中国水稻科学 ›› 2021, Vol. 35 ›› Issue (1): 1-10.DOI: 10.16819/j.1001-7216.2021.0511
• 综述 • 下一篇
收稿日期:
2020-05-15
修回日期:
2020-07-30
出版日期:
2021-01-10
发布日期:
2021-01-10
通讯作者:
杨长登
基金资助:
Zhijuan JI, Yuxiang ZENG, Yan LIANG, YANGChangdeng*()
Received:
2020-05-15
Revised:
2020-07-30
Online:
2021-01-10
Published:
2021-01-10
Contact:
YANGChangdeng
摘要:
恶苗病是水稻的主要病害,该病主要通过种子带菌传播,可对水稻的生产造成严重危害。近来国内外学者在水稻恶苗病抗性种质资源的筛选、抗性遗传、QTL定位和基因挖掘等方面取得了一定的进展。本文简要概述了水稻恶苗病菌分类和特征,比较了不同恶苗病抗性鉴定方法,分析了当前定位的水稻恶苗病抗性QTL数目和染色体分布,探讨了转录组学和蛋白组学技术在水稻恶苗病抗性基因挖掘中的最新研究成果,并对该领域未来的研究方向进行了展望,为今后深入开展恶苗病抗性研究和抗恶苗病水稻育种提供参考。
季芝娟, 曾宇翔, 梁燕, 杨长登. 水稻恶苗病抗性研究进展[J]. 中国水稻科学, 2021, 35(1): 1-10.
Zhijuan JI, Yuxiang ZENG, Yan LIANG, YANGChangdeng. Research and Progress of Bakanae Disease Resistance in Rice[J]. Chinese Journal OF Rice Science, 2021, 35(1): 1-10.
图1 恶苗病田间发病症状 a–大田植株徒长症状;b–正常幼苗和发病幼苗,发病幼苗徒长且分蘖减少。
Fig.1. Symptoms of bakanae disease in the field. a, Excessive growing symptom of rice plants in the field; b, Normal seedling and infected seedling with excessive growth and reduced tillers.
图2 三种恶苗病菌种群形态特征[19] a–藤仓镰孢;b–轮枝镰孢;c–层出镰孢。
Fig. 2. Morphological characteristics of three kinds of pathogens ofbakanae[19]. a, F. fujikuroi; b, F. proliferatum; c, F. verticillioides.
交配种群 Mating population | 无性态 Anamorph | 有性态 Teleomorph | 分泌的毒素 Mycotoxin |
---|---|---|---|
MP-C | Fusarium fujikuroi | Gibberellafujikuroi | 串珠镰刀菌素、白僵菌素和伏马毒素Moniliformin, beauvericin, fumonisins |
MP-A | Fusarium verticillioides | Gibberellamoniliformis | 伏马毒素Fumonisins |
MP-D | Fusarium proliferatum | Gibberella intermedia | 伏马毒素、白僵菌素和二倍半萜烯真菌毒素Fumonisins, beauvericin,fusaproliferin |
表1 恶苗病菌三类交配种群
Table 1 Three kinds of mating populations for the pathogen of bakanae disease.
交配种群 Mating population | 无性态 Anamorph | 有性态 Teleomorph | 分泌的毒素 Mycotoxin |
---|---|---|---|
MP-C | Fusarium fujikuroi | Gibberellafujikuroi | 串珠镰刀菌素、白僵菌素和伏马毒素Moniliformin, beauvericin, fumonisins |
MP-A | Fusarium verticillioides | Gibberellamoniliformis | 伏马毒素Fumonisins |
MP-D | Fusarium proliferatum | Gibberella intermedia | 伏马毒素、白僵菌素和二倍半萜烯真菌毒素Fumonisins, beauvericin,fusaproliferin |
图3 恶苗病抗性相关QTLs的染色体位置 加边框的QTL为共定位的QTL。
Fig.3. Chromosome position of the bakanae-disease-resistance-related QTLs. The QTLs in frames are co-located in the position.
