中国水稻科学 ›› 2015, Vol. 29 ›› Issue (6): 637-647.DOI: 10.3969/j.issn.1001G7216.2015.06.010
符冠富, 张彩霞, 杨雪芹, 杨永杰, 陈婷婷, 赵霞, 符卫蒙, 奉保华, 章秀福, 陶龙兴*(), 金千瑜*(
)
收稿日期:
2015-07-28
修回日期:
2015-10-05
出版日期:
2015-10-25
发布日期:
2015-11-10
通讯作者:
陶龙兴,金千瑜
作者简介:
*通讯录作者:E-mail:jinqy@mail.hz.zj.cn;lxtao@mailhz.zj.cn
基金资助:
Guan-fu FU, Cai-xia ZHANG, Xue-qin YANG, Yong-jie YANG, Ting-ting CHEN, Xia ZHAO, Wei-meng FU, Bao-hua FENG, Xiu-fu ZHANG, Long-xing TAO*(), Qian-y JIN*(
)
Received:
2015-07-28
Revised:
2015-10-05
Online:
2015-10-25
Published:
2015-11-10
Contact:
Long-xing TAO, Qian-y JIN
About author:
*Corresponding author:E-mail:jinqy@mail.hz.zj.cn;lxtao@mailhz.zj.cn
摘要:
水稻颖花原基分化期高温可抑制颖花分化,导致每穗粒数下降,最终会影响水稻产量的形成。以杂交稻甬优12为材料,探讨高温下不同浓度水杨酸(salicylic acid, SA)对水稻颖花分化的影响,并揭示其作用机制。研究表明,常温下适量SA促进水稻颖花分化,但高浓度SA严重降低每穗粒数。然而高温下,10~50000 μmol/L SA处理每穗粒数均高于对照。无论常温或高温,100 μmol/L水杨酸处理效果最好,其每穗粒数及产量均显著高于对照。SA增强水稻耐热性表现在三个方面:1)高温下SA处理的叶片实际荧光量子效率及净光合速率均高于对照;2)高温下SA处理的颖花SOD、POD及CAT活性显著高于对照,而MDA含量则显著低于对照;3)无论高温或常温,SA处理的颖花ZR及IAA含量均高于对照,尤其在高温下,差异达显著水平。
符冠富, 张彩霞, 杨雪芹, 杨永杰, 陈婷婷, 赵霞, 符卫蒙, 奉保华, 章秀福, 陶龙兴, 金千瑜. 水杨酸减轻高温抑制水稻颖花分化的作用机理研究[J]. 中国水稻科学, 2015, 29(6): 637-647.
Guan-fu FU, Cai-xia ZHANG, Xue-qin YANG, Yong-jie YANG, Ting-ting CHEN, Xia ZHAO, Wei-meng FU, Bao-hua FENG, Xiu-fu ZHANG, Long-xing TAO, Qian-y JIN. Action Mechanism by Which SA Alleviates High Temperature-induced Inhibition to Spikelet Differentiation[J]. Chinese Journal OF Rice Science, 2015, 29(6): 637-647.
