中国水稻科学 ›› 2023, Vol. 37 ›› Issue (6): 553-562.DOI: 10.16819/j.1001-7216.2023.230605
• 综述与专论 • 下一篇
陶怡, 徐亚楠, 叶昌, 郑广杰, 徐春梅, 陈松, 褚光, 刘元辉, 王丹英*()
收稿日期:
2023-06-27
修回日期:
2023-08-31
出版日期:
2023-11-10
发布日期:
2023-11-14
通讯作者:
*email:wangdanying@caas.com
基金资助:
TAO Yi, XU Yanan, YE Chang, ZHENG Guangjie, XU Chunmei, CHEN Song, CHU Guang, LIU Yuanhui, WANG Danying*()
Received:
2023-06-27
Revised:
2023-08-31
Online:
2023-11-10
Published:
2023-11-14
Contact:
*email:wangdanying@caas.com
About author:
First author contact:#These authors contributed equally to this work
摘要:
叶片衰老是植物生命周期中重要发育阶段,叶片转色失绿是该阶段的典型症状。研究叶片转色时发生的N素循环再利用过程,有助于了解N素转运效率的影响因素。本文简述了影响水稻叶片转色的内外因素和滞绿型品种的类型,重点总结了伴随水稻叶片转色过程中发生的N再利用及N挥发的研究进展,并推测生育后期水稻N挥发加剧的原因。提出应探索简便的叶片转色动态监控技术,并建立量化叶片转色特征的指标体系,这有助于阐明水稻成熟过程中叶片转色动态与N再利用及N挥发、光合同化物积累和N活化再利用的关系和机理。
陶怡, 徐亚楠, 叶昌, 郑广杰, 徐春梅, 陈松, 褚光, 刘元辉, 王丹英. 水稻叶片衰老转色与氮循环利用及挥发关系的研究进展[J]. 中国水稻科学, 2023, 37(6): 553-562.
TAO Yi, XU Yanan, YE Chang, ZHENG Guangjie, XU Chunmei, CHEN Song, CHU Guang, LIU Yuanhui, WANG Danying. Research Progress on Correlation of Rice Leaf Senescence and Discoloration with Nitrogen Reuse and Volatilization[J]. Chinese Journal OF Rice Science, 2023, 37(6): 553-562.
图1 稻田N素循环 GS-谷氨酰胺合成酶;GOGAT-谷氨酸合酶;GDH-谷氨酸脱氢酶;NiR-谷氨酸脱氢酶;NR-硝酸还原酶;Gln-谷氨酰胺;Glu-谷氨酸;Asn-天冬酰胺。
Fig. 1. Schematic diagram of the N cycle in paddy fields. GS, Glutamine synthetase; GOGAT, Glutamate synthase; GDH, Glutamate dehydrogenase; NiR, Glutamate dehydrogenase; NR, Nitrate reductase; Gln, Glutamine; Glu, Glutamate; Asn, asparagine.
[1] | Asad M A U, Zakari S A, Zhao Q, Zhou L, Ye Y, Cheng F. Abiotic stresses intervene with ABA signaling to induce destructive metabolic pathways leading to death: Premature leaf senescence in plants[J]. International Journal of Molecular Sciences, 2019, 20(2): 256. |
[2] | Okamura M, Arai-Sanoh Y, Yoshida H, Mukouyama T, Adachi S, Yabe S, Nakagawa H, Tsutsumi K, Taniguchi Y, Kobayashi N, Kondo M. Characterization of high-yielding rice cultivars with different grain-filling properties to clarify limiting factors for improving grain yield[J]. Field Crops Research, 2018, 219: 139-147. |
[3] | Zakari S A, Asad M A U, Han Z, Guan X, Zaidi S H R, Gang P, Cheng F. Senescence-related translocation of nonstructural carbohydrate in rice leaf sheaths under different nitrogen supply[J]. Agronomy Journal, 2020, 112(3): 1601-1616. |
[4] | Chen Y, Xiao C, Chen X, Li Q, Zhang J, Chen F, Yuan L, Mi G. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize[J]. Field Crops Research, 2014, 159: 1-9. |
[5] | Mu X, Chen Q, Chen F, Yuan L, Mi G. Dynamic remobilization of leaf nitrogen components in relation to photosynthetic rate during grain filling in maize[J]. Plant Physiology and Biochemistry, 2018, 129: 27-34. |
[6] | Poret M, Chandrasekar B, van der Hoorn R A L, Avice J C. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape[J]. Plant Science, 2016, 246: 139-153. |
[7] | Hörtensteiner S, Feller U. Nitrogen metabolism and remobilization during senescence[J]. Journal of Experimental Botany, 2002, 53(370): 927-937. |
