | ||||||||
精米率MR | qMR2 | RM1358−RM324 | 2.79 | 5.00 | −1.91 | ||||||||
qMR7 | STS7.1−RM5481 | 3.90 | 11.78 | −1.27 | |||||||||
整精米率 | qHR2 | RM5897−RM5699 | 3.25 | 2.62 | 5.58 | 6.07 | 3.92 | 2.50 | |||||
HR | qHR4 | RM5688−RM471 | 2.52 | 3.10 | 8.41 | 11.80 | −5.25 | −4.01 | |||||
qHR7 | RM1135−RM11 | 4.01 | 11.68 | −2.51 | |||||||||
qHR10 | RM5620−R10M40 | 2.93 | 9.48 | 2.25 | |||||||||
qHR11 | STS11.5−RM144 | 2.73 | 7.93 | 2.06 | |||||||||
长宽比 | qMLW1 | RI02519−RM259 | 2.98 | 8.98 | −0.07 | ||||||||
MLW | qMLW2 | RM1361−MM1065 | 4.12 | 4.77 | 0.07 | ||||||||
qMLW3.1 | STS3.8−R3M30 | 6.90 | 9.65 | 12.89 | 22.63 | 23.07 | 17.3 | 0.13 | 0.13 | 0.12 | |||
qMLW3.2 | RM3199−RM1352 | 6.76 | 5.81 | 13.61 | 11.55 | 0.09 | 0.09 | ||||||
qMLW5 | R5M13−RM3476 | 5.45 | 8.71 | 10.33 | 15.27 | 0.08 | 0.10 | ||||||
qMLW6 | RM6395−RM5814 | 2.92 | 4.99 | 6.51 | 8.54 | −0.09 | −0.08 | ||||||
qMLW8 | RM1376−RM4085 | 4.08 | 3.33 | 0.09 | |||||||||
qMLW10 | R10M40−STS10.3 | 7.02 | 14.47 | 0.11 | |||||||||
qMLW11 | STS11.2−RM21 | 3.42 | 3.60 | 3.12 | 5.87 | 5.44 | 7.78 | 0.06 | 0.06 | 0.07 | |||
qMLW12 | RM7120−STS12.2 | 6.58 | 7.67 | −0.08 | |||||||||
垩白粒率 | qPGWC1 | RM1361.1−RM6321 | 2.82 | 7.32 | −9.28 | ||||||||
PGWC | qPGWC2 | STS2.4−RM13603 | 4.28 | 12.02 | −9.24 | ||||||||
qPGWC3 | RM468−RM7000 | 3.24 | 2.93 | 9.75 | 5.94 | −5.81 | −4.96 | ||||||
qPGWC4 | STS4.2−R4M13 | 2.58 | 7.59 | 5.66 | |||||||||
qPGWC6.1 | RM190−RM587 | 3.70 | 11.53 | −8.86 | |||||||||
qPGWC6.2 | RM3827−RM1340 | 3.38 | 10.53 | 6.72 | |||||||||
qPGWC7 | RM3555−RM1306 | 3.14 | 3.70 | 5.30 | 11.87 | −7.32 | −7.02 | ||||||
qPGWC10 | RM6737−RM5620 | 2.62 | 6.07 | −6.13 | |||||||||
qPGWC11 | STS11.2−RM1124 | 3.89 | 4.61 | −6.93 | |||||||||
垩白度 | qDGWC1 | RM428−RM323 | 2.85 | 6.94 | 2.08 | ||||||||
DGWC | qDGWC2 | STS2.4−RM13603 | 4.62 | 11.53 | −6.28 | ||||||||
qDGWC3.1 | STS3.3−STS3.4 | 2.55 | 21.25 | 8.23 | |||||||||
qDGWC3.2 | MM3778−RM3513 | 2.59 | 6.13 | −3.25 | |||||||||
qDGWC6.1 | RM190−RM587 | 5.51 | 9.61 | −6.14 | |||||||||
qDGWC6.2 | RM1340−R6M44 | 2.87 | 4.20 | 4.50 | 10.31 | 4.90 | 2.56 | ||||||
qDGWC7 | RM3555−RM1306 | 2.67 | 3.23 | 6.94 | 7.84 | −3.44 | −2.20 | ||||||
qDGWC10 | RM467−RM6737 | 2.53 | 5.71 | −3.16 | |||||||||
qDGWC11 | STS11.2−RM1124 | 2.49 | 3.53 | 6.02 | 11.71 | 3.86 | −3.29 |
表3 不同环境下水稻加工和外观品质性状QTL分析
Table 3. Putative QTLs for milling and appearance quality traits detected under multi-environments.