鉴定方法 Evaluation method | 孢子浓度 Spore concentration | 处理条件 Treatment condition | 抗性衡量指标 Resistance index | 啊啊啊啊 aaaa |
---|---|---|---|---|
芽期浸菌接种 Immersing in spore suspension at germinationstage | 100倍显微镜视野下 2000个孢子左右 | 浸菌接种3h | 根据苗期和成株期发病率进行抗性 分级(1~9级) | [22,26] |
560nm波长下20% 和50%透光率 | 30℃下振荡培养浸菌接种24h | 根据5d后的幼苗徒长比率进行抗性 分级(1~5级) | [24] | |
8.8×106个/mL | 30℃下振荡培养浸菌接种24h | 7d后的幼苗徒长比率和苗重比率 | [31] | |
1×105个/mL | 浸菌接种24h | 4周后的幼苗死亡率 | [32] | |
1×105个/mL | 浸菌接种1h | 3周后根据发病严重程度定级0~3级; 病菌再分离定殖率 | [35] | |
立针期喷雾接种 Spraying with spore suspension at vertical-needle-shaped incomplete leaf growing stage | 100倍显微镜视野下 2000个孢子左右 | 喷雾接种2~3次, 菌液用量为250 mL/m2 | 根据苗期和成株期发病率进行抗性 分级(1~9级) | [22,26] |
铺病节诱发 Laying infected straw after sowing | 100倍显微镜视野下 2000个孢子左右 | 将病稻节切成约1cm长, 浸透水, 于播种覆土后立即在土表均匀撒上一层 | 根据苗期和成株期发病率进行抗性 分级(1~9级) | [22,26] |
穗期喷雾接种 Spraying with spore suspension at heading stage | 100倍显微镜视野下 2000个孢子左右 | 在抽穗开花期喷雾接种3次 | 根据苗期和成株期发病率进行抗性 分级(1~9级) | [22,26] |
自然诱发 Inoculating under natural condition | - | 预浸后高温催芽的种子直接播种 | 根据苗期和成株期发病率进行抗性 分级(1~9级) | [22,26] |
干种子直接浸菌接种 Immersing dried seeds in spore suspension directly | 1×106个/mL | 浸菌接种12h | 5d, 10d, 20d, 30d 和 40d后根据发病 严重程度指数定级(0~4级) | [27] |
1×105个/mL | 室温下浸菌接种16h | 种子发芽率、15d和30d的发病率 | [10] | |
1×106个/mL | 26℃浸菌接种3d,每天轻轻振荡4次 | 一个月后的健康植株率 | [11] | |
1×106个/mL | 室温浸菌振荡接种30 min | 种子发芽率、根据3周后发病率进行 抗性分级(1~5级) | [36] | |
1×106个/mL | 室温浸菌接种24h | 幼苗死亡率和徒长比率 | [30] | |
幼苗浸根接种 Immersingseedling roots in spore suspension | 1×106个/mL | 幼苗根部浸菌接种2h | 幼苗死亡率和徒长比率 | [30] |
Table 2 Methods for evaluation of rice bakanae disease resistance.
鉴定方法 Evaluation method | 孢子浓度 Spore concentration | 处理条件 Treatment condition | 抗性衡量指标 Resistance index | 啊啊啊啊 aaaa |
---|---|---|---|---|
芽期浸菌接种 Immersing in spore suspension at germinationstage | 100倍显微镜视野下 2000个孢子左右 | 浸菌接种3h | 根据苗期和成株期发病率进行抗性 分级(1~9级) | [22,26] |
560nm波长下20% 和50%透光率 | 30℃下振荡培养浸菌接种24h | 根据5d后的幼苗徒长比率进行抗性 分级(1~5级) | [24] | |
8.8×106个/mL | 30℃下振荡培养浸菌接种24h | 7d后的幼苗徒长比率和苗重比率 | [31] | |
1×105个/mL | 浸菌接种24h | 4周后的幼苗死亡率 | [32] | |
1×105个/mL | 浸菌接种1h | 3周后根据发病严重程度定级0~3级; 病菌再分离定殖率 | [35] | |
立针期喷雾接种 Spraying with spore suspension at vertical-needle-shaped incomplete leaf growing stage | 100倍显微镜视野下 2000个孢子左右 | 喷雾接种2~3次, 菌液用量为250 mL/m2 | 根据苗期和成株期发病率进行抗性 分级(1~9级) | [22,26] |
铺病节诱发 Laying infected straw after sowing | 100倍显微镜视野下 2000个孢子左右 | 将病稻节切成约1cm长, 浸透水, 于播种覆土后立即在土表均匀撒上一层 | 根据苗期和成株期发病率进行抗性 分级(1~9级) | [22,26] |
穗期喷雾接种 Spraying with spore suspension at heading stage | 100倍显微镜视野下 2000个孢子左右 | 在抽穗开花期喷雾接种3次 | 根据苗期和成株期发病率进行抗性 分级(1~9级) | [22,26] |
自然诱发 Inoculating under natural condition | - | 预浸后高温催芽的种子直接播种 | 根据苗期和成株期发病率进行抗性 分级(1~9级) | [22,26] |
干种子直接浸菌接种 Immersing dried seeds in spore suspension directly | 1×106个/mL | 浸菌接种12h | 5d, 10d, 20d, 30d 和 40d后根据发病 严重程度指数定级(0~4级) | [27] |
