中国水稻科学 ›› 2015, Vol. 29 ›› Issue (5): 546-558.DOI: 10.3969/j.issn.1001G7216.2015.05.012
• • 上一篇
收稿日期:
2015-01-08
修回日期:
2015-04-12
出版日期:
2015-09-10
发布日期:
2015-09-10
通讯作者:
郭龙彪,胡兴明
作者简介:
*通讯录作者:E-mail:guolongb@mail.hz.zj.cnhuxingmingx@126.com
基金资助:
Yong-tao CUI, Li-wen WU, Long-biao GUO*(), Xing-ming HU*(
)
Received:
2015-01-08
Revised:
2015-04-12
Online:
2015-09-10
Published:
2015-09-10
Contact:
Long-biao GUO, Xing-ming HU
About author:
*Corresponding author:E-mailguolongb@mail.hz.zj.cnhuxingmingx@126.com
摘要:
由α、β和γ 3个亚基组成的异源三聚体G蛋白是真核生物中一类重要的信号传导分子,在生长发育中起重要的调控作用。G蛋白通过细胞表面的偶联受体感知细胞外刺激,并由G 蛋白传送信号到胞内蛋白来影响细胞行为。植物与动物G蛋白虽然具有类似的分子结构,但植物信号的传递由非典型“自我激活”机制和效应蛋白来完成并控制植物生长发育。综述了植物G蛋白的组成;重点介绍了水稻G蛋白亚基编码基因 D1、 GS3、 DEP1和qNGR9参与激素、抗病、抗逆信号传导及水稻株型控制,粒型和N元素高效吸收利用的研究进展。另外,对G蛋白的偶联信号途径组分和功能、系统生物学和应用方面进行了展望。
中图分类号:
崔永涛, 吴立文, 郭龙彪, 胡兴明. 水稻异源三聚体G蛋白生理功能的研究进展[J]. 中国水稻科学, 2015, 29(5): 546-558.
Yong-tao CUI, Li-wen WU, Long-biao GUO, Xing-ming HU. Research Progress in Physiologic Functions of Heterotrimeric G Protein in Rice[J]. Chinese Journal OF Rice Science, 2015, 29(5): 546-558.
种类/突变体 Type/Mutant | 数量 Number | 表型 Phenotype | 调控机制 Regulation mechanism | 生物学功能 Bio-function |
---|---|---|---|---|
Gα (rga1, d1) | 1 | 茎秆变短增粗;穗直立,着粒密,谷粒小而圆;第二节间不伸长 | 编码Gα 亚基 | 参与赤霉素信号途径与油菜素内酯(BR)的信号传导;介导抗稻瘟病反应;介导乙烯信号参与抗逆 |
Gβ (rgb1/RNAi) | 1 | 矮秆,穗和种子变小,叶角变小,节点处发生褐化 | 编码Gβ亚基,正调控细胞数量而不是细胞大小 | 控制细胞分化,当完全缺失时,植株死亡;参与抗逆性 |
Gγ (gs3) | 5 | 种子变大 | 编码Gγ,负调控籽粒和器官大小 | 控制纵向细胞数,决定谷粒大小 |
Gγ(dep1, qNGR9) | 稻穗变短、直立,着粒密集,每穗籽粒数增多 | 编码Gγ,促进细胞分裂,降低穗颈节长;稻穗变密,枝梗数增加,粒数增多 | 穗粒数增加,增加产量;介导N元素的吸收;可能介导抗逆反应 |
表1 水稻G蛋白3个亚基的功能
Table 1 Functions of three G protein subunits in rice.
种类/突变体 Type/Mutant | 数量 Number | 表型 Phenotype | 调控机制 Regulation mechanism | 生物学功能 Bio-function |
---|---|---|---|---|
Gα (rga1, d1) | 1 | 茎秆变短增粗;穗直立,着粒密,谷粒小而圆;第二节间不伸长 | 编码Gα 亚基 | 参与赤霉素信号途径与油菜素内酯(BR)的信号传导;介导抗稻瘟病反应;介导乙烯信号参与抗逆 |
Gβ (rgb1/RNAi) | 1 | 矮秆,穗和种子变小,叶角变小,节点处发生褐化 | 编码Gβ亚基,正调控细胞数量而不是细胞大小 | 控制细胞分化,当完全缺失时,植株死亡;参与抗逆性 |
Gγ (gs3) | 5 | 种子变大 | 编码Gγ,负调控籽粒和器官大小 | 控制纵向细胞数,决定谷粒大小 |
Gγ(dep1, qNGR9) | 稻穗变短、直立,着粒密集,每穗籽粒数增多 | 编码Gγ,促进细胞分裂,降低穗颈节长;稻穗变密,枝梗数增加,粒数增多 | 穗粒数增加,增加产量;介导N元素的吸收;可能介导抗逆反应 |
图4 GS3和DEP1的结构特点及其作用方式 (引自 Botella[58], 略有修改)
Fig. 4. Structural characteristics and action pattern of GS3 and DEP1(From Botella[58], with some nodifications).