性状 Trait | 位点 Locus | 标记 Marker | LOD值LOD value | 贡献率PVE / % | 加性效应Additive effect | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E1 | E2 | E3 | E1 | E2 | E3 | |||||
糙米率BR | qBR1 | RM6547−RM1198 | 2.91 | 6.67 | −0.93 | ||||||||
精米率MR | qMR2 | RM1358−RM324 | 2.79 | 5.00 | −1.91 | ||||||||
qMR7 | STS7.1−RM5481 | 3.90 | 11.78 | −1.27 | |||||||||
整精米率 | qHR2 | RM5897−RM5699 | 3.25 | 2.62 | 5.58 | 6.07 | 3.92 | 2.50 | |||||
HR | qHR4 | RM5688−RM471 | 2.52 | 3.10 | 8.41 | 11.80 | −5.25 | −4.01 | |||||
qHR7 | RM1135−RM11 | 4.01 | 11.68 | −2.51 | |||||||||
qHR10 | RM5620−R10M40 | 2.93 | 9.48 | 2.25 | |||||||||
qHR11 | STS11.5−RM144 | 2.73 | 7.93 | 2.06 | |||||||||
长宽比 | qMLW1 | RI02519−RM259 | 2.98 | 8.98 | −0.07 | ||||||||
MLW | qMLW2 | RM1361−MM1065 | 4.12 | 4.77 | 0.07 | ||||||||
qMLW3.1 | STS3.8−R3M30 | 6.90 | 9.65 | 12.89 | 22.63 | 23.07 | 17.3 | 0.13 | 0.13 | 0.12 | |||
qMLW3.2 | RM3199−RM1352 | 6.76 | 5.81 | 13.61 | 11.55 | 0.09 | 0.09 | ||||||
qMLW5 | R5M13−RM3476 | 5.45 | 8.71 | 10.33 | 15.27 | 0.08 | 0.10 | ||||||
qMLW6 | RM6395−RM5814 | 2.92 | 4.99 | 6.51 | 8.54 | −0.09 | −0.08 | ||||||
qMLW8 | RM1376−RM4085 | 4.08 | 3.33 | 0.09 | |||||||||
qMLW10 | R10M40−STS10.3 | 7.02 | 14.47 | 0.11 | |||||||||
qMLW11 | STS11.2−RM21 | 3.42 | 3.60 | 3.12 | 5.87 | 5.44 | 7.78 | 0.06 | 0.06 | 0.07 | |||
qMLW12 | RM7120−STS12.2 | 6.58 | 7.67 | −0.08 | |||||||||
垩白粒率 | qPGWC1 | RM1361.1−RM6321 | 2.82 | 7.32 | −9.28 | ||||||||
PGWC | qPGWC2 | STS2.4−RM13603 | 4.28 | 12.02 | −9.24 | ||||||||
qPGWC3 | RM468−RM7000 | 3.24 | 2.93 | 9.75 | 5.94 | −5.81 | −4.96 | ||||||
qPGWC4 | STS4.2−R4M13 | 2.58 | 7.59 | 5.66 | |||||||||
qPGWC6.1 | RM190−RM587 | 3.70 | 11.53 | −8.86 | |||||||||
qPGWC6.2 | RM3827−RM1340 | 3.38 | 10.53 | 6.72 | |||||||||
qPGWC7 | RM3555−RM1306 | 3.14 | 3.70 | 5.30 | 11.87 | −7.32 | −7.02 | ||||||
qPGWC10 | RM6737−RM5620 | 2.62 | 6.07 | −6.13 | |||||||||
qPGWC11 | STS11.2−RM1124 | 3.89 | 4.61 | −6.93 | |||||||||
垩白度 | qDGWC1 | RM428−RM323 | 2.85 | 6.94 | 2.08 | ||||||||
DGWC | qDGWC2 | STS2.4−RM13603 | 4.62 | 11.53 | −6.28 | ||||||||
qDGWC3.1 | STS3.3−STS3.4 | 2.55 | 21.25 | 8.23 | |||||||||
qDGWC3.2 | MM3778−RM3513 | 2.59 | 6.13 | −3.25 | |||||||||
qDGWC6.1 | RM190−RM587 | 5.51 | 9.61 | −6.14 | |||||||||
qDGWC6.2 | RM1340−R6M44 | 2.87 | 4.20 | 4.50 | 10.31 | 4.90 | 2.56 | ||||||