1×105个/mL | 室温下浸菌接种16h | 种子发芽率、15d和30d的发病率 | [10] | |
1×106个/mL | 26℃浸菌接种3d,每天轻轻振荡4次 | 一个月后的健康植株率 | [11] | |
1×106个/mL | 室温浸菌振荡接种30 min | 种子发芽率、根据3周后发病率进行 抗性分级(1~5级) | [36] | |
1×106个/mL | 室温浸菌接种24h | 幼苗死亡率和徒长比率 | [30] | |
幼苗浸根接种 Immersingseedling roots in spore suspension | 1×106个/mL | 幼苗根部浸菌接种2h | 幼苗死亡率和徒长比率 | [30] |
QTL | 染色体Chromosome | QTL区间 QTL region/Mb | 定位群体 Mapping population | 群体大小Population size | 群体父母本或类型 Parents or type of population | 啊啊啊啊 aaaa |
---|---|---|---|---|---|---|
qBE1.2 | 1 | 0.30–4.56 | RIL | 159 | 日本晴(粳)/9311(籼) | [31] |
qBK1.4 | 1 | 0.40–0.43 | GWAS | 76 | 来自RDP1的种质资源 | [35] |
qBW1 | 1 | 0.56–5.62 | RIL | 132 | 培矮64S(籼)/9311(籼) | [31] |
qBK1_628091 | 1 | 0.62–1.04 | GWAS | 138 | 41个热带粳稻、97个温带粳稻 | [47] |
qBK1.5 | 1 | 2.25–2.33 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBK1.2 | 1 | 3.10–3.36 | RIL | 168 | Pusa 1342(籼)/Pusa Basmati 1121(籼) | [45] |
qBK1.3 | 1 | 4.65–8.41 | RIL | 168 | Pusa 1342(籼)/Pusa Basmati 1121(籼) | [45] |
qBE1.1 | 1 | 11.91–13.71 | RIL | 132 | 培矮64S(籼)/9311(籼) | [31] |
qBK1WD | 1 | 13.54–15.13 | RIL | 200 | Wonseadaesoo(粳)/Junam(粳) | [48] |
qBK1.6 | 1 | 22.09–22.25 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qFfR1 | 1 | 22.56–24.10 | F2:F3 | 180 | Nampyeong(粳)/DongjinAD(粳) | [32] |
qBK1.1 | 1 | 23.32–23.34 | RIL | 168 | Pusa 1342(籼)/Pusa Basmati 1121(籼) | [45] |
qBK1.7 | 1 | 23.63–23.64 | GWAS | 76 | 来自RDP1的种质资源 | [35] |
qBK1 | 1 | 23.64–23.67 | NIL | 168 | YR24982-9-1(籼)/Ilpum(粳) | [44, 46] |
qB1 | 1 | 34.10–34.95 | DH | 120 | 春江06/TN1 | [43] |
qBK3.1 | 3 | 21.43–21.78 | RIL | 168 | Pusa 1342(籼)/Pusa Basmati 1121(籼) | [45] |
qBK3.2 | 3 | 27.48–27.64 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBE3 | 3 | 28.68–35.77 | RIL | 159 | 日本晴(粳)/9311(籼) | [31] |
qBW3 | 3 | 34.95–35.60 | RIL | 132 | 培矮64S(籼)/9311(籼) | [31] |
qBK4.1 | 4 | 22.37–22.43 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBK4_31750955 | 4 | 31.16–31.75 | GWAS | 138 | 41个热带粳稻、97个温带粳稻 | [47] |
qBK6.1 | 6 | 3.28–3.64 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBK6.2 | 6 | 4.87–5.06 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBW6 | 6 | 24.40–25.88 | RIL | 132 | 培矮64S(籼)/9311(籼) | [31] |
qBK6.3 | 6 | 25.30–25.64 | GWAS | 76 | 来自RDP1的种质资源 | [35] |
qBK8.1 | 8 | 6.14–6.24 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBE9 | 9 | 6.38–8.28 | RIL | 132 | 培矮64S(籼)/9311(籼) | [31] |
qFfR9 | 9 | 7.24–7.56 | F2:F3 | 188 | Samgwang(粳)/Junam(粳) | [49] |
qBK10.1 | 10 | 5.68–6.02 | GWAS | 76 | 来自RDP1的种质资源 | [35] |
qBK10.2 | 10 | 6.85–6.86 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBK10.3 | 10 | 9.09–9.34 | GWAS | 76 | 来自RDP1的种质资源 | [35] |
qB10 | 10 | 18.72–19.23 | DH | 120 | 春江06/TN1 | [43] |
qBK11.1 | 11 | 22.577–22.583 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
Table 3 QTLs related to rice bakanae disease resistance.