温度 Temperature | 水杨酸浓度 SAC /(μmol·L-1) | 穗数 PNPP | 每穗粒数 GNPP | 结实率 SSR/% | 千粒重 TGW/g | 产量GY /(g·pot-1) |
---|---|---|---|---|---|---|
常温Natural temperature | ||||||
0 | 16.0±0.7 abc | 429.7±18.3 abcd | 87.6±0.8 abcd | 21.9±0.1 bcd | 131.4±5.9 bc | |
10 | 16.0±0.7 abc | 440.2±46.2 ab | 88.7±1.1 abc | 21.2±0.5 e | 132.4±13.0 bc | |
100 | 16.8±0.7 a | 450.8±28.5 a | 90.9±2.1 a | 21.9±0.2 abcd | 150.8±12.3 a | |
1000 | 16.8±1.3 a | 437.6±40.9 abc | 89.3±5.0 ab | 21.5±0.1 cde | 141.1±12.8 ab | |
10000 | 16.0±0.7 abc | 414.1±9.7 abcde | 86.0±2.0 bcde | 21.5±0.6 de | 122.0±9.5 cde | |
50000 | 16.0±1.1 abc | 395.7±27.8 def | 84.9±3.1 de | 21.5±0.5 de | 115.3±6.1 def | |
高温High temperature | ||||||
0 | 15.5±1.2 abcd | 364.6±29.0 f | 83.6±2.5 e | 22.4±0.3 a | 106.0±11.2 fg | |
10 | 15.0±1.2 bcd | 408.3±15.5 bcde | 85.1±1.3 de | 22.2±0.3 ab | 115.4±10.8 def | |
100 | 15.5±0.7 abcd | 434.4±27.2 abc | 83.6±2.1 e | 22.5±0.7 a | 126.3±4.6 cd | |
1000 | 16.0±1.3 ab | 401.7±17.5 cde | 82.9±1.8 e | 21.7±0.6 bcde | 115.5±8.6 def | |
10000 | 14.7±1.5 cd | 405.7±39.0 bcde | 85.8±1.6 cde | 21.9±0.5 bcd | 111.2±7.0 efg | |
50000 | 14.4±1.7 cd | 375.9±40.9 ef | 84.8±4.6 de | 22.2±0.7 abc | 101.8±20.6 g |
表1 高温下SA对水稻产量及其构成的影响(2014)
Table 1 Effect of salicylic acid(SA) on grain yield and its components of rice under heat stress(2014).
温度 Temperature | 水杨酸浓度 SAC /(μmol·L-1) | 穗数 PNPP | 每穗粒数 GNPP | 结实率 SSR/% | 千粒重 TGW/g | 产量GY /(g·pot-1) |
---|---|---|---|---|---|---|
常温Natural temperature | ||||||
0 | 16.0±0.7 abc | 429.7±18.3 abcd | 87.6±0.8 abcd | 21.9±0.1 bcd | 131.4±5.9 bc | |
10 | 16.0±0.7 abc | 440.2±46.2 ab | 88.7±1.1 abc | 21.2±0.5 e | 132.4±13.0 bc | |
100 | 16.8±0.7 a | 450.8±28.5 a | 90.9±2.1 a | 21.9±0.2 abcd | 150.8±12.3 a | |
1000 | 16.8±1.3 a | 437.6±40.9 abc | 89.3±5.0 ab | 21.5±0.1 cde | 141.1±12.8 ab | |
10000 | 16.0±0.7 abc | 414.1±9.7 abcde | 86.0±2.0 bcde | 21.5±0.6 de | 122.0±9.5 cde | |
50000 | 16.0±1.1 abc | 395.7±27.8 def | 84.9±3.1 de | 21.5±0.5 de | 115.3±6.1 def | |
高温High temperature | ||||||
0 | 15.5±1.2 abcd | 364.6±29.0 f | 83.6±2.5 e | 22.4±0.3 a | 106.0±11.2 fg | |
10 | 15.0±1.2 bcd | 408.3±15.5 bcde | 85.1±1.3 de | 22.2±0.3 ab | 115.4±10.8 def | |
100 | 15.5±0.7 abcd | 434.4±27.2 abc | 83.6±2.1 e | 22.5±0.7 a | 126.3±4.6 cd | |
1000 | 16.0±1.3 ab | 401.7±17.5 cde | 82.9±1.8 e | 21.7±0.6 bcde | 115.5±8.6 def | |
10000 | 14.7±1.5 cd | 405.7±39.0 bcde | 85.8±1.6 cde | 21.9±0.5 bcd | 111.2±7.0 efg | |
50000 | 14.4±1.7 cd | 375.9±40.9 ef | 84.8±4.6 de | 22.2±0.7 abc | 101.8±20.6 g |
图4 高温下SA对水稻叶片净光合速率及蒸腾速率的影响(2014)
Fig. 4. Effect of salicylic acid(SA) on net photosynthetic rate and transpiration rate of leaf in rice under heat stress in 2014.