qDGWC7 | RM3555−RM1306 | 2.67 | 3.23 | 6.94 | 7.84 | −3.44 | −2.20 | ||||||
qDGWC10 | RM467−RM6737 | 2.53 | 5.71 | −3.16 | |||||||||
qDGWC11 | STS11.2−RM1124 | 2.49 | 3.53 | 6.02 | 11.71 | 3.86 | −3.29 |
性状 Trait | 染色体i Chr.i | 区间 Marker interval | 染色体j Chr.j | 区间 Marker interval | LOD值 LOD value | 贡献率 PVE /% | 上位性效应 Epistasis effect |
---|---|---|---|---|---|---|---|
糙米率 | 3(qDGWC3.1) | STS3.3−STS3.4 | 1 | RI02500−RM259 | 4.85 | 7.42 | 1.32 |
BR | 3(qDGWC3.1) | R3M10−STS3.3 | 4 | RM5688−RM471 | 6.25 | 2.59 | −4.18 |
3(qDGWC3.1) | R3M10−STS3.3 | 9 | RM7390−RM6051 | 5.21 | 6.96 | 1.69 | |
8 | RM6208−RM3395 | 1 | RM1198−RM1361.1 | 5.94 | 2.64 | 4.05 | |
整精米率 | 3(qDGWC3.1) | STS3.3−STS3.4 | 5 | R5M13−RM3476 | 6.24 | 3.16 | 7.79 |
HR | 3(qDGWC3.1) | STS3.3−STS3.4 | 11 | RM167−STS11.1 | 5.86 | 9.53 | −3.89 |
4 | RM5688−RM471 | 6(qPGWC6.2) | RM6395−RM5814 | 4.31 | 12.16 | 8.67 | |
长宽比 | 1 | RM1361.1−RM6321 | 10 | RM3451−RM590 | 4.55 | 6.66 | 0.10 |
MLW | 5 | R5M13−RM3476 | 8 | RM8018−RM1376 | 4.88 | 12.06 | 0.10 |
垩白粒率 | 1 | RM6547−R1M47 | 8 | RM3571−RM3754 | 4.53 | 11.37 | 10.85 |
DGWC | 1 | RM3240−R1M37 | 11 | RM5599−RM167 | 4.51 | 3.20 | −8.30 |
2 | STS2.4−RM13603 | 4 | STS4.3−RM348 | 4.44 | 16.16 | −8.10 | |
6 | RM587−RM217 | 2 | RM300.1−STS2.3 | 4.59 | 14.79 | 8.60 | |
6(qPGWC6.2) | R6M14−RM3827 | 3 | RM3513.1−RM1350 | 5.56 | 3.46 | 14.03 | |
6(qPGWC6.2) | R6M14−RM3827 | 5 | R5M13−RM3476 | 5.69 | 3.52 | 14.24 | |
7(qPGWC7) | RM3555−RM1306 | 3 | RM3513.1−RM1350 | 5.77 | 9.10 | 9.39 | |
7(qPGWC7) | RM3555−RM1306 | 4 | RM5688−RM471 | 4.84 | 9.41 | −9.21 | |
垩白度 | 3(qDGWC3.1) | R3M10−STS3.3 | 1 | RM3240−R1M37 | 5.84 | 4.31 | −4.94 |
PGWC | 3(qDGWC3.1) | STS3.3−STS3.4 | 4 | RM5688−RM471 | 7.83 | 5.11 | 8.82 |
3(qDGWC3.1) | STS3.3−STS3.4 | 12 | RM101−STS12.1 | 6.21 | 4.55 | −7.83 | |
4 | RM5688−RM471 | 6(qDGWC6.2) | R6M14−RM3827 | 5.84 | 4.46 | −7.55 | |
7(qDGWC7) | RM3555−RM1306 | 1 | RM6547−R1M47 | 5.57 | 4.23 | −3.77 | |
7(qDGWC7) | RM3555−RM1306 | 2 | RM1361.3−MM1065 | 4.98 | 3.80 | −3.78 | |
12 | RM7120−STS12.2 | 8 | RM6976−RM1345 | 6.35 | 3.54 | −5.01 | |
12 | STS12.2−RM1226 | 11(qDGWC11) | RM21−STS11.4 | 4.20 | 6.09 | −9.88 |
表4 稻米加工和外观品质上位性互作效应分析
Table 4. QTLs with epistasis effects for milling and appearance quality detected in RILs population.