QTL | 染色体Chromosome | QTL区间 QTL region/Mb | 定位群体 Mapping population | 群体大小Population size | 群体父母本或类型 Parents or type of population | 啊啊啊啊 aaaa |
---|---|---|---|---|---|---|
qBE1.2 | 1 | 0.30–4.56 | RIL | 159 | 日本晴(粳)/9311(籼) | [31] |
qBK1.4 | 1 | 0.40–0.43 | GWAS | 76 | 来自RDP1的种质资源 | [35] |
qBW1 | 1 | 0.56–5.62 | RIL | 132 | 培矮64S(籼)/9311(籼) | [31] |
qBK1_628091 | 1 | 0.62–1.04 | GWAS | 138 | 41个热带粳稻、97个温带粳稻 | [47] |
qBK1.5 | 1 | 2.25–2.33 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBK1.2 | 1 | 3.10–3.36 | RIL | 168 | Pusa 1342(籼)/Pusa Basmati 1121(籼) | [45] |
qBK1.3 | 1 | 4.65–8.41 | RIL | 168 | Pusa 1342(籼)/Pusa Basmati 1121(籼) | [45] |
qBE1.1 | 1 | 11.91–13.71 | RIL | 132 | 培矮64S(籼)/9311(籼) | [31] |
qBK1WD | 1 | 13.54–15.13 | RIL | 200 | Wonseadaesoo(粳)/Junam(粳) | [48] |
qBK1.6 | 1 | 22.09–22.25 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qFfR1 | 1 | 22.56–24.10 | F2:F3 | 180 | Nampyeong(粳)/DongjinAD(粳) | [32] |
qBK1.1 | 1 | 23.32–23.34 | RIL | 168 | Pusa 1342(籼)/Pusa Basmati 1121(籼) | [45] |
qBK1.7 | 1 | 23.63–23.64 | GWAS | 76 | 来自RDP1的种质资源 | [35] |
qBK1 | 1 | 23.64–23.67 | NIL | 168 | YR24982-9-1(籼)/Ilpum(粳) | [44, 46] |
qB1 | 1 | 34.10–34.95 | DH | 120 | 春江06/TN1 | [43] |
qBK3.1 | 3 | 21.43–21.78 | RIL | 168 | Pusa 1342(籼)/Pusa Basmati 1121(籼) | [45] |
qBK3.2 | 3 | 27.48–27.64 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBE3 | 3 | 28.68–35.77 | RIL | 159 | 日本晴(粳)/9311(籼) | [31] |
qBW3 | 3 | 34.95–35.60 | RIL | 132 | 培矮64S(籼)/9311(籼) | [31] |
qBK4.1 | 4 | 22.37–22.43 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBK4_31750955 | 4 | 31.16–31.75 | GWAS | 138 | 41个热带粳稻、97个温带粳稻 | [47] |
qBK6.1 | 6 | 3.28–3.64 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBK6.2 | 6 | 4.87–5.06 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBW6 | 6 | 24.40–25.88 | RIL | 132 | 培矮64S(籼)/9311(籼) | [31] |
qBK6.3 | 6 | 25.30–25.64 | GWAS | 76 | 来自RDP1的种质资源 | [35] |
qBK8.1 | 8 | 6.14–6.24 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBE9 | 9 | 6.38–8.28 | RIL | 132 | 培矮64S(籼)/9311(籼) | [31] |
qFfR9 | 9 | 7.24–7.56 | F2:F3 | 188 | Samgwang(粳)/Junam(粳) | [49] |
qBK10.1 | 10 | 5.68–6.02 | GWAS | 76 | 来自RDP1的种质资源 | [35] |
qBK10.2 | 10 | 6.85–6.86 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
qBK10.3 | 10 | 9.09–9.34 | GWAS | 76 | 来自RDP1的种质资源 | [35] |
qB10 | 10 | 18.72–19.23 | DH | 120 | 春江06/TN1 | [43] |
qBK11.1 | 11 | 22.577–22.583 | GWAS | 231 | 来自RDP1的种质资源 | [35] |
[1] | Ou S H. Rice Diseases.2nd edition.[M]. Kew, UK: Commonwealth Mycological Institute,1985:262-272. |
[2] | Pra M D, Tonti S, Pancaldi D, Nipoti P, Alberti I.First report of Fusarium andiyazi associated with rice bakanae in Italy[J]. Plant Disease, 2010, 94:1070. |
[3] | 庞子千, 黄国育. 水稻恶苗病发生成因及主要防控技术[J]. 中国稻米, 2017, 23(3): 77-78. |
Pang Z Q, Huang G Y.Causes and countermeasures on the prevention and control of rice bakanae disease[J].China Rice, 2017, 23(3): 77-78. (in Chinese with English abstract) | |
[4] | 张洪瑞, 袁守江, 李广贤, 徐建第, 李景岭, 周学标, 朱其松. 山东省水稻恶苗病病原菌形态学的鉴定与研究[J]. 山东农业科学, 2019, 51(10): 117-124. |
Zhang H R, Yuan S J, Li G X, Xu J D, Li J L, Zhou X B, Zhu Q S.Morphological identification and research on pathogens of rice bakanae disease in Shandong Province[J].Shandong Agricultural Sciences, 2019, 51(10): 117-124. (in Chinese) | |