图6 高温下水杨酸对水稻叶片及颖花抗氧化酶活性的影响(2014)
Fig. 6. Effect of salicylic acid(SA) on antioxidant enzyme activities in leaf and spikelet in rice under heat stress in 2014.
[1] | Kaoru K,Masahiko M,Akio M,et al.Encoding a SEPALLATA subfamily MADS-box protein,positively controls spikelet meristem identity in rice.Plant Cell Physiol, 2010,51(1):47-57. |
[2] | Keishi K,Masahiko M,Shin U,et al.LAX and SPA: Major regulators of shoot branching in rice.Proc Natl Acad Sci USA, 2003,100(20):11765-11770. |
[3] | Li S,Qian Q,Fu Z,et al.Short panicle 1 encodes a putative PTR family transporter and determines rice panicle size.Plant J, 2009,58,592-605. |
[4] | Kurakawa T,Ueda N,Maekawa M,et al.Direct control of shoot meristem activity by a cytokinin-activating enzyme.Nature, 2007,445(7128):652-655. |
[5] | Veronica O,Ottoline L.Hormonal control of shoot branching.J Exp Bot, 2008,59(1):67-74. |
[6] | Ottoline L.Regulation of shoot branching by auxin.Trends Plant Sci, 2003,8(11):541-545. |
[7] | Shimizu-Sato S,Mina T,Hitoshi M.Auxin-cytokinin interactions in the control of shoot branching.Plant Mol Biol,2009,69:429-435. |
[8] | 杨军,陈小荣,朱昌兰,等. 氮肥和孕穗后期高温对两个早稻品种产量和生理特性的影响.中国水稻科学,2014,28(5):523-533. |
[9] | Yao Y L,Yoshinori Y,Tetsushi Y,et al.Response of differentiated and degenerated spikelets to top-dressing,shading and day/night temperature treatments in rice cultivars with large panicles.Soil Sci Plant Nutr, 2000,46(3):631-641. |
[10] | Shah F,Huang J L,Cui K H,et al.Impact of high-temperature stress on rice plant and its traits related to tolerance.J Agr Sci, 2011,149:545-556. |
[11] | Mohammed A R,Tarpley L.High night temperature and plant growth regulator effects on spikelet sterility,grain characteristics and yield of rice (Oryza sativa L.) plants.Can J Plant Sci, 2011,91: 283-291. |
[12] | Senaratna T,Toucbell D,Bunn E,et al.Acetylsalicylic acid and salicylic acid induce multiple stress tolerance in bean and tomato plants.Plant Growth Regul, 2000,30:157-161. |
[13] | Harper J R,Balke N E.Characterization of the inhibition of k absorption in oat roots by salicylic Acid.Plant Physiol, 1981,68(6):1349-1353. |
[14] | Khan W,Prithiviraj B,Smith D L.Photosynthetic responses of corn and soybean to foliar application of salicylates.J Plant Physiol, 2003,160(5):485-492. |
[15] | Shi Q H,Bao Z Y,Zhu Z J,et al.Effects of Different treatments of salicylic acid on heat tolerance,chlorophyll fluorescence,and antioxidant enzyme activity in seedlings of cucumis sativa L.Plant Growth Regul, 2006,48(2):127-135. |
[16] | 王小玲,高柱,余发新,等.外源水杨酸对观赏羽扇豆高温胁迫的生理响应.中国农学通报,2011,27(25):89-93. |
[17] | Zhao H J,Zhao X J,Ma P F,et al.Effects of salicylic acid on protein kinase activity and chloroplast D1 protein degradation in wheat leaves subjected to heat and high light stress.Acta Ecol Sin, 2011,31(5): 259-263. |
[18] | Giannopolitis C N,Ries S K.Superoxide dismutase.1.Occurrence in higher plant.Plant Physiol, 1977,59:309-314. |
[19] | Maehly A C,Chance B.The assay of catalases and peroxidases.Meth Biochem Anal,1954,1(3):357-424. |
[20] | Aebi H E.Catalase//Bergmeyer H U. ed. Methods of Enzymatic Analysis. Verlarg Chemie, Berlin, 1983: 278-282. |