[8] | Charoenchongsuk N, Ikeda K, Itai A, Oikawa A, Murayama H. Comparison of the expression of chlorophyll-degradation-related genes during ripening between stay-green and yellow-pear cultivars[J]. Scientia Horticulturae, 2015, 181: 89-94. |
[9] | Standfuss R, van Scheltinga A C T, Lamborghini M, Kuhlbrandt W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5A resolution[J]. Embo Journal, 2005, 24(5): 919-928. |
[10] | Balazadeh S. Stay-green not always stays green[J]. Molecular Plant, 2014, 7(8): 1264-1266. |
[11] | Hörtensteiner S. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence[J]. Trends in Plant Science, 2009, 14(3): 155-162. |
[12] | Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture[J]. Annals of Botany, 2010, 105(7): 1141-1157. |
[13] | Nishimura K, Kato Y, Sakamoto W. Essentials of proteolytic machineries in chloroplasts[J]. Molecular Plant, 2017, 10(1): 4-19. |
[14] | Wagner R, von Sydow L, Aigner H, Netotea S, Brugiere S, Sjogren L, Ferro M, Clarke A, Funk C. Deletion of FtsH11 protease has impact on chloroplast structure and function in Arabidopsis thaliana when grown under continuous light[J]. Plant Cell and Environment, 2016, 39(11): 2530-2544. |
[15] | Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F. The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco[J]. Planta, 2004, 220(1): 97-104. |
[16] | Yin X R, Xie X L, Xia X J, Yu J Q, Ferguson I B, Giovannoni J J, Chen K S. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening[J]. Plant Journal, 2016, 86(5): 403-412. |
[17] | Mao C J, Lu S C, Lv B, Zhang B, Shen J B, He J M, Luo L Q, Xi D D, Chen X, Ming F. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis[J]. Plant Physiology, 2017, 174(3): 1747-1763. |
[18] | Zhu X Y, Chen J Y, Xie Z K, Gao J, Ren G D, Gao S, Zhou X, Kuai B K. Jasmonic acid promotes degreening via MYC2/3/4-and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes[J]. Plant Journal, 2015, 84(3): 597-610. |
[19] | Li Z, Su D, Lei B, Wang F, Geng W, Pan G, Cheng F. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant[J]. Journal of Plant Physiology, 2015, 176: 1-15. |
[20] | Kamal N M, Gorafi Y S A, Abdelrahman M, Abdellatef E, Tsujimoto H. Stay-green trait: A prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals[J]. International Journal of Molecular Sciences, 2019, 20(23): 5837. |
[21] | Pinto R S, Lopes M S, Collins N C, Reynolds M P. Modelling and genetic dissection of staygreen under heat stress[J]. Theoretical and Applied Genetics, 2016, 129(11): 2055-2074. |
[22] | Kosgey J R, Moot D J, Fletcher A L, McKenzie B A. Dry matter accumulation and post-silking N economy of ‘stay-green’ maize (Zea mays L.) hybrids[J]. European Journal of Agronomy, 2013, 51: 43-52. |
[23] | Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y I, Paek N C. The senescence-induced staygreen protein regulates chlorophyll degradation[J]. Plant Cell, 2007, 19(5): 1649-1664. |