[1] | Gilman A G.G proteins: Transducers of receptor-generated signals.Annu Rev Biochem, 1987, 56: 615-649. |
[2] | Wettschureck N, Offermanns S.Mammalian G proteins and their cell type specific functions.Physiol Rev, 2005, 85: 1159-1204. |
[3] | Ma H, Yanofsky M F, Meyerowitz E M.Molecular cloning and characterization of GPA1, a G protein alpha subunit gene fromArabidopsis thaliana. Proc Natl Acad Sci USA, 1990, 87: 3821-3825. |
[4] | Ma H, Yanofsky M F, Hai H.Isolation and sequence analysis of TGA1 cDNAs encoding a tomato G protein α subunit.Gene, 1991, 107: 189-195. |
[5] | Misra S, Wu Y, Venkataraman G, et al.Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): Role in salinity and heat stress and cross-talk with phospholipase C.Plant J, 2007, 51: 656-669. |
[6] | Ishikawa A, Tsubouchi H, Iwasaki Y, et al.Molecular cloning and characterization of a cDNA for the α subunit of a G protein from rice.Plant Cell Physiol, 1995, 36: 353-359. |
[7] | Seo H S, Kim H Y, Jeong J Y, et al.Molecular cloning and characterization of RGA1 encoding a G protein α subunit from rice (Oryza sativa L. IR-36).Plant Mol Biol, 1995, 27: 1119-1131. |
[8] | Ashikari M, Wu J, Yano M, et al.Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein.Proc Natl Acad Sci USA, 1999, 96: 10284-10289. |
[9] | Mason M G, Botella J R.Isolation of a novel G-protein γ-subunit from Arabidopsis thaliana and its interaction with Gβ.Biochim Biophys Acta (BBA):Gene Struct Exp, 2001, 1520: 147-153. |
[10] | Weiss C A, Garnaat C W, Mukai K, et al.Isolation of cDNAs encoding guanine nucleotide-binding protein beta-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1).Proc Natl Acad Sci USA, 1994, 91: 9554-9558. |
[11] | Ishikawa A, Iwasaki Y, Asahi T.Molecular cloning and characterization of a cDNA for the rβ subunit of a G protein from rice.Plant Cell Physiol, 1996, 37: 223-228. |
[12] | Kato C, Mizutani T, Tamaki H, et al.Characterization of heterotrimeric G protein complexes in rice plasma membrane.Plant J, 2004, 38: 320-331. |
[13] | Mason M G, Botella J R.Completing the heterotrimer: Isolation and characterization of an Arabidopsis thaliana G protein γ-subunit cDNA.Proc Natl Acad Sci USA, 2000, 97: 14784-14788. |
[14] | Urano D, Chen J G, Botella J R, et al.Heterotrimeric G protein signalling in the plant kingdom.Open Biol, 2013, 3: 120186. |
[15] | Yan S, Zou G, Li S, et al.Seed size is determined by the combinations of the genes controlling different seed characteristics in rice.Theor Appl Genet, 2011, 123: 1173-1181. |
[16] | Fan C, Yu S, Wang C, et al.A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker.Theor Appl Genet, 2009, 118: 465-472. |
[17] | Takano-Kai N, Jiang H, Kubo T, et al.Evolutionary history of GS3, a gene conferring grain length in rice.Genetics, 2009, 182: 1323-1334. |
[18] | Wang C, Chen S, Yu S.Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice.Theor Appl Genet, 2011, 122: 905-913. |
[19] | Takano-Kai N, Doi K, Yoshimura A.GS3 participates in stigma exsertion as well as seed length in rice.Breeding Sci, 2011, 61: 244-250. |
[20] | Mao H, Sun S, Yao J, et al.Linking differential domain functions of the GS3 protein to natural variation of grain size in rice.Proc Natl Acad Sci USA, 2010, 107: 19579-19584. |
[21] | Fan C, Xing Y, Mao H, et al.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein.Thero Appl Genet, 2006, 112: 1164-1171. |
[22] | Sun H, Qian Q, Wu K, et al.Heterotrimeric G proteins regulate nitrogen-use efficiency in rice.Nat Genet, 2014, 46: 652-656. |
[23] | Yi X, Zhang Z, Zeng S, et al.Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.).J Genet Genom, 2011, 38: 217-223. |
[24] | Huang X, Qian Q, Liu Z, et al.Natural variation at the DEP1 locus enhances grain yield in rice.Nat Genet, 2009, 41: 494-497. |
[25] | Taguchi-Shiobara F, Kawagoe Y, Kato H, et al.A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets.Breeding Sci, 2011, 61: 17-25. |