[21] | 赵世杰,史国安,董新纯.植物生理学实验指导. 泰安:中国农业科学技术出版社,2002:141. |
[22] | Dhindsa R S,Plumb-dhindsa P, Thorpe T A.Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation,and decreased levels of superoxide dismutase and catalase.J Exp Bot, 1981,32(1):93-101. |
[23] | DuBois M,Gilles K A,Hamilton J K,et al. Colorimetric method for determination of sugars and related substances.Anal Chem, 1956,28(3):350-356. |
[24] | Lopez-delgado H, Scott I M.Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2.J Exp Bot, 1998,49(321):713-720. |
[25] | Tang R S,Zheng J C,Jin Z Q,et al.Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA,GAs and ABA in rice (Oryza sativa L.).Plant Growth Regul, 2008,54:37-43. |
[26] | Sharkey T D.Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions,rubisco deactivation,reactive oxygen species,and thermotolerance provided by isoprene.Plant Cell Environ, 2005,28:269-277. |
[27] | Zhang C X, Fu G F, Yang X Q,et al.Heat stress effects are stronger on spikelets than on flag leaves in rice due to differences in dissipation capacity.J Agron Crop Sci,2015,doi: 10.1111/jac.12138. |
[28] | Rahat N,Noushina I,Shabina S,et al.Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars.J Plant Physiol, 2011,168:807-815. |
[29] | Shamsul H,Qaiser H,Mohammed N A,et al.Salicylic acid enhances the efficiency of nitrogen fixation and assimilation in Cicer arietinum plants grown under cadmium stress.J Plant Interact, 2014,9(1):35-42. |
[30] | Yang Q M,Mei C.Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress.Plant J, 2004,40:909-919. |
[31] | 徐芬芬,叶利民,付淑琴.外源水杨酸对水稻幼苗抗冷性的影响.广东农业科学,2010,37(1):18-20. |
[32] | Rivas-San Vicente M, Plasencia J.Salicylic acid beyond defence: Its role in plant growth and development.J Exp Bot, 2011,62(10): 3321-3338. |
[33] | Oikawa T,Kyozuka J.Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice.Plant Cell, 2009,21(4):1095-1108. |
[34] | Ikeda K,Ito M,Nagasawa N,et al.Rice ABERRANT PANICLE ORGANIZATION 1,encoding an F-box protein,regulates meristem fate.Plant J, 2007,51(6):1030-1040. |
[35] | Levin J Z,Meyerowitz E M.UFO:An Arabidopsis gene involved in both floral meristem and floral organ development.Plant Cell, 1995,7(5):529-548. |
[36] | Jiang C J,Masaki S,Shoji S,et al.Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice.Mol Plant Microbe Interact, 2013,26(3):287-296. |
[37] | Kang H G,Singh K B.Characterization of salicylic acidresponsive Arabidopsis Dof domain proteins: Overexpression of OBP3 leads to growth defects.Plant J, 2000,21:329-339. |
[38] | Shakirova F M,Sakhabutdinova A R,Bezrukova M V,et al.Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity.Plant Sci, 2003,164:317-322. |
[39] | Rajjou L,Belghazi M,Huguet R,et al.Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms.Plant Physiol, 2006,141:910-923. |
[40] | Xie Z,Zhang Z L,Hanzlik S,et al.Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid inducible WRKY gene.Plant Mol Biol, 2007,64:293-303. |
[41] | Guan L,Scandalios J G.Developmentally related responses of maize catalase genes to salicylic acid.Proc Natl Acad Sci USA, 1995,92:5930-5934. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||