[24] | Sakuraba Y, Park S Y, Kim Y S, Wang S H, Yoo S C, Hortensteiner S, Paek N C. Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence[J]. Molecular Plant, 2014, 7(8): 1288-1302. |
[25] | Sakuraba Y, Park S Y, Paek N C. The divergent roles of STAYGREEN (SGR) homologs in chlorophyll degradation[J]. Molecules and Cells, 2015, 38(5): 390-395. |
[26] | Wang H L, Guo H, Li Z J H. Gene network analysis of senescence-associated genes in annual plants and comparative assessment of aging in perennials and animals[J]. Translational Medicine of Aging, 2019, 3: 6-13. |
[27] | 刘洋, 肖文惠, 蔡文璐, 张伟杨, 王志琴, 徐云姬. 植物激素对水稻籽粒灌浆、粒质量与品质的调控作用研究进展[J]. 中国稻米, 2023, 29(3): 9-14+23. |
Liu Y, Xiao W H, Cai W L, Zhang W Y, Wang Z Q, Xu Y J. Advances in studies on the roles of plant hormones in grain filling, grain weight and quality of rice[J]. China Rice, 2023, 29(3): 9-14+23. (in Chinese with English abstract) | |
[28] | Zhang W, Peng K X, Cui F B, Wang D L, Zhao J Z, Zhang Y J, Yu N N, Wang Y Y, Zeng D L, Wang Y H, Cheng Z K, Zhang K W. Cytokinin oxidase/ dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number[J]. Plant Biotechnology Journal, 2021, 19(2): 335-350. |
[29] | Dani K G S, Pollastri S, Pinosio S, Reichelt M, Sharkey T D, Schnitzler J P, Loreto F. Isoprene enhances leaf cytokinin metabolism and induces early senescence[J]. New Phytologist, 2022, 234(3): 961-974. |
[30] | Ono K, Kimura M, Matsuura H, Tanaka A, Ito H. Jasmonate production through chlorophyll a degradation by stay-green in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2019, 238: 53-62. |
[31] | Zakari S A, Asad M A U, Han Z Y, Zhao Q, Cheng F M. Relationship of nitrogen deficiency-induced leaf senescence with ROS generation and ABA concentration in rice flag leaves[J]. Journal of Plant Growth Regulation, 2020, 39(4): 1503-1517. |
[32] | 黄升谋. 水稻源库关系与叶片衰老的研究[J]. 江西农业大学学报, 2001, 23(2): 171-173. |
Huang S M. A study on the relationship between the leaf senescence and source sink ratio in hybrid rice[J]. Acta Agriculturae Universitatis Jiangxiensis, 2001, 23(2): 171-173. (in Chinese with English abstract) | |
[33] | Das S R, Ali M Y, Islam M M. Effect of leaf clipping on yield attributes of modern and local rice varieties[J]. Bangladesh Rice Journal, 2018, 21(1): 101-104. |
[34] | He A B, Wang W Q, Jiang G L, Sun H J, Jiang M, Man J G, Cui K H, Huang J L, Peng S B, Nie L X. Source-sink regulation and its effects on the regeneration ability of ratoon rice[J]. Field Crops Research, 2019, 236: 155-164. |
[35] | Bogard M, Jourdan M, Allard V, Martre P, Perretant M R, Ravel C, Heumez E, Orford S, Snape J, Griffiths S, Gaju O, Foulkes J, Le Gouis J. Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs[J]. Journal of Experimental Botany, 2011, 62(10): 3621-3636. |
[36] | Mi G, Tang L, Zhang F, Zhang J. Is nitrogen uptake after anthesis in wheat regulated by sink size?[J]. Field Crops Research, 2000, 68(3): 183-190. |