性状 Trait | 染色体i Chr.i | 区间 Marker interval | 染色体j Chr.j | 区间 Marker interval | LOD值 LOD value | 贡献率 PVE /% | 上位性效应 Epistasis effect |
---|---|---|---|---|---|---|---|
糙米率 | 3(qDGWC3.1) | STS3.3−STS3.4 | 1 | RI02500−RM259 | 4.85 | 7.42 | 1.32 |
BR | 3(qDGWC3.1) | R3M10−STS3.3 | 4 | RM5688−RM471 | 6.25 | 2.59 | −4.18 |
3(qDGWC3.1) | R3M10−STS3.3 | 9 | RM7390−RM6051 | 5.21 | 6.96 | 1.69 | |
8 | RM6208−RM3395 | 1 | RM1198−RM1361.1 | 5.94 | 2.64 | 4.05 | |
整精米率 | 3(qDGWC3.1) | STS3.3−STS3.4 | 5 | R5M13−RM3476 | 6.24 | 3.16 | 7.79 |
HR | 3(qDGWC3.1) | STS3.3−STS3.4 | 11 | RM167−STS11.1 | 5.86 | 9.53 | −3.89 |
4 | RM5688−RM471 | 6(qPGWC6.2) | RM6395−RM5814 | 4.31 | 12.16 | 8.67 | |
长宽比 | 1 | RM1361.1−RM6321 | 10 | RM3451−RM590 | 4.55 | 6.66 | 0.10 |
MLW | 5 | R5M13−RM3476 | 8 | RM8018−RM1376 | 4.88 | 12.06 | 0.10 |
垩白粒率 | 1 | RM6547−R1M47 | 8 | RM3571−RM3754 | 4.53 | 11.37 | 10.85 |
DGWC | 1 | RM3240−R1M37 | 11 | RM5599−RM167 | 4.51 | 3.20 | −8.30 |
2 | STS2.4−RM13603 | 4 | STS4.3−RM348 | 4.44 | 16.16 | −8.10 | |
6 | RM587−RM217 | 2 | RM300.1−STS2.3 | 4.59 | 14.79 | 8.60 | |
6(qPGWC6.2) | R6M14−RM3827 | 3 | RM3513.1−RM1350 | 5.56 | 3.46 | 14.03 | |
6(qPGWC6.2) | R6M14−RM3827 | 5 | R5M13−RM3476 | 5.69 | 3.52 | 14.24 | |
7(qPGWC7) | RM3555−RM1306 | 3 | RM3513.1−RM1350 | 5.77 | 9.10 | 9.39 | |
7(qPGWC7) | RM3555−RM1306 | 4 | RM5688−RM471 | 4.84 | 9.41 | −9.21 | |
垩白度 | 3(qDGWC3.1) | R3M10−STS3.3 | 1 | RM3240−R1M37 | 5.84 | 4.31 | −4.94 |
PGWC | 3(qDGWC3.1) | STS3.3−STS3.4 | 4 | RM5688−RM471 | 7.83 | 5.11 | 8.82 |
3(qDGWC3.1) | STS3.3−STS3.4 | 12 | RM101−STS12.1 | 6.21 | 4.55 | −7.83 | |
4 | RM5688−RM471 | 6(qDGWC6.2) | R6M14−RM3827 | 5.84 | 4.46 | −7.55 | |
7(qDGWC7) | RM3555−RM1306 | 1 | RM6547−R1M47 | 5.57 | 4.23 | −3.77 | |
7(qDGWC7) | RM3555−RM1306 | 2 | RM1361.3−MM1065 | 4.98 | 3.80 | −3.78 | |
12 | RM7120−STS12.2 | 8 | RM6976−RM1345 | 6.35 | 3.54 | −5.01 | |
12 | STS12.2−RM1226 | 11(qDGWC11) | RM21−STS11.4 | 4.20 | 6.09 | −9.88 |
图2 调控垩白性状的主效QTL qChlak7基因分型和极端株系目标区域基因型分析 A和B为不同基因型株系垩白粒率和垩白度表型比较分析;C为主效QTL qChlak7极端株系鉴定与验证,灰色和白色表示龙稻5号(LD5)和中优早8号(ZYZ8)的基因型;G1~G7表示RIL群体株系的7种基因型,n表示每种基因型株系数;C中右图白色和灰色柱子分别表示7种基因型的垩白粒率和垩白度表型值,CK为LD5数值。**表示与对照存在极显著差异(P<0.01),ns表示无显著差异(P>0.05)。
Fig. 2. Genotyping of the major QTL, qChlak7, located on the chromosome target regions using the extreme lines. A and B indicate the distribution of chalkiness from different genotypes; C, Identification and validation of the major QTL qChlak7 were using the extreme lines; Gray bar and white bars indicate Longdao 5(LD5) and Zhongyouzao 8(ZYZ8) genotypes, respectively; G1-G7 represent for seven genotypes of RIL population lines, n represent for the number of each genotype; White and gray bars indicate chalky grain percentage and chalkiness degree of the seven genotypes, respectively; CK is control value(LD5). **Significant difference between the genotype and CK(P<0.01); ns, No significant difference(P>0.05).
编号 Number | 基因号 Gene ID | 基因功能 Gene function |
---|---|---|
ORF1 | LOC_Os07g48510 | 硫氧还蛋白,抗氧化、抗凋亡和调节转录因子活性 Thioredoxin, resistance transcription factor |
ORF2 | LOC_Os07g48596 | MYB家族转录因子 MYB transcription factor |
ORF3 | LOC_Os07g48660 | bZIP转录因子蛋白结构域 bZIP transcription factor domain containing protein |
ORF4 | LOC_Os07g48680 | 锌指蛋白,含C3HC4型结构域 Zinc finger, C3HC4 type domain containing protein |
ORF5 | LOC_Os07g48730 | 酪氨酸蛋白激酶(PTK)的结构域含蛋白 Tyrosine protein kinase domain containing protein |
ORF6 | LOC_Os07g48830* | 半乳糖醇合酶,糖基转移酶结构域含蛋白 Galactinol synthase, glycosyl transferase domain containing protein |
ORF7 | LOC_Os07g48840* | 丝氨酸/苏氨酸蛋白磷酸酶(MAPK)家族蛋白 Ser/Thr protein phosphatase family protein |
ORF8 | LOC_Os07g48850* | PPR重复序列蛋白,水稻胚乳发育相关基因OsFLO18 PPR repeat containing protein,endosperm development OsFLO18 |
ORF9 | LOC_Os07g48870 | MYB家族转录因子 MYB family transcription factor |
ORF10 | LOC_Os07g49000 | DNAJ热休克蛋白N端结构域 DNAJ heat shock N-terminal domain-containing protein |
ORF11 | LOC_Os07g49030 | 锌指蛋白,RING/FYVE/PHD型结构域含蛋白 Zinc finger, RING/FYVE/PHD-finger family protein |
表5 垩白主效QTL qChlak7目标区域关键候选基因分析
Table 5. Analysis of key candidate genes in major QTL qChlak7 target region.
