中国水稻科学 ›› 2015, Vol. 29 ›› Issue (4): 350-356.DOI: 10.3969/j.issn.1001G7216.2015.04.003
收稿日期:
2014-11-29
修回日期:
2015-02-12
出版日期:
2015-07-10
发布日期:
2015-07-10
通讯作者:
石春海
基金资助:
Hai-bo ZHANG, Dong-dong ZENG, Xiao-li JIN, Xi ZHENG, Chun-hai SHI*
Received:
2014-11-29
Revised:
2015-02-12
Online:
2015-07-10
Published:
2015-07-10
Contact:
Chun-hai SHI
摘要:
利用EMS(ethylmethane sulfonate)诱变粳稻品种日本晴,筛选到一个能稳定遗传的少蘖直立穗突变体ltep1(low tiller number and erect panicle 1)。该突变体成熟期穗部保持直立,且分蘖减少。ltep1突变体的穗轴壁和茎秆壁较野生型厚,壁厚与外径之比变大。遗传分析表明,该突变表型受隐性单基因控制。利用图位克隆法将ltep1基因定位于水稻第10染色体长臂SSR标记bep16和RM25866之间160 kb的区域内,该区域内尚未发现与水稻穗和分蘖发育相关的基因。
张海波, 曾冬冬, 金晓丽, 郑希, 石春海. 水稻少蘖直立穗突变体的形态特征和基因定位[J]. 中国水稻科学, 2015, 29(4): 350-356.
Hai-bo ZHANG, Dong-dong ZENG, Xiao-li JIN, Xi ZHENG, Chun-hai SHI. Morphological Characteristics and Gene Mapping of a Novel Low Tiller Number and Erect Panicle Mutant in Rice (Oryza sativa L.)[J]. Chinese Journal OF Rice Science, 2015, 29(4): 350-356.
图1 ltep1突变体与野生型的表型比较(A-株型; B-单穗; C-稻谷和糙米。ltep1-突变体; WT-野生型。)
Fig. 1. Phenotypic comparison between wild type and ltep1 mutant plants. (A, Plant phenotype; B, Panicle; C, Shape of paddy rice and brown rice. ltep1, Mutant; WT,Wild type.)
性状 Trait | 野生型 WT | 突变体 ltep1 | ||||
---|---|---|---|---|---|---|
株高Plant height/cm | 81.6 | ± | 4.0 | 63.7 | ± | 3.0** |
有效分蘖数Number of effective tillers | 14.7 | ± | 4.3 | 5.1 | ± | 1.2** |
主穗长度Main panicle length/cm | 22.1 | ± | 1.2 | 19.0 | ± | 0.9** |
主穗弯曲度Main panicle curvature/° | 78.1 | ± | 9.3 | 31.4 | ± | 6.7** |
穗轴直径Rachis diameter/mm | 1.03 | ± | 0.03 | 1.02 | ± | 0.02 |
一次枝梗数Number of primary branches per panicle | 9.7 | ± | 1.1 | 8.7 | ± | 0.7** |
二次枝梗数Number of secondary branches per panicle | 19.8 | ± | 4.0 | 17.1 | ± | 5.2 |
一次枝梗粒数Number of grains on primary branch | 65.9 | ± | 9.0 | 59.6 | ± | 9.0* |
二次枝梗粒数Number of grains on secondary branch | 56.2 | ± | 8.9 | 44.9 | ± | 9.2** |
穗粒数Number of spikelets per panicle | 122.1 | ± | 16.6 | 104.5 | ± | 13.2* |
实粒数Number of filled grains per panicle | 82.3 | ± | 7.3 | 55.5 | ± | 20.8** |
结实率Spikelet fertility/% | 68.4 | ± | 6.6 | 49.8 | ± | 13.7** |
稻谷长度Grain length/mm | 7.32 | ± | 0.28 | 7.28 | ± | 0.28 |
稻谷宽度Grain width/mm | 3.23 | ± | 0.22 | 3.91 | ± | 0.22** |
稻谷厚度Grain thickness/mm | 2.18 | ± | 0.08 | 2.55 | ± | 0.09** |
稻谷千粒重1000-grain weight/g | 22.90 | ± | 0.38 | 29.07 | ± | 0.63** |
表1 ltep1突变体和野生型的性状比较
Table 1 Comparison of traits of wild type and ltep1 plants.