[37] | Martre P, Jamieson P D, Semenov M A, Zyskowski R F, Porter J R, Triboi E. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat[J]. European Journal of Agronomy, 2006, 25(2): 138-154. |
[38] | Koeslin-Findeklee F, Becker M A, van der Graaff E, Roitsch T, Horst W J. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals[J]. Journal of Experimental Botany, 2015, 66(13): 3669-3681. |
[39] | Wang D Y, Xu C M, Ye C, Chen S, Chu G, Zhang X F. Low recovery efficiency of basal fertilizer-N in plants does not indicate high basal fertilizer-N loss from split-applied N in transplanted rice[J]. Field Crops Research, 2018, 229: 8-16. |
[40] | Islam M S. Sensing and uptake of nitrogen in rice plant: a molecular view[J]. Rice Science, 2019, 26(6): 343-355. |
[41] | Liang G H, Hua Y P, Chen H F, Luo J S, Xiang H K, Song H X, Zhang Z H. Increased nitrogen use efficiency via amino acid remobilization from source to sink organs in Brassica napus[J]. Crop Journal, 2023, 11(1): 119-131. |
[42] | 陈能场, 徐胜光, 吴启堂, 周建民, 毕德, 卢维盛. 植物地上部氮素损失及其机理研究现状与展望[J]. 植物生态学报, 2009, 33(2): 414-424. |
Chen N C, Xu S G, Wu Q T, Zhou J M, Bi D, Lu W S. Review of research status, prospects and mechanism of losses of nitrogenous compounds from above-ground plant parts[J]. Chinese Journal of Plant Ecology, 2009, 33(2): 414-424. (in Chinese with English abstract) | |
[43] | Thoenen M, Herrmann B, Feller U. Senescence in wheat leaves: Is a cysteine endopeptidase involved in the degradation of the large subunit of Rubisco?[J]. Acta Physiologiae Plantarum, 2007, 29(4): 339-350. |
[44] | Have M, Marmagne A, Chardon F, Masclaux-Daubresse C. Nitrogen remobilization during leaf senescence: Lessons from Arabidopsis to crops[J]. Journal of Experimental Botany, 2017, 68(10): 2513-2529. |
[45] | Jauregui I, Aroca R, Garnica M, Zamarreño Á M, García-Mina J M, Serret M D, Parry M, Irigoyen J J, Aranjuelo I. Nitrogen assimilation and transpiration: Key processes conditioning responsiveness of wheat to elevated [CO2] and temperature[J]. Physiologia Plantarum, 2015, 155(3): 338-354. |
[46] | Hayashi K, Hiradate S, Ishikawa S, Nouchi I. Ammonia exchange between rice leaf blades and the atmosphere: Effect of broadcast urea and changes in xylem sap and leaf apoplastic ammonium concentrations[J]. Soil Science and Plant Nutrition, 2008, 54(5): 807-818. |
[47] | 王吕, 景建元, 李惠通, 郑天义, 李嘉, 吕慎强, 周春菊, 王林权. 冬小麦冠层-大气氨交换的季节性特征及其影响因素[J]. 干旱地区农业研究, 2019, 37(6):256-264+273. |
Wang L, Jing J Y, Li H T, Zheng T Y, Li J, Lv S Q, Zhou C J, Wang L Q. Seasonal characteristics of canopy-atmosphere ammonia exchange and its influencing factors in a winter wheat field[J]. Agricultural Research in the Arid Areas, 2019, 37(6):256-264+273. (in Chinese with English abstract) | |
[48] | Yang Y, Ni X Y, Liu B M, Tao L Z, Yu L X, Wang Q, Yang Y, Liu J, Wu Y J. Measuring field ammonia emissions and canopy ammonia fluxes in agriculture using portable ammonia detector method[J]. Journal of Cleaner Production, 2019, 216: 542-551. |