编号 Number | 基因号 Gene ID | 基因功能 Gene function |
---|---|---|
ORF1 | LOC_Os07g48510 | 硫氧还蛋白,抗氧化、抗凋亡和调节转录因子活性 Thioredoxin, resistance transcription factor |
ORF2 | LOC_Os07g48596 | MYB家族转录因子 MYB transcription factor |
ORF3 | LOC_Os07g48660 | bZIP转录因子蛋白结构域 bZIP transcription factor domain containing protein |
ORF4 | LOC_Os07g48680 | 锌指蛋白,含C3HC4型结构域 Zinc finger, C3HC4 type domain containing protein |
ORF5 | LOC_Os07g48730 | 酪氨酸蛋白激酶(PTK)的结构域含蛋白 Tyrosine protein kinase domain containing protein |
ORF6 | LOC_Os07g48830* | 半乳糖醇合酶,糖基转移酶结构域含蛋白 Galactinol synthase, glycosyl transferase domain containing protein |
ORF7 | LOC_Os07g48840* | 丝氨酸/苏氨酸蛋白磷酸酶(MAPK)家族蛋白 Ser/Thr protein phosphatase family protein |
ORF8 | LOC_Os07g48850* | PPR重复序列蛋白,水稻胚乳发育相关基因OsFLO18 PPR repeat containing protein,endosperm development OsFLO18 |
ORF9 | LOC_Os07g48870 | MYB家族转录因子 MYB family transcription factor |
ORF10 | LOC_Os07g49000 | DNAJ热休克蛋白N端结构域 DNAJ heat shock N-terminal domain-containing protein |
ORF11 | LOC_Os07g49030 | 锌指蛋白,RING/FYVE/PHD型结构域含蛋白 Zinc finger, RING/FYVE/PHD-finger family protein |
[1] | 张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉. 稻米品质性状基因的克隆与功能研究进展[J]. 中国农业科学, 2016, 49: 4267-4283. |
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality[J]. Scientia Agricultura Sinica, 2016, 49: 4267-4283. (in Chinese with English abstract) | |
[2] | 程式华. 中国水稻育种百年发展与展望[J]. 中国稻米, 2021, 27(4):1-6. |
Cheng S H. One-hundred years’ development and prospect of rice breeding in China[J]. China Rice, 2021, 27(4): 1-6. (in Chinese with English abstract) | |
[3] | 周立军, 江玲, 翟虎渠, 万建民. 水稻垩白的研究现状与改良策略[J]. 遗传, 2009, 31(6): 563-572. |
Zhou LJ, Jiang L, Zhai H Q, Wang J M. Current status and strategies for improvement of rice grain chalkiness[J]. Hereditas, 2009, 31(6): 563-572. (in Chinese with English abstract) | |
[4] | 邱先进, 袁志华, 何文静, 刘环, 徐建龙, 邢丹英. 水稻垩白性状遗传育种研究进展[J]. 植物遗传资源学报, 2014, 15(5): 992-998. |
Qiu X J, Yuan Z H, He W J, Liu H, Xu J L, Xing D Y. Progress in genetic and breeding research on rice chalkiness[J]. Journal of Plant Genetic Resources, 2014, 15(5): 992-998. (in Chinese with English abstract) | |
[5] | Peng B, Wang L Q, Fan C C, Jiang G H, Luo L J, Li Y B, He Y Q. Comparative mapping of chalkiness components in rice using five populations across two environments[J]. BMC Genetics, 2014, 15: 1. |
[6] | Gao F Y, Zeng L H, Qiu L, Lu X J, Ren J S, Wu X T, Su X W, Gao Y M, Ren G J. QTL mapping of grain appearance quality traits and grain weight using a recombinant inbred population in rice (Oryza sativa L.)[J]. Journal of Integrative Agriculture, 2016, 15(8): 1693-1702. |
[7] | Yun P, Zhu Y, Wu B, Gao G J, Sun P, Zhang Q L, He Y Q. Genetic mapping and confirmation of quantitative trait loci for grain chalkiness in rice[J]. Molecular Breeding, 2016, 36: 162. |
[8] | Ren D Y, Rao Y C, Huang L C, Leng Y J, Hu J, Lu M, Zhang G H, Zhu L, Gao Z, Dong G J, Guo L B, Qian Q, Zeng D L. Fine mapping identifies a new QTL for brown rice rate in rice (Oryza sativa L.)[J]. Rice, 2016, 9: 4. |
[9] | Wu B, Yun P, Zhou H, Xia D, Gu Y, Li P B, Yao J L, Zhou Z Q, Chen J X, Liu R J, Cheng S Y, Zhang H, Zheng Y Y, Lou G M, Chen P L, Wan S S, Zhou M S, Li Y H, Gao G J, Zhang Q L, Li X H, Lian X M, He Y Q. Natural variation in WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect grain quality[J]. The Plant Cell, 2022, 36(5): 1912-1932. |