性状 Trait | 野生型 WT | 突变体 ltep1 | ||||
---|---|---|---|---|---|---|
株高Plant height/cm | 81.6 | ± | 4.0 | 63.7 | ± | 3.0** |
有效分蘖数Number of effective tillers | 14.7 | ± | 4.3 | 5.1 | ± | 1.2** |
主穗长度Main panicle length/cm | 22.1 | ± | 1.2 | 19.0 | ± | 0.9** |
主穗弯曲度Main panicle curvature/° | 78.1 | ± | 9.3 | 31.4 | ± | 6.7** |
穗轴直径Rachis diameter/mm | 1.03 | ± | 0.03 | 1.02 | ± | 0.02 |
一次枝梗数Number of primary branches per panicle | 9.7 | ± | 1.1 | 8.7 | ± | 0.7** |
二次枝梗数Number of secondary branches per panicle | 19.8 | ± | 4.0 | 17.1 | ± | 5.2 |
一次枝梗粒数Number of grains on primary branch | 65.9 | ± | 9.0 | 59.6 | ± | 9.0* |
二次枝梗粒数Number of grains on secondary branch | 56.2 | ± | 8.9 | 44.9 | ± | 9.2** |
穗粒数Number of spikelets per panicle | 122.1 | ± | 16.6 | 104.5 | ± | 13.2* |
实粒数Number of filled grains per panicle | 82.3 | ± | 7.3 | 55.5 | ± | 20.8** |
结实率Spikelet fertility/% | 68.4 | ± | 6.6 | 49.8 | ± | 13.7** |
稻谷长度Grain length/mm | 7.32 | ± | 0.28 | 7.28 | ± | 0.28 |
稻谷宽度Grain width/mm | 3.23 | ± | 0.22 | 3.91 | ± | 0.22** |
稻谷厚度Grain thickness/mm | 2.18 | ± | 0.08 | 2.55 | ± | 0.09** |
稻谷千粒重1000-grain weight/g | 22.90 | ± | 0.38 | 29.07 | ± | 0.63** |
图2 ltep1突变体与野生型日本晴穗轴和节间的细胞学观察(ltep1突变体(A)与野生型(B)穗轴横切面比较;ltep1突变体(C)与野生型(D)倒1节间横切面比较;ltep1突变体(E)与野生型(F)倒2节间横切面比较。标尺=0.25 mm(A和B)、0.30 mm(C和D)和0.45 mm(E和F)。)
Fig. 2. Histological observation of the rhachis and internodes at the maturity stage of ltep1 and wild type plants. (Cross section of the rhachis of ltep1 (A) and wild type (B) plants, respectively; Cross section of top first internodes of ltep1 (C) and wild type (D) plants, respectively; Cross section of top second internodes of ltep1 (E) and wild type (F) plants, respectively. Bar = 0.25 mm (A and B), 0.30 mm (C and D) and 0.45 mm (E and F).)
图3 ltep1基因在水稻第10染色体上的分子定位(A-ltep1基因染色体定位的连锁图谱; B-ltep1基因初定位的遗传连锁图谱; C-ltep1基因精细定位的遗传连锁图谱和定位区间所在的BACs。染色体上方为标记名称,染色体下方标明相邻标记遗传距离。)
Fig. 3. Molecular mapping of ltep1 on chromosome 10 of rice. (A, Linkage map of chromosome location of ltep1 with SSR markers; B, Linkage map of ltep1 with additional SSR markers; C, Linkage map of fine mapping of ltep1 and the BACs target interval lies in. Markers are showed above the chromosome, and genetic distances between adjacent markers are showed below the chromosome.)