[49] | Yang Y, Zhou C J, Li N, Han K, Meng Y, Tian X X, Wang L Q. Effects of conservation tillage practices on ammonia emissions from Loess Plateau rain-fed winter wheat fields[J]. Atmospheric Environment, 2015, 104: 59-68. |
[50] | Hayashi K, Nishimura S, Yagi K. Ammonia volatilization from a paddy field following applications of urea: Rice plants are both an absorber and an emitter for atmospheric ammonia[J]. Science of the Total Environment, 2008, 390(2-3): 485-494. |
[51] | 黄见良, 邹应斌, 彭少兵, Buresh R J. 水稻对氮素的吸收、分配及其在组织中的挥发损失[J]. 植物营养与肥料学报, 2004, 10(6): 579-583. |
Huang J L, Zhou Y B, Peng S B, Buresh R J. Nitrogen uptakedistribution by rice and its losses from plant tissues during[J]. Plant Nutrition and Fertilizer Science, 2004, 10(6): 579-583. (in Chinese with English abstract) | |
[52] | Schjoerring J K, Mattsson M. Quantification of ammonia exchange between agricultural cropland and the atmosphere: Measurements over two complete growth cycles of oilseed rape, wheat, barley and pea[J]. Plant and Soil, 2001, 228(1): 105-115. |
[53] | 武云杰, 杨铁钊, 张小全, 李飞, 李丽华. 不同烤烟品种烟叶衰老期氨气挥发及其与氮素代谢的相关性[J]. 中国农业科学, 2013, 46(19): 4027-4034. |
Wu Y J, Yang T Z, Zhang X Q, Li F, Li L H. Study on correlation between ammonia volatilization and nitrogen metabolism during the tobacco leaves senescence[J]. Scientia Agricultura Sinica, 2013, 46(19): 4027-4034. (in Chinese with English abstract) | |
[54] | Mattsson M, Schjoerring J K. Dynamic and steady-state responses of inorganic nitrogen pools and NH3 exchange in leaves of Lolium perenne and Bromus erectus to changes in root nitrogen supply[J]. Plant Physiology, 2002, 128(2): 742-750. |
[55] | 陈明霞. 水稻植株组织中氮素气态挥发损失及其机理的研究[D]. 武汉: 华中农业大学, 2010. |
Chen M X. Study on gaseous nitrogen losses from rice plant tissue and the mechanisms[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese with English abstract) | |
[56] | Wu D X, Li Y, Cao Y A, Hu R P, Wu X, Zhang W, Tao W Q, Xu G H, Wang X C, Zhang Y L. Increased glutamine synthetase by overexpression of TaGS1 improves grain yield and nitrogen use efficiency in rice[J]. Plant Physiology and Biochemistry, 2021, 169: 259-268. |
[57] | 莫良玉, 吴良欢, 陶勤南. 高等植物GS/GOGAT循环研究进展[J]. 植物营养与肥料学报, 2001, 7(2): 223-231. |
Mo L Y, Wu L H, Tao Q N. Research advances on GS/GOGAT cycle in higher plants[J]. Plant Nutrition and Fertilizer Science, 2001, 7(2): 223-231. (in Chinese with English abstract) | |
[58] | Mattsson M, Husted S, Schjoerring J K. Influence of nitrogen nutrition and metabolism on ammonia volatilization in plants[J]. Nutrient Cycling in Agroecosystems, 1998, 51(1): 35-40. |
[59] | Yu J L, Zhu Z K, Zhang Z H, Rong X M, Liu Q, Song H X, Guan C Y. Effects of enzymes related to nitrogen reuse on nitrogen redistribution and nitrogen use efficiency in Brassica napus[J]. Agricultural Science & Technology, 2014, 15(2): 215-218, 303. |
[60] | Padhan B K, Sathee L, Kumar S, Chinnusamy V, Kumar A. Variation in nitrogen partitioning and reproductive stage nitrogen remobilization determines nitrogen grain production efficiency (NUEg) in diverse rice genotypes under varying nitrogen supply[J]. Frontiers in Plant Science, 2023, 14: 1093581. |