[10] | Li Y B, Fan C C, Xing Y Z, Yun P, Luo L J, Yan B, Peng B, Xie W B, Wang G W, Li X H, Xiao J H, Xu C G, He Y Q. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. |
[11] | 邱先进, 袁志华, 陈凯, 杜斌, 何文静, 杨隆维, 徐建龙, 邢丹英, 吕文恺. 用全基因组关联分析解析籼稻垩白的遗传基础[J] .作物学报, 2015, 41(7): 1007-1016. |
Qiu X J, Yuan Z H, Chen K, Du B, He W J, Yang L W, Xu J L, Xing D Y, Lu W K. Genetic dissection of grain chalkiness in indica mini-core germplasm using genome-wide association method[J]. Acta Agronmica Sinca, 2015, 41(7): 1007-1016. (in Chinese with English abstract) | |
[12] | Wang E, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He ZH. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics, 2008, 40(11): 1370-1374. |
[13] | Cai Y C, Li S F, Jiao G A, Sheng Z H, Wu Y W, Shao G N, Xie L H, Peng C, Xu J F, Tang S Q, Wei X J, Hu P S. OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling[J]. Plant Biotechnology Journal, 2018, 16(11): 1878-1891. |
[14] | Zhu A K, Zhang Y X, Zhang Z H, Wang B F, Xue P, Cao Y R, Chen Y Y, Li Z H, Liu Q E, Cheng S H, Cao L Y. Genetic dissection of for a quantitative trait locus for percentage of chalky grain in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2018, 9: 1173. |
[15] | Zhou L J, Chen L M, Jiang L, Zhang W W, Liu L L, Liu X, Zhao Z G, Liu S J, Zhang L J, Wang J K, Wan J M. Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2009, 118(3): 581-590. |
[16] | Guo T, Liu X L, Wan X Y, Weng J F, Liu S J, Liu X, Chen M J, Li J J, Su N, Wu F Q, Cheng Z J, Guo X P, Lei C L, Wang J L, Jiang L, Wan J M. Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa)[J]. Journal of Integrative Plant Biology, 2011, 53(8): 598-607. |
[17] | Gao Y, Liu C L, Li Y Y, Zhang A P, Dong G J, Xie L H, Zhang B, Ruan B P, Hong K, Xue D W, Zeng D L, Guo L B, Qian Q, Gao Z Y. QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9[J]. Rice, 2016, 9: 41. |
[18] | 王小雷, 刘杨, 孙晓棠, 欧阳林娟, 潘锦龙, 彭小松, 陈小荣, 贺晓鹏, 傅军如, 边建民, 胡丽芳, 徐杰, 贺浩华, 朱昌兰. 不同环境下稻米品质性状QTL的检测及稳定性分析[J]. 中国水稻科学, 2020, 34(1): 17-27. |
Wang X L, Liu Y, Sun Y, Sun X T, Oyang L J, Pan J L, Peng X S, Chen X R, He X P, Fu J R, Bian J M, Hu L F, Xu J, He H H, Zhu C L. Identification and stability analysis of QTL for grain quality traits under multiple environments in rice[J]. Chinese Journal of Rice Science, 2020, 34(1): 17-27. (in Chinese with English abstract) | |
[19] | 杨亚春, 倪大虎, 宋丰顺, 李泽福, 易成新, 杨剑波. 不同生态地点下稻米外观品质性状的QTL定位分析[J]. 中国水稻科学, 2011, 25(1): 43-51. |
Yang Y C, Ni D H, Song F S, Li Z F, Yi C X, Yang J B. Identification of QTLs for rice appearance quality traits across different ecological sites[J]. Chinese Journal of Rice Science, 2011, 25(1): 43-51. (in Chinese with English abstract) | |
[20] | Zhao X Q, Daygon V D, McNally K L, Hamilton R S, Xie F M, Reinke R F, Fitzgerald M A. Identification of stable QTLs causing chalk in rice grains in nine environments[J]. Theoretical and Applied Genetics, 2016, 129: 141-153. |
[21] | 彭强, 李佳丽, 张大双, 姜雪, 邓茹月, 吴健强, 朱速松. 不同环境基于高密度遗传图谱的稻米外观品质QTL定位[J]. 作物学报, 2018, 44(8): 1248-1255. |
Peng Q, Li J L, Zhang D S, Jiang X, Deng R Y, Wu J Q, Zhu S S. QTL mapping for rice appearance quality traits based on a high-density genetic map in different environments[J]. Acta Agronomica Sinica, 2018, 44(8): 1248-1255. (in Chinese with English abstract) | |