[5] | Ito S, Kimura J.Studies on the ‘bakanae’ disease of the rice plant[J].Report of the Hokkaido National Agricultural Experiment Station, 1931, 27: 1-95. |
[6] | Gupta A, Solanki I, Bashyal B, Singh Y, Srivastava K.Bakanae of rice:An emerging disease in Asia[J]. Journal of Animal and Plant Sciences, 2015, 25: 1499-1514. |
[7] | Hwang I S, Kang W R, Hwang D J, Bae S C, Yun SH, Ahn I P.Evaluation of bakanae disease progression caused by Fusarium fujikuroiin Oryza sativa L[J]. Journal of Microbiology, 2013, 51: 858-865. |
[8] | Hwang I S, Ahn I P.Multi-homologous recombination-based gene manipulation in the rice pathogen Fusarium fujikuroi[J].The Plant Pathology Journal, 2016, 32: 173-181. |
[9] | Wiemann P, Sieber C, Von Bargen K W,Studt L,Niehaus E M,Espino J J,Huß K,Michielse C,Albermann S,Wagner D. Deciphering the cryptic genome: Genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites[J]. PLoS Pathogens, 2013, 9: e1003475. |
[10] | Wulff E G, Sørensen J L, Lübeck M, Nielsen K F, Thrane U, Torp J.Fusarium spp. associated with rice Bakanae: Ecology, genetic diversity, pathogenicity and toxigenicity[J]. Environmental Microbiology, 2010, 12: 649-657. |
[11] | Kim M H, Hur Y J, Lee S B, Kwon T, Hwang U H, Park S K, Yoon Y N, Lee J H, Cho J H, Shin D, Kim T H, Han S I, Yeo U S, Song Y C, Nam M H, Park D S.Large-scale screening of rice accessions to evaluate resistance to bakanae disease[J]. Journal of General Plant Pathology, 2014, 80: 408-414. |
[12] | 陈宏州, 杨红福, 饶鸣帅, 姚克兵, 庄义庆, 缪康, 束兆林. 水稻恶苗病防治药剂效果评价[J].中国农学通报, 2018, 34(33):140-146. |
Chen H Z, Yang H F, Rao M S, Yao K B, Zhuang Y Q, Miao K, Shu Z L.Efficacy evaluation of fungicides for rice bakanae disease[J]. Chinese Agricultural Science Bulletin, 2018, 34(33):140-146.(in Chinese with English abstract) | |
[13] | Wu J Y, Sun Y N, Zhou X J, Zhang C Q.A new mutation genotype of K218T in myosin-5 confers resistance to Phenamacril in rice bakanae disease in the field[J].Plant Disease, 2020, 104: 1151-1157. |
[14] | Chen Z H, Gao T, Liang S P, Liu K X, Zhou M G, Chen C J.Molecular mechanism of resistance of Fusarium fujikuroi to benzimidazole fungicides[J]. FEMS Microbiology Letters, 2014, 357(1): 77-84. |
[15] | 马晓伟, 邢春杰, 于金凤, 王勇, 陈子豪, 王建新, 周明国, 陈长军. 水稻恶苗病菌(Fusarium fujikuroi) β-微管蛋白基因克隆及与多菌灵抗药性关系[J]. 微生物学报, 2012, 52(5): 581-587. |
Ma X W, Xing C J, Yu J F, Wang Y, Chen Z H, Wang J X, Zhou M G, Chen C J.Cloning β-tubulin from Fusarium fujikuroi to analyze its relationship with carbendazimresistance[J]. ActaMicrobiologicaSinica, 2012, 52(5): 581-587.(in Chinese with English abstract) | |
[16] | 杨红福,吉沐祥,姚克兵, 束兆林.水稻恶苗病菌对咪鲜胺的抗性研究及治理[J]. 江西农业学报, 2013, 25(6): 94-96,105. |
Yang H F, Ji M X, Yao K B, Shu Z L.Study on Resistance of Fusarium moniliforeto prochlorazand its management[J].ActaAgriculturae Jiangxi, 2013, 25(6): 94-96,105.(in Chinese with English abstract) | |
[17] | Amatulli M T, Spadaro D, Gullino M L, Garibaldi A.Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity[J]. Plant Pathology, 2010,59: 839-844. |
[18] | 张晓伟, 张栋. 镰孢菌属真菌次生代谢产物的研究进展[J]. 植物生理学报, 2013, 49(3): 201-216. |