[26] | Yan C-J, Zhou J-H, Yan S, et al.Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.).Thero Appl Genet, 2007, 115: 1093-1100. |
[27] | Zhou Y, Zhu J, Li Z, et al.Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication.Genetics, 2009, 183: 315-324. |
[28] | Izawa Y, Takayanagi Y, Inaba N, et al.Function and expression pattern of the α subunit of the heterotrimeric G protein in rice.Plant Cell Physiol, 2010, 51: 271-281. |
[29] | Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, et al.Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction.Proc Natl Acad Sci USA, 2000, 97: 11638-11643. |
[30] | Fujisawa Y, Kato T, Ohki S, et al.Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice.Proc Natl Acad Sci USA, 1999, 96: 7575-7580. |
[31] | Assmann S M.G protein signaling in the regulation of rice seed germination.Sci STKE, 2015(310):12. |
[32] | Wang L, Xu Y Y, Ma Q B, et al.Heterotrimeric G protein α subunit is involved in rice brassinosteroid response.Cell Res, 2006, 16: 916-922. |
[33] | Oki K, Fujisawa Y, Kato H, et al.Study of the constitutively active form of the α subunit of rice heterotrimeric G proteins.Plant Cell Physiol, 2005, 46: 381-386. |
[34] | Yang G, Matsuoka M, Iwasaki Y, et al.A novel brassinolide-enhanced gene identified by cDNA microarray is involved in the growth of rice.Plant Mol Biol, 2003, 52: 843-854. |
[35] | Hu X, Qian Q, Xu T, et al.The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice.PLoS Genet, 2013, 9: e1003391. |
[36] | Lieberherr D, Thao N P, Nakashima A, et al.A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice.Plant Physiol, 2005, 138: 1644-1652. |
[37] | Suharsono U, Fujisawa Y, Kawasaki T, et al.The heterotrimeric G protein α subunit acts upstream of the small GTPase Rac in disease resistance of rice.Proc Natl Acad Sci USA, 2002, 99: 13307-13312. |
[38] | Assmann S M.G protein regulation of disease resistance during infection of rice with rice blast fungus.Sci STKE, 2005: cm13. |
[39] | Trusov Y, Rookes J E, Chakravorty D, et al.Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling.Plant Physiol, 2006, 140: 210-220. |
[40] | Lorbiecke R, Sauter M.Adventitious root growth and cell-cycle induction in deepwater rice.Plant Physiol, 1999, 119: 21-30. |
[41] | Steffens B, Sauter M.Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway.Plant Cell, 2009, 21: 184-196. |
[42] | Mergemann H, Sauter M.Ethylene induces epidermal cell death at the site of adventitious root emergence in rice.Plant Physiol, 2000, 124: 609-614. |
[43] | Joo J H, Wang S, Chen J, et al.Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone.Plant Cell, 2005, 17: 957-970. |
[44] | Steffens B, Sauter M.G proteins as regulators in ethylene-mediated hypoxia signaling.Plant signal Behav, 2010, 5: 375-378. |
[45] | Steffens B, Sauter M.Heterotrimeric G protein signaling is required for epidermal cell death in rice.Plant Physiol, 2009, 151: 732-740. |
[46] | Utsunomiya Y, Samejima C, Takayanagi Y, et al.Suppression of the rice heterotrimeric G protein beta-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions.Plant J, 2011, 67: 907-916. |
[47] | Utsunomiya Y, Samejima C, Fujisawa Y, et al.Rice transgenic plants with suppressed expression of the β subunit of the heterotrimeric G protein.Plant Signal Behav, 2012, 7: 443-446. |
[48] | Yadav D K, Shukla D, Tuteja N.Isolation, in silico characterization, localization and expression analysis of abiotic stress-responsive rice G-protein β subunit (RGB1).Plant Signal Behav, 2014, 9(5):e28890. |
[49] | Trusov Y, Chakravorty D, Botella J R.Diversity of heterotrimeric G-protein γ subunits in plants.BMC Res Notes, 2012, 5: 608. |
[50] | Chen J G, Gao Y, Jones A M.Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots.Plant Physiol, 2006, 141: 887-897. |
[51] | Choudhury S R, Bisht N C, Thompson R, et al.Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean.PLoS One, 2011, 6: e23361. |