标记 Marker | 正向引物(5'-3') Forward primer (5'-3') | 反向引物(5'-3') Reverse primer (5'-3') |
---|---|---|
RM25786 | ATCGAAACCCTAGCTCCTACACC | GATCTTCCTCGAGAACGTCATCC |
RM25816 | TCGGAGTAATTAAGCAGCAGACG | ACAATTCTCCCATCTCCATCACC |
RM25840 | GGTGGAGTCGAAGGTGGAGTCG | CCAACATCGCAAGCACTGAAGC |
bep2 | GGGCCCAGTCTACGTACAAG | ACAAGAAGCCTCGTCTTCCA |
bep15 | CTGGCTAAACCAATACAA | CACTGAAAACTATGGACC |
bep16 | AGCAACTTTTGGCTCATA | TCCGTCTCAATAATCCGT |
RM25866 | TCTAACTCTGGCCATTAGTCCTTGG | AAGTAGACGAGGACGACGACAGG |
RM25875 | GATGTACTTGCCAACATGCTCTCC | AGCACACGCGAGTGATGTAACG |
表2 用于ltep1基因定位的多态性分子标记
Table 2 Polymorphic molecular markers utilized for gene mapping.
标记 Marker | 正向引物(5'-3') Forward primer (5'-3') | 反向引物(5'-3') Reverse primer (5'-3') |
---|---|---|
RM25786 | ATCGAAACCCTAGCTCCTACACC | GATCTTCCTCGAGAACGTCATCC |
RM25816 | TCGGAGTAATTAAGCAGCAGACG | ACAATTCTCCCATCTCCATCACC |
RM25840 | GGTGGAGTCGAAGGTGGAGTCG | CCAACATCGCAAGCACTGAAGC |
bep2 | GGGCCCAGTCTACGTACAAG | ACAAGAAGCCTCGTCTTCCA |
bep15 | CTGGCTAAACCAATACAA | CACTGAAAACTATGGACC |
bep16 | AGCAACTTTTGGCTCATA | TCCGTCTCAATAATCCGT |
RM25866 | TCTAACTCTGGCCATTAGTCCTTGG | AAGTAGACGAGGACGACGACAGG |
RM25875 | GATGTACTTGCCAACATGCTCTCC | AGCACACGCGAGTGATGTAACG |
[1] | 袁隆平. 杂交水稻学. 北京: 中国农业出版社, 2002. |
[2] | 陈温福, 徐正进, 张龙步. 水稻超高产育种—从理论到实践. 沈阳农业大学学报, 2003, 34(5): 324-327. |
[3] | 徐正进, 陈温福, 张龙步. 水稻直立穗型的初步观察. 沈阳农业大学学报, 1989, 20(2): 150-153. |
[4] | 徐正进, 陈温福, 张龙步, 等. 水稻不同穗型群体冠层光分布的比较研究. 中国农业科学, 1990, 4(1): 10-16. |
[5] | 徐正进, 陈温福, 周洪飞, 等. 直立穗型水稻群体生理生态特性及其利用前景. 科学通报, 1996, 4(12): 1122-1126. |
[6] | 高士杰, 张龙步, 陈温福, 等. 直立穗型水稻群体小气候环境研究. 中国农业气象, 2000, 21(3): 23-26. |
[7] | 刘杨, 王胜强, 丁艳峰, 等. 水稻分蘖发生机理的研究进展. 中国农学通报, 2011, 27(3): 1-5. |
[8] | Kong F N, Wang J Y, Zou J C, et al.Molecular tagging and mapping of the erect panicle gene in rice.Mol Breeding, 2007, 19(4): 297-304. |
[9] | Yan C J, Zhou J H, Yan S, et al.Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.).Theor Appl Genet, 2007, 115(8): 1093-1100. |
[10] | Wang J Y, Nakazaki T, Chen S Q, et al.Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.).Theor Appl Genet, 2009, 119(1): 85-91. |
[11] | Huang X Z, Qian Q, Liu Z B, et al.Natural variation at the DEP1 locus enhances grain yield in rice.Nat Genet, 2009, 41(4): 494-497. |
[12] | Zhou Y, Zhu J Y, Li Z Y, et al.Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication.Genetics, 2009, 183(1): 315-324. |
[13] | Zhu K M, Tang D, Yan C J, et al.ERECT PANICLE 2 encodes a novel protein that regulates panicle erectness in indica rice.Genetics, 2010, 184(2): 343-350. |
[14] | Li F, Liu W B, Tang J Y, et al.Rice dense and erect panicle 2 is essential for determining panicle outgrowth and elongation.Cell Res, 2010, 20(7): 838-849. |
[15] | Piao R H, Jiang W Z, Ham T H, et al.Map-based cloning of the ERECT PANICLE 3 gene in rice.Theor Appl Genet, 2009, 119(8): 1497-1506. |