[22] | 陈喜娜, 袁泽科, 胡珍珍, 赵全志, 孙红正. 利用QTL-Seq定位粳稻整精米率QTL[J]. 中国水稻科学, 2021, 35(5): 449-454. |
Chen X N, Yuan Z K, Hu Z Z, Zhao Q Z, Sun H Z. QTL-seq mapping of head rice rate QTLs in japonica rice[J]. Chinese Journal of Rice Science, 2021, 35(5): 449-454. (in Chinese with English abstract) | |
[23] | 刘进, 姚晓云, 刘丹, 余丽琴, 李慧, 王棋, 王嘉宇, 黎毛毛. 不同生态环境下水稻穗部性状QTL鉴定[J]. 中国水稻科学, 2019, 33 (2): 124-134. |
Liu J, Yao X Y, Liu D, Yu L Q, Li H, Wang Q, Wang J Y, Li M M. Identification of QTL for panicle traits under multiple environments in rice (Oryza sativa L.)[J]. Chinese Journal of Rice Science, 2019, 33(2): 124-134. (in Chinese with English abstract) | |
[24] | Wang J K, Li H H, Zhang L Y,. Meng L. QTL IciMapping 4.2[OE/OL]. http://www.isbreeding.net. |
[25] | McCouch S R. Gene nomenclature system for rice[J]. Rice, 2008, 1: 72-84. |
[26] | Zheng T Q, Xu J L, Li Z K, Zhai H Q, Wan J M. Genomic regions associated with milling quality and grain shape identified in a set of random introgression lines of rice (Oryza sativa L.)[J]. Plant Breeding, 2007, 126: 158-163. |
[27] | 方雅洁, 朱亚军, 吴志超, 陈凯, 申聪聪, 石英尧, 徐建龙. 全基因组关联定位籼稻种质资源外观和加工品质QTL[J]. 作物学报, 2018, 44(1): 32-42. |
Fang Y J, Zhu Y J, Wu Z C, Chen K, Shen C C, Shi Y Y, Xu J L. Genome-wide association study of grain appearance and milling quality in a worldwide collection of indica rice germplasm[J]. Acta Agronomica Sinica, 2018, 44(1): 32-42. (in Chinese with English abstract) | |
[28] | 李一博, 赵雷. 水稻品品质性状的遗传改良及其关键科学问题[J]. 生命科学, 2016, 28(10): 1168-1179. |
Li Y B, Zhao L. Genetic improvement and key scientific questions of grain quality traits in rice[J]. Chinese Bulletin of Life Sciences, 2016, 28(10): 1168-1179. (in Chinese with English abstract) | |
[29] | 吉志军, 尤娟, 王龙俊, 王绍华, 杜永林, 张国发, 王强盛, 丁艳锋. 不同基因型水稻稻米加工品质和外观品质的生态型差异[J]. 南京农业大学学报, 2005, 28(4): 16-20. |
Ji Z J, You J, Wang L J, Wang SH, Du Y L, Zhang Q S, Ding Y F. Ecotype differences in milling qualities and appearance qualities of different rice genotypes[J]. Journal of Nanjing Agricultural University, 2005, 28(4): 16-20. (in Chinese with English abstract) | |
[30] | 王云霞, 杨连新. 水稻品质对主要气候变化因子的响应[J]. 农业环境科学学报, 2020, 39(4):822-833. |
Wang Y X, Yang L X. Response of rice quality to major climate change factors[J]. Journal of Agro-Environment Science, 2020, 39(4): 822-833. (in Chinese with English abstract) | |
[31] | Wan X Y, Wan J M, Weng J F, Jiang L, Bi J C, Wang C M, Zhai H Q. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments[J]. Theoretical and Applied Genetics, 2005, 110: 1334-134. |
[32] | 李进波, 戚华雄. 水稻灌浆期间高温对水稻外观品质的影响[J]. 湖北农业科学, 2019, 58(22): 28-30, 53. |
Li J B, Qi H X. Effects on appearance quality of rice under high temperature during grain filling stage[J]. Hubei Agricultural Sciences, 2019, 58(22): 28-30, 53. (in Chinese with English abstract) | |
[33] | 徐富贤, 刘茂, 周兴兵, 郭晓艺, 张林, 蒋鹏, 朱永川, 熊洪. 长江上游高温伏旱区气象因子对杂交中稻产量与稻米品质的影响[J]. 应用与环境生物学报, 2020, 26(1): 106-116. |
Xu F X, Liu M, Zhou X B, Guo X Y, Zhang L, Jiang P, Zhu Y C, Xiong H. Effects of meteorological factors on yield and quality of mid-season hybrid rice in a high temperature and drought area in the upper reaches of the Yangtze River[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(1): 106-116. (in Chinese with English abstract) | |
[34] | 王东明, 陶冶, 朱建国, 刘钢, 朱春梧. 稻米外观与加工品质对大气CO2浓度升高的响应[J]. 中国水稻科学, 2019, 33(4): 338-346. |