Zhang XW, Zhang D.Recent advances of secondary metabolites in genus Fusarium[J]. Plant Physiology Journal, 2013, 49(3): 201-216. (in Chinese with English abstract) | |
[19] | Bashyal B, Aggarwal R, Banerjee S, Gupta S, Sharma S.Pathogenicity, ecology and genetic diversity of theFusarium spp. associated with an emerging bakanae disease of rice (Oryza sativaL.) in India.//Kharwar R, Upadhyay R, Dubey N, Raghuwanshi R. Microbial diversity and biotechnology in food security[M]. New Delhi:Springer, 2014:307-314 |
[20] | Suga H, Kitajima M, Nagumo R, Tsukiboshi T, Uegaki R, Nakajima T, Kushiro M, Nakagawa H, Shimizu M, Kageyama K.A single nucleotide polymorphism in the translation elongation factor 1α gene correlates with the ability to produce fumonisin in Japanese Fusarium fujikuroi[J]. Fungal Biology, 2014, 4(118): 402-412. |
[21] | Matić S, Spadaro D, Prelle A, Gullino M L, Garibaldi A.Light affects fumonisin production in strains of Fusarium fujikuroi, Fusarium proliferatum, and Fusarium verticillioides isolated from rice[J]. International Journal of Food Microbiology, 2013, 166:515-523. |
[22] | 吕彬. 水稻抗恶苗病的鉴定方法研究[J]. 作物学报, 1996, 22(5): 629-632. |
Lu B.Studies on the methods of identification for resistance to rice bakanae disease[J].ActaAgronomicaSinica, 1996, 22(5): 629-632.(in Chinese with English abstract) | |
[23] | Yadav R S, Tyagi S, Javeria S, Gangwar R K.Effect of different cultural condition on the growth of Fusarium moniliforme causing bakanae disease[J].European Journal of Molecular Biotechnology, 2014, 2(4): 95-100. |
[24] | 季芝娟,马良勇,李西明,杨长登. 水稻品种恶苗病抗性快速鉴定方法研究[J]. 浙江农业科学, 2008(1): 89-91. |
Ji Z J, Ma L Y, Li X M, Yang C D.Research on rapid identification method of resistance to bakanae disease for varieties in rice[J]. ActaAgriculturaeZhejiangensis, 2008(1): 89-91.(in Chinese) | |
[25] | Ma L Y, Ji Z J, Bao J S, Zhu X D, Li X M, Zhuang J Y, Yang C D, Xia Y W.Response of rice genotypes carrying different dwarf genes to Fusarium moniliformeand gibberellic acid[J].Plant Production Science, 2008, 11: 134-138. |
[26] | 郑镐燮, 吕彬, 吴润植. 水稻恶苗病抗病性筛选方法的初步研究. 植物保护学报, 1993, 20(4): 289-293. |
Zheng G X, Lu B, Wu R Z, Nie H.Study on screening methods for resistance of bakanae disease of rice[J]. Acta Phytophylacica Sinica, 1993, 20(4): 289-293.(in Chinese with English abstract) | |
[27] | Zainudin N A I M, Razak A A, Salleh B. Bakanae disease of rice in Malaysia and Indonesia: Ecology of the causal agent based on morphological, physiological and pathogenicity characteristics[J].Journal of Plant Protection Research, 2008, 48: 475-485. |
[28] | Lee Y H, Lee M J, Choi H W, Kim S T, Park J W, Myung I S, Park K S, Lee S W.Development of in vitro seedling screening method for selection of resistant rice against bakanae disease[J]. Research in Plant Disease, 2011, 17: 288-294. (in Korean with English summary) |
[29] | 罗俊国. 水稻恶苗病致病镰孢种类及菌系研究[J].中国水稻科学, 1995, 9(2): 119-122. |
Luo J G.Studies on pathogenic Fusarium species of rice bakanae disease andstrains[J]. Chinese Journal of Rice Science, 1995, 9(2): 119-122. (in Chinese with English abstract) | |
[30] | Fiyaz R A, Gopala K S, Rajashekara H, Yadav A K, Bashyal B M, Bhowmick P K, Singh N K, Prabhu K V, Singh A K.Development of high throughput screening protocol and identification of novel sources of resistance against Bakanae disease in rice (Oryza sativa L.)[J].Indian Journal of Genetics and Plant Breeding, 2014, 74(4):414-422. |