[52] | Chakravorty D, Trusov Y, Zhang W, et al.An atypical heterotrimeric G-protein gamma-subunit is involved in guard cell K(+)-channel regulation and morphological development in Arabidopsis thaliana.Plant J, 2011, 67: 840-851. |
[53] | Yadav D K, Islam S M, Tuteja N.Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress.Plant Signal Behav, 2012, 7: 733-740. |
[54] | Fan C, Xing Y, Mao H, et al.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein.Thero Appl Genet, 2006, 112: 1164-1171. |
[55] | Li S, Liu Y, Zheng L, et al.The plant-specific G protein gamma subunit AGG3 influences organ size and shape in Arabidopsis thaliana.New Phytol, 2012, 194: 690-703. |
[56] | Jones A M, Assmann S M.Plants: The latest model system for G-protein research.EMBO Rep, 2004, 5: 572-578. |
[57] | Li S, Liu W, Zhang X, et al.Roles of the Arabidopsis G protein γ subunit AGG3 and its rice homologs GS3 and DEP1 in seed and organ size control.Plant Signal Behav, 2012, 7: 1357-1359. |
[58] | Botella J R.Can heterotrimeric G proteins help to feed the world?Trends Plant Sci, 2012, 17: 563-568. |
[59] | Trusov Y, Zhang W, Assmann S M, et al.Ggamma1 + Ggamma2 not equal to Gbeta: Heterotrimeric G protein Ggamma-deficient mutants do not recapitulate all phenotypes of Gbeta-deficient mutants.Plant Physiol, 2008, 147: 636-649. |
[60] | Li S J, Liu W X, Zhang X Q, et al.Roles of the Arabidopsis G protein γ subunit AGG3 and its rice homologs GS3 and DEP1 in seed and organ size control .Plant Signal Behav, 2012, 7(10): 1357-1359. |
[61] | Kunihiro S, Saito T, Matsuda T, et al.Rice DEP1, encoding a highly cysteine-rich G protein gamma subunit, confers cadmium tolerance on yeast cells and plants.J Exp Bot, 2013, 64: 4517-4527. |
[62] | Chen Y L, Huang R, Xiao Y M, et al.Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2.Plant Physiol, 2004, 136: 4096-4103. |
[63] | Coursol S, Fan L M, Le Stunff H, et al.Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins.Nature, 2003, 423: 651-654. |
[64] | Li J H, Liu Y Q, Lü P, et al.A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis.Plant Physiol, 2009, 150: 114-124. |
[65] | Melotto M, Underwood W, He S Y.Role of stomata in plant innate immunity and foliar bacterial diseases.Annu Rev Phytopathol, 2008, 46: 101. |
[66] | Schroeder J I, Allen G J, Hugouvieux V, et al.Guard cell signal transduction.Annu Rev Phytopathol, 2001, 52: 627-658. |
[67] | Shimazaki K I, Doi M, Assmann S M, et al.Light regulation of stomatal movement.Annu Rev Plant Biol, 2007, 58: 219-247. |
[68] | Wang X Q, Ullah H, Jones A M, et al.G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells.Science, 2001, 292: 2070-2072. |
[69] | Zhang W, He S Y, Assmann S M.The plant innate immunity response in stomatal guard cells invokes G-protein-dependention channel regulation.Plant J, 2008, 56: 984-996. |
[70] | Sánchez-Rodríguez C, Estévez J M, Llorente F, et al.The ERECTA receptor-like kinase regulates cell wall-mediated resistance to pathogens in Arabidopsis thaliana.Mole Plant-microbe Interac, 2009, 22: 953-963. |
[71] | Gookin T E, Kim J, Assmann S M.Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: Computational prediction and in-vivo protein coupling.Genome Biol, 2008, 9: R120. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 丁正权, 潘月云, 施扬, 黄海祥. 基于基因芯片的嘉禾系列长粒优质食味粳稻综合评价与比较[J]. 中国水稻科学, 2024, 38(4): 397-408. |
[5] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[6] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[7] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[8] | 胡丽, 杨范敏, 陈薇兰, 袁华. 水稻SPL家族转录因子的生物学功能研究进展[J]. 中国水稻科学, 2024, 38(3): 223-232. |
[9] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[10] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[11] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[12] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[13] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[14] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[15] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||