[61] | Derkx A P, Orford S, Griffiths S, Foulkes M J, Hawkesford M J. Identification of differentially senescing mutants of wheat and impacts on yield, biomass and nitrogen partitioning[J]. Journal of Integrative Plant Biology, 2012, 54(8): 555-566. |
[62] | Zhao Y L, Xi M, Zhang X C, Lin Z M, Ding C Q, Tang S, Liu Z H, Wang S H, Ding Y F. Nitrogen effect on amino acid composition in leaf and grain of japonica rice during grain filling stage[J]. Journal of Cereal Science, 2015, 64: 29-33. |
[63] | van Oosterom E J, Borrell A K, Chapman S C, Broad I J, Hammer G L. Functional dynamics of the nitrogen balance of sorghum: I. N demand of vegetative plant parts[J]. Field Crops Research, 2010, 115(1): 19-28. |
[64] | van Oosterom E J, Chapman S C, Borrell A K, Broad I J, Hammer G L. Functional dynamics of the nitrogen balance of sorghum. II. Grain filling period[J]. Field Crops Research, 2010, 115(1): 29-38. |
[65] | Husted S, Schjoerring J K. Ammonia flux between oilseed rape plants and the atmosphere in response to changes in leaf temperature, light intensity, and air humidity-Interactions with leaf conductance and apoplastic NH4+ and H+ concentrations[J]. Plant Physiology, 1996, 112(1): 67-74. |
[66] | 徐胜光, 陈能场, 周建民, 吴启堂, 毕德, 卢维盛. 光照和施氮量对分蘖期水稻叶际氮氧化物(NO和NO2)交换的调控机制[J]. 中国水稻科学, 2009, 23(3): 297-303. |
Xu S G, Chen N C, Zhou J M, Wu Q T, Bi D, Lu W S. Effects and its mechanism of light and nitrogen level on the exchanges of NOx(NO and NO2) in rice phyllosphere at the tillering stage[J]. Chinese Journal Rice Science, 2009, 23(3): 297-303. (in Chinese with English abstract) | |
[67] | 徐阳春, 吴小庆, 郭世伟, 沈其荣. 水稻生育后期地上部氨挥发与氮素利用效率的研究[J]. 植物营养与肥料学报, 2008 (2): 207-212. |
Xu Y C, Wu X Q, Guo S W, Shen Q R. Nitrogen use efficiency and ammonia volatilization from rice shoot in late growth stages[J]. Plant Nutrition and Fertilizer Science, 2008(2): 207-212. (in Chinese with English abstract) | |
[68] | Massad R S, Loubet B, Tuzet A, Autret H, Cellier P. Ammonia stomatal compensation point of young oilseed rape leaves during dark/light cycles under various nitrogen nutritions[J]. Agriculture Ecosystems & Environment, 2009, 133(3-4): 170-182. |
[69] | Mattsson M, Schjoerring J K. Ammonia emission from young barley plants: Influence of N source, light/dark cycles and inhibition of glutamine synthetase[J]. Journal of Experimental Botany, 1996, 47(297): 477-484. |
[70] | 段旺军, 杨铁钊, 刘化冰, 张小全, 戴亚, 李东亮. 烟叶氨气补偿点的品种间差异及其与氮素代谢的关系研究[J]. 植物营养与肥料学报, 2011, 17(2): 419-424. |
Duan W J, Yang T Z, Liu H B, Zhang X Q, Dai Y, Li D L. Differences in NH3 compensation point among tobacco(Nicotiana Tabacum L.) cultivars and its relationship with nitrogen metabolism[J]. Plant Nutrition and Fertilizer Science, 2011, 17(2): 419-424. (in Chinese with English abstract) | |
