中国水稻科学 ›› 2022, Vol. 36 ›› Issue (6): 562-571.DOI: 10.16819/j.1001-7216.2022.220316
收稿日期:
2022-03-31
修回日期:
2022-06-06
出版日期:
2022-11-10
发布日期:
2022-11-10
通讯作者:
袁定阳
基金资助:
LI Xiaoxiu1, LÜ Qiming1,2, YUAN Dingyang1,2,*()
Received:
2022-03-31
Revised:
2022-06-06
Online:
2022-11-10
Published:
2022-11-10
Contact:
YUAN Dingyang
摘要:
筛选和培育镉(Cd)低积累水稻品种是解决稻米镉污染问题最经济、有效的办法。现有研究表明OsNramp5是介导水稻Cd吸收最重要的基因,其功能缺失后,水稻籽粒Cd含量极显著下降,但同时会影响水稻必需元素锰(Mn)的吸收,而在前人关于OsNramp5变异影响水稻生长发育的研究中,结论并不一致。系统了解OsNramp5基因变异对水稻重要农艺性状的影响有助于推动低Cd优质水稻新品种的培育。本文重点对OsNramp5基因变异对水稻中金属离子的含量,水稻的生长发育、产量性状及米质的影响进行了综述,以期为利用OsNramp5基因突变选育低Cd积累水稻品种提供参考。
李小秀, 吕启明, 袁定阳. OsNramp5基因变异影响水稻重要农艺性状的研究进展[J]. 中国水稻科学, 2022, 36(6): 562-571.
LI Xiaoxiu, LÜ Qiming, YUAN Dingyang. Research Progress on the Effects of OsNramp5 Mutation on Important Agronomic Traits in Rice[J]. Chinese Journal OF Rice Science, 2022, 36(6): 562-571.
基因符号 Gene symbol | 组织表达 Tissue expression | 亚细胞定位 Subcellular localization | 金属转运功能 Metal transport function | 参考文献 Reference |
---|---|---|---|---|
OsNramp1 | 根、叶 Root, leaf | 质膜Plasma membrane | Cd | [ |
OsNramp2 | 地上部 Aboveground part | 液泡膜 Tonoplast | Fe | [ |
OsNramp3 | 维管束 Vascular bundle | 质膜Plasma membrane | Mn | [ |
OsNramp4 | 根 Root | 质膜Plasma membrane | Al | [ |
OsNramp5 | 根 Root | 质膜Plasma membrane | Cd, Mn, Fe | [ |
OsNramp6 | 不详 Unavailable | 质膜Plasma membrane | Fe, Mn | [ |
OsNramp7 | 根、茎、幼穗 Root, culm, young panicle | 不详 Unavailable | Fe, Zn | [ |
表1 水稻NRAMP蛋白家族基因
Table 1. NRAMP protein family genes in rice.
基因符号 Gene symbol | 组织表达 Tissue expression | 亚细胞定位 Subcellular localization | 金属转运功能 Metal transport function | 参考文献 Reference |
---|---|---|---|---|
OsNramp1 | 根、叶 Root, leaf | 质膜Plasma membrane | Cd | [ |
OsNramp2 | 地上部 Aboveground part | 液泡膜 Tonoplast | Fe | [ |
OsNramp3 | 维管束 Vascular bundle | 质膜Plasma membrane | Mn | [ |
OsNramp4 | 根 Root | 质膜Plasma membrane | Al | [ |
OsNramp5 | 根 Root | 质膜Plasma membrane | Cd, Mn, Fe | [ |
OsNramp6 | 不详 Unavailable | 质膜Plasma membrane | Fe, Mn | [ |
OsNramp7 | 根、茎、幼穗 Root, culm, young panicle | 不详 Unavailable | Fe, Zn | [ |
图1 OsNramp5基因结构及其编码蛋白跨膜结构模式图 OsNramp5蛋白根据预测具有10个跨膜结构,第7及第8外显子编码的氨基酸序列在第4及第5跨膜结构域之间,其中绿色和红色标注的氨基酸残基是在部分农艺性状无显著改变的突变体所携带的突变位点;绿色指OsNramp5基因1 bp碱基插入导致在该位置后的氨基酸序列改变,红色指OsNramp5基因单碱基突变导致该位置的氨基酸残基替换。
Fig. 1. OsNramp5 gene structure and transmembrane structure pattern of the protein. According to the prediction, OsNramp5 protein has 10 transmembrane helices, and the amino acid sequence encoded by exon 7 and exon 8 is between transmembrane domain 4 and 5. The green and red labeled amino acid residues are mutant sites with no significant change in agronomic traits in some previous studies. Green means that the insertion of the 1 bp base of the OsNramp5 gene leads to the change of the amino acid sequence after this position, and red means that the SNP mutation of the OsNramp5 gene leads to the substitution of the amino acid residue at this position.