Wang D M, Tao Z, Zhu J G, Liu G, Zhu C W. Responses of rice appearance and processing quality to elevated atmospheric CO2 concentration[J]. Chinese Journal of Rice Science, 2019, 33(4): 338-346. (in Chinese with English abstract) | |
[35] | 吴海兵, 刘道红, 钟鸣, 汪友元. 气候因子对稻米品质形成及其影响机制的研究进展[J]. 湖北农业科学, 2019, 58(2): 13-18. |
Wu H B, Liu D H, Zhong M, Wang Y Y. Research progress of climate factor on quality formation and influence mechanism in rice[J]. Hubei Agricultural Sciences, 2019, 58(2): 13-18. (in Chinese with English abstract) | |
[36] | 李承欣, 王敬国, 刘化龙, 孙健, 王江旭, 赵宏伟, 邹德堂. 水、旱条件下稻米品质相关性状的QTL定位及其与环境互作分析[J]. 农业生物技术学报, 2016, 24(10): 1491-1499. |
Li C H, Wang J G, Liu H L, Sun J, Wang J X, Zhao H W, Zou D T. QTL mapping and QTL × environment interaction analysis of grain quality-related traits in rice under water-and dry-cultivation conditions[J]. Journal of Agricultural Biotechnology, 2016, 24(10): 1491-1499. (in Chinese with English abstract) | |
[37] | 翁建峰, 万向元, 郭涛, 江玲, 翟虎渠, 万建民. 利用CSSL群体研究稻米加工品质相关QTL表达的稳定性[J]. 中国农业科学, 2007, 40(10): 2128-2135. |
Weng J F, Wan X Y, Guo T, Jiang L, Zhai H Q, Wan J M. Stability analysis of QTL for milling quality of rice (Oryza stativa L.) using CSSL population[J]. Scientia Agricultura Sinica, 2007, 40(10): 2128-2135. (in Chinese with English abstract) | |
[38] | Zhao X Q, Daygon V D, McNally K L, Hamilton R S, Xie F M, Reinke R F, Fitzgerald M A. Identification of stable QTLs causing chalk in rice grains in nine environments[J]. Theoretical and Applied Genetics, 2016, 129: 141-153. |
[39] | 胡霞, 石瑜敏, 贾倩, 徐琴, 王韵, 陈凯, 孙勇, 朱苓华, 徐建龙, 黎志康. 影响水稻穗部性状及籽粒碾磨品质的 QTL 及其环境互作分析[J]. 作物学报, 2011, 37(7): 1175-1185. |
Hu X, Shi Y M, Jia Q, Xu Q, Wang Y, Chen K, Sun Y, Zhu L H, Xu J L, Li Z K. Analyses of QTLs for rice panicle and milling quality traits and their interaction with environment[J]. Acta Agronomica Sinica, 2011, 37(7): 1175-1185. (in Chinese with English abstract) | |
[40] | 周勇, 高云, 朱松松, 朱金燕, 王军, 裔传灯, 仲维功, 梁国华. 基于染色体单片段代换系的水稻糙米率QTL的定位[J]. 华北农学报, 2013, 28(6): 1-5. |
Zhou Y, Gao Y, Zhu S S, Zhu J J, Wang J, Yi C D, Zhong W G, Liang G H. QTL Mapping of brown rice rate using chromosome single segment substituted lines in rice[J]. Acta Agriculturae Boreall-sinica, 2013, 28(6): 1-5. (in Chinese with English abstract) | |
[41] | 王小雷, 刘杨, 孙晓棠, 欧阳林娟, 潘锦龙, 彭小松, 陈小荣, 贺晓鹏, 傅军如, 边建民, 胡丽芳, 徐杰, 贺浩华, 朱昌兰. 不同环境下稻米品质性状QTL的检测及稳定性分析[J]. 中国水稻科学, 2020, 34(1): 17-27. |
Wang X L, Liu Y, Sun Y, Sun X T, Oyang L J, Pan J L, Peng X S, Chen X R, He X P, Fu J R, Bian J M, Hu L F, Xu J, He H H, Zhu C L. Identification and stability analysis of QTL for grain quality traits under multiple environments in rice[J]. Chinese Journal of Rice Science, 2020, 34(1): 17-27. (in Chinese with English abstract) | |
[42] | Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39:623-630. |
[43] | Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant, 2015, 8(10): 1455-1465. |
[44] | Qiu X J, Chen K, Lü W K, Ou X X, Zhu Y J, Xing D Y, Yang L W, Fan F J, Yang J, Xu J L, Zheng T Q, Li Z K. Examining two sets of introgression lines reveals background independent and stably expressed QTL that improve grain appearance quality in rice[J]. Theoretical and Applied Genetics, 2017, 130: 951-967. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||