[16] | Qiao Y L, Piao R H, Shi J X, et al.Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.).Theor Appl Genet, 2011, 122(7): 1439-1449. |
[17] | Ishikawa S, Maekawa M, Arite T, et al.Suppression of tiller bud activity in tillering dwarf mutants of rice.Plant Cell Physiol, 2005, 46(1): 79-86. |
[18] | Arite T, Iwata H, Ohshima K, et al.DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice.Plant J, 2007, 51(6): 1019-1029. |
[19] | Arite T, Umehara M, Ishikawa S, et al.d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers.Plant Cell Physiol, 2009, 50(8): 1416-1424. |
[20] | Zou J, Zhang S, Zhang W, et al.The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds.Plant J, 2006, 48(5): 687-698. |
[21] | Lin H, Wang R, Qian Q, et al.DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth.Plant Cell, 2009, 21(5):1512-1525. |
[22] | Takeda T, Suwa Y, Suzuki M, et al.The OsTB1 gene negatively regulates lateral branching in rice.Plant J, 2003, 33(3): 513-520. |
[23] | Li X, Qian Q, Fu Z, et al.Control of tillering in rice.Nature, 2003, 422(6932): 618-621. |
[24] | Jiang H, Guo L B, Xue D W, et al.Genetic analysis and gene-mapping of two reduced-culm-number mutants in rice.J Integr Plant Biol, 2006, 48(3): 341-347. |
[25] | Fujita D, Ebron L A, Araki E, et al.Fine mapping of a gene for low-tiller number, Ltn, in japonica rice (Oryza sativa L.) variety Aikawa 1.Theor Appl Genet, 2010, 120(6): 1233-1240. |
[26] | Yasuno N, Takamure I, Kidou S, et al.Rice shoot branching requires an ATP-binding cassette subfamily G protein.New Phytol, 2009, 182(1): 91-101. |
[27] | Michelmore R W, Paran I and Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect makers in specific genomic regions by using segregating populations.Proc Natl Acad Sci USA, 1991, 88(21): 9828-9832. |
[28] | Shen Y, Jiang H, Jin J, et al.Development of genome-wide DNA polymorphism database for map-based cloning of rice genes.Plant Physiol, 2004, 135(3): 1198-1205. |
[29] | 张忠旭, 陈温福, 杨振玉, 等. 水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响. 沈阳农业大学学报, 1999, 30(2): 81-85. |
[30] | 王健, 朱锦懋, 林青青, 等. 小麦茎秆结构和细胞壁化学成分对抗压强度的影响. 科学通报, 2006, 51(6): 679-685. |
[31] | 杨志远, 孙永健, 徐徽, 等. 不同栽培方式对免耕水稻茎鞘物质积累转运与抗倒伏能力的影响. 中国水稻科学, 2013, 27(5): 511-519. |
[32] | 张文忠, 徐正进, 张龙步, 等. 直立穗型水稻品种演进状况分析. 沈阳农业大学学报, 2002, 33(3): 161-166. |
[33] | Li J, Yu L, Qi G N, et al.The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex.Plant Cell, 2014, 26(8): 3387-3402. |
[34] | La H G, Li J, Ji Z D, et al.Genome-wide analysis of cyclin family in rice (Oryza sativa L.).Mol Gen Genomics, 2006, 275(4): 374-386. |
[35] | Yuhko K, Shuhei Y, Hideyuki M, et al.Differential activation of the rice sucrose nonfermenting1-related protein kinase 2 family by hyperosmotic stress and abscisic acid.Plant Cell, 2004, 16(5): 1163-1177. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||