[31] | 季芝娟. 水稻恶苗病抗性相关基因的鉴定及多抗基因的聚合育种利用[D].沈阳: 沈阳农业大学, 2016. |
JiZ J. Identification of the resistance-related gene to bakanae disease and pyramiding of multiple resistance genes in rice breeding[D]. Shengyang: Shengyang Agricultural University,2016. (in Chinese with English abstract) | |
[32] | Ji H, Kim T H, Lee G S, Kang H J, Lee S B, Suh S C, Kim S L, Choi I, Baek J, Kim K H.Mapping of a major quantitative trait locus for bakanae disease resistance in rice by genome resequencing[J]. MolecularGenetics and Genomics,2018, 293:579-586. |
[33] | Saremi H, Ammarellou A, Marefat A, Okhovvat S M.Binam a rice cultivar, resistant for root rot disease on rice caused by Fusarium moniliformein Northwest, Iran[J]. International Journal of Botany, 2008, 4:383-389. |
[34] | Chen S Y, Huang K J, Kuo Y F, Lai M H, Chen Y C, Chung C L.Three modified methods for evaluation of bakanae disease resistance in rice seedlings[J].Plant Pathology Bulletin, 2015, 24:201-210. |
[35] | Chen S Y, Lai M H, Tung C W, Wu D H, Chang F Y, Lin T C, Chung C L.Genome-wide association mapping of gene loci affecting disease resistance in the rice-Fusarium fujikuroipathosystem[J]. Rice, 2019, 12(1): 85-96. |
[36] | Matić S, Bagnaresi P, Biselli C, Orru L, Carneiro G A, Siciliano I, Vale G, Gullino M L, Spadaro D.Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi[J].BMC Genomic,2016, 17: 608-624. |
[37] | 黎定军, 罗宽, 陈寘. 水稻对恶苗病的抗性与病原菌致病性的研究[J]. 植物病理学报, 1993, 23(4): 315-319. |
Li D J, Luo K, Chen Z.Studies on resistance of rice varieties to bakanae disease and pathogenicity of pathogen (Fusarium moniliforme)[J].Acta Phytopathologica Sinica, 1993, 23(4): 315-319. (in Chinese with English abstract) | |
[38] | Sürek H, Gümüstekin H.Research activities on controlling rice bakanae and foot rot disease (Fusarium moniliforme) in Turkey[J].Cahiers Options Méditerranéennes, 1995, 8: 27-30. |
[39] | Khokhar L K, Jaffrey A H.Identification of sources of resistance against bakanae and foot rot disease in rice[J]. Pakistan Journal of Agricultural Research, 2002, 17: 176-177. |
[40] | 季芝娟, 马良勇, 李西明, 杨长登. 水稻种质资源恶苗病抗性鉴定[J].浙江农业科学, 2008(5): 590-592. |
Ji Z J, Ma L Y, Li X M, Yang C D.Identification of resistance to bakanae disease for ricegermplasms[J]. ActaAgriculturaeZhejiangensis,2008(5): 590-592. (in Chinese) | |
[41] | Ghazanfar M U, Javed N, Wakil W, Iqbal M.Screening of some fine and coarse rice varieties against bakanae disease[J]. Journal of Agricultural Research, 2013, 51(1): 41-49. |
[42] | Singh R, Sunder S, Kumar P, Ram M, Sekhar C.Study of bakanae disease of rice in Haryana[J].Research of Plant Disease, 2018, 33:15-22. |
[43] | 杨长登, 郭龙彪, 李西明, 季芝娟, 马良勇, 钱前. 水稻抗恶苗病微效QTL的定位[J]. 中国水稻科学, 2006, 20(6): 657-659. |
Yang C D, Guo L B, Li X M, Ji Z J, Ma L Y, Qian Q.Analysis of QTLs for resistance to rice bakanae disease[J]. Chinese Journal of Rice Science, 2006, 20(6): 657-659. (in Chinese with English abstract) | |
[44] | Hur Y, Lee SB, Kim TH, Kwon T, Lee J, Shin D, Park S, Hwang U, Cho JH, Yoon Y.Mapping of qBK1, a major QTL for bakanae disease resistance in rice[J].Molecular Breeding, 2015, 35:78. |