[71] | Mirosavljevic M, Momcilovic V, Mikic S, Trkulja D, Brbaklic L, Zoric M, Abicic I. Changes in stay-green and nitrogen use efficiency traits in historical set of winter barley cultivars[J]. Field Crops Research, 2020, 249: 107740. |
[72] | Waters B M, Uauy C, Dubcovsky J, Grusak M A. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain[J]. Journal of Experimental Botany, 2009, 60(15): 4263-4274. |
[73] | Jeeyon J, Guerinot M L. Homing in on iron homeostasis in plants[J]. Trends in Plant Science, 2009, 14(5): 280-285. |
[74] | Broadley M R, White P J, Hammond J P, Zelko I, Lux A. Zinc in plants[J]. New Phytologist, 2007, 173(4): 677-702. |
[75] | Xie Q, Mayes S, Sparkes D L. Early anthesis and delayed but fast leaf senescence contribute to individual grain dry matter and water accumulation in wheat[J]. Field Crops Research, 2016, 187: 24-34. |
[76] | 李生秀, 李宗让, 田霄鸿, 王朝辉. 植物地上部分氮素的挥发损失[J]. 植物营养与肥料学报, 1995, 1(2): 18-25. |
Li S X, Li Z R, Tian X H, Wang Z H. Nitrogen loss from above-ground plants by volatilization[J]. Plant Nutrition and Fertilizer Science, 1995, 1(2): 18-25. (in Chinese with English abstract) | |
[77] | Hayashi K, Tokida T, Hasegawa T. Potential ammonia emission from flag leaves of paddy rice (Oryza sativa L. cv. Koshihikari)[J]. Agriculture Ecosystems & Environment, 2011, 144(1): 117-123. |
[1] | 冯爱卿, 汪聪颖, 苏菁, 封金奇, 陈凯玲, 林晓鹏, 陈炳, 梁美玲, 杨健源, 朱小源, 陈深. 水稻细菌性条斑病抗性新品系的创制及其农艺性状分析[J]. 中国水稻科学, 2023, 37(6): 587-596. |
[2] | 谢开珍, 张建明, 程灿, 周继华, 牛付安, 孙滨, 张安鹏, 闻伟军, 代雨婷, 胡启琰, 邱越, 曹黎明, 储黄伟. 低直链淀粉含量水稻种质资源的鉴定与QTL定位分析[J]. 中国水稻科学, 2023, 37(6): 609-616. |
[3] | 朱旺, 张翔, 耿孝宇, 张哲, 陈英龙, 韦还和, 戴其根, 许轲, 朱广龙, 周桂生, 孟天瑶. 盐-旱复合胁迫下水稻根系的形态和生理特征及其与产量形成的关系[J]. 中国水稻科学, 2023, 37(6): 617-627. |
[4] | 吴玉红, 李艳华, 王吕, 秦宇航, 李杉杉, 郝兴顺, 张庆路, 崔月贞, 肖飞. 陕南稻区紫云英稻草联合还田配施减量氮肥协同提升水稻产量与稻米品质[J]. 中国水稻科学, 2023, 37(6): 628-641. |
[5] | 兰金松, 庄慧. 水稻株型的分子机理研究进展[J]. 中国水稻科学, 2023, 37(5): 449-458. |
[6] | 李景芳, 温舒越, 赵利君, 陈庭木, 周振玲, 孙志广, 刘艳, 陈海元, 张云辉, 迟铭, 邢运高, 徐波, 徐大勇, 王宝祥. 基于CRISPR/Cas9技术创制耐盐香稻[J]. 中国水稻科学, 2023, 37(5): 478-485. |
[7] | 黄奇娜, 徐有祥, 林光号, 党洪阳, 郑振权, 张燕, 王晗, 邵国胜, 尹献远. 硅对镉胁迫下水稻苗期抗氧化酶系统及镉离子吸收和转运相关基因表达水平的影响[J]. 中国水稻科学, 2023, 37(5): 486-496. |
[8] | 徐欢, 周涛, 孙悦, 王木妹, 杨亚春, 马卉, 李浩, 徐大伟, 周海, 杨剑波, 倪金龙. 水稻颖壳类病斑突变体glmm1的鉴定与基因定位[J]. 中国水稻科学, 2023, 37(5): 497-506. |
[9] | 姚晓云, 陈春莲, 熊运华, 黄永萍, 彭志勤, 刘进, 尹建华. 水稻加工和外观品质性状QTL鉴定[J]. 中国水稻科学, 2023, 37(5): 507-517. |
[10] | 袁沛, 周旋, 杨威, 尹凌洁, 靳拓, 彭建伟, 荣湘民, 田昌. 化肥减氮配施对洞庭湖区双季稻产量和田面水氮磷流失风险的影响[J]. 中国水稻科学, 2023, 37(5): 518-528. |
[11] | 肖大康, 胡仁, 韩天富, 张卫峰, 侯俊, 任科宇. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析[J]. 中国水稻科学, 2023, 37(5): 529-542. |
[12] | 夏杨, 李传明, 刘琴, 韩光杰, 徐彬, 黄立鑫, 祁建杭, 陆玉荣, 徐健. 印度梨形孢对盐胁迫下水稻幼苗生长及抗氧化系统的影响[J]. 中国水稻科学, 2023, 37(5): 543-552. |
[13] | 任志奇, 薛可欣, 董铮, 李小湘, 黎用朝, 郭玉静, 刘文强, 郭梁, 盛新年, 刘之熙, 潘孝武. 水稻外卷叶突变体ocl1的鉴定及基因定位[J]. 中国水稻科学, 2023, 37(4): 337-346. |
[14] | 肖乐铨, 李雷, 戴伟民, 强胜, 宋小玲. 转cry2A*/bar基因水稻与杂草稻杂交后代的苗期生长特性[J]. 中国水稻科学, 2023, 37(4): 347-358. |
[15] | 李刚, 高清松, 李伟, 张雯霞, 王健, 程保山, 王迪, 高浩, 徐卫军, 陈红旗, 纪剑辉. 定向敲除SD1基因提高水稻的抗倒性和稻瘟病抗性[J]. 中国水稻科学, 2023, 37(4): 359-367. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||