[45] | Fiyaz R A, Yadav A K, Krishnan S G, Ellur R K, Bashyal B M, Grover N, Bhowmick P K, Nagarajan M, Vinod K K, Singh N K.Mapping quantitative trait loci responsible for resistance to bakanae disease in rice[J]. Rice, 2016, 9:45. |
[46] | Lee S B, Kim N, Hur Y J, Cho S M, Kim T H, Lee J, Cho J H, Lee J H, Song Y S, SeoY S. Fine mapping of qBK1, a major QTL for bakanae disease resistance in rice[J]. Rice, 2019, 12: 36. |
[47] | Volante A, Tondelli A, Aragona M, Valente M T, Biselli C, Desiderio F, Bagnaresi P, Matic S, Gullino M L, Infantino A.Identification of bakanae disease resistance loci in japonica rice through genome wide association study[J]. Rice, 2017, 10: 29. |
[48] | Lee S B, Hur Y J, Cho J H, Lee J H, Kim T H, Cho S M, Song Y C, Seo Y S, Lee J, Kim T.Molecular mapping of qBK1WD, a major QTL for bakanae disease resistance in rice[J]. Rice, 2018, 11:3. |
[49] | Kang D Y, Cheon K S, Oh J, Oh H, Kim S L, Kim N, Lee E, Choi I, Baek J, Kim K H.Rice genome resequencing reveals a major quantitative trait locus for resistance to bakanae disease caused by Fusarium fujikuroi[J]. International Journal of Molecular Sciences, 2019, 20: 2598. |
[50] | Ji Z J, Zeng Y X, Liang Y, Qian Q, Yang C D.Transcriptomic dissection of the rice-Fusarium fujikuroiinteraction by RNA-Seq[J]. Euphytica, 2016, 211:123-137. |
[51] | Ji Z J, Zeng Y X, Liang Y, Qian Q, Yang C D.Proteomic dissection of the rice-Fusarium fujikuroi interaction and the correlation between the proteome and transcriptome under disease stress[J]. BMC Genomics,2019, 20:91. |
[52] | 马良勇,李西明,杨长登. 水稻恶苗病抗性的研究进展[J].中国稻米, 2008(2): 24-25. |
Ji Z J, Ma L Y, Li X M, Yang C D.Research Progress on Resistance to rice bakanae disease[J].China Rice, 2008(2): 24-25. (in Chinese with English abstract) | |
[53] | 曹梦娇, 钟雪明, 王晔青, 朱金良. 4种药剂对水稻恶苗病的防治效果[J]. 浙江农业科学, 2018,59(8):1425-1426. |
Cao M J, Zhong X M, Wang Y Q, Zhu J L.Effect of 4 kinds of fungicides on the control of rice bakanae disease[J]. ActaAgriculturaeZhejiangensis, 2018, 59(8):1425-1426. (in Chinese) | |
[54] | 高杜娟, 唐善军, 陈友德, 周斌. 水稻主要病害生物防治的研究进展[J]. 中国农学通报, 2019, 35(26):140-147. |
Gao D J, Tang S J, Chen Y D, Zhou B.Biological control of major rice diseases: A Review[J]. Chinese Agricultural Science Bulletin, 2019,35(26):140-147. (in Chinese with English abstract) | |
[55] | 李玉洋, 辛寒晓, 范学明, 刘丽英, 孙中涛. 水稻恶苗病拮抗菌的筛选、鉴定及其抑菌活性[J]. 生物技术通报,2017,33(5):190-196. |
Li Y Y, Xin H X, Fan X M, Liu L Y, Sun Z T.Screening and identification of an antagonistic strain against Fusarium moniliforme in rice and its antifungal activity[J].Biotechnology Bulletin, 2017,33(5):190-196. (in Chinese with English abstract) | |
[56] | 田洁萍,王玉霞,张淑梅. 解淀粉芽孢杆菌防治水稻恶苗病效果初报[J].黑龙江科学, 2010(4):10-11. |
Tian J P, Wang Y X, Zhang S M.Field control efficacy of Bacillus Amyloliquefaciens on rice bakanae disease[J]. Heilongjiang Science, 2010(4):10-11. (in Chinese) | |
[57] | Siciliano I, Carneiro G A, Spadaro D, Garibaldi A, Gullino M L.Jasmonic acid, abscisic acid, and salicylic acid are involved in the phytoalexin responses of rice to Fusarium fujikuroi, a high gibberellin producer pathogen[J]. Journal of Agricultural and Food Chemistry,2015, 63:8134-8142. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||