变异位置 Mutation site | 变异来源Mutation method | 遗传背景Genetic background | 变异类型 Mutation type | 籽粒Cd、Mn含量Contents of Cd and Mn in grains | 其他金属含量 Other metal content | 产量及其他性状 Yield and other traits | 参考文献Reference |
---|---|---|---|---|---|---|---|
第1外显子 | CRISPR/Cas9技术 | 南粳46、 淮稻5号 | 1 bp插入 | Cd、Mn显著下降 | 对Fe无显著影响 | 产量、株高、每穗粒数、结实率均显著降低,穗数增加 | [ |
17 bp插入 | Cd、Mn显著下降 | 对Fe无显著影响 | 产量、株高、每穗粒数、结实率均显著降低 | [ | |||
11 bp插入 | Cd、Mn显著下降 | 对Fe无显著影响 | 产量、株高、每穗粒数、结实率均显著降低 | [ | |||
中花11 | 4 bp缺失 | Cd、Mn显著下降 | — | 生长严重受阻,根及地上部干质量显著降低 | [ | ||
第2外显子 | CRISPR/Cas9技术 | 黄华占 | 1 bp插入 | Cd、Mn显著下降 | 对Fe、Zn无显著影响 | 产量、每穗粒数、结实率、秸秆产量均显著降低,米质变劣,分蘖数增加 | [ |
第6外显子 | CRISPR/Cas9技术 | 黄华占 | 2 bp插入 | Cd、Mn显著下降 | 对Fe、Zn无显著影响 | 产量、每穗粒数、结实率、秸秆产量均显著降低,米质变劣 | [ |
第7外显子 | CRISPR/Cas9技术 | 锡稻1号 | 1 bp插入 | Cd显著下降 | — | 产量、其他性状无显著影响 | [ |
EMS诱变 | 9311 | SNP变异 | Cd显著下降 | 对Fe、Zn、Cu无显著影响 | 其他性状无显著影响 | [ | |
第8外显子 | EMS诱变 | Hitomebore | SNP变异 | Cd、Mn显著下降 | — | 产量、其他性状无显著影响 | [ |
第9外显子 | 碳离子束辐射诱变 | 越光 | 1 bp缺失 | Cd<0.05 mg/kg, Mn显著下降 | 对Fe、Zn、Cu无显著 影响 | 产量、其他性状无显著影响 | [ |
CRISPR/Cas9技术 | 华占 | 3 bp缺失+ 1 bp插入 | Cd<0.05 mg/kg, Mn极显著下降 | 对Cu、Zn无显著影响, Fe显著上升 | 产量、其他性状无显著影响 | [ | |
5 bp缺失 | Cd<0.05 mg/kg, Mn极显著下降 | 对Cu、Zn无显著影响, Fe显著上升 | 产量、其他性状无显著影响 | [ | |||
锡稻1号 | 33 bp缺失 | Cd显著下降 | — | 减产44.3%,生长严重受阻,株高降低 | [ | ||
黄华占 | 1 bp插入 | 均显著下降 | 对Fe、Zn无显著 影响 | 产量、每穗粒数、结实率、秸秆生物量均显著降低 | [ | ||
中花11 | 2 bp缺失+ 1 bp插入 | — | — | 产量、千粒重极显著降低,米质变劣 | [ | ||
中花11 | 5 bp缺失+ 1 bp插入 | — | — | 产量、千粒重极显著降低,米质变劣 | [ | ||
第10外显子 | 碳离子束辐射诱变 | 越光 | 433 bp插入 | Cd<0.05 mg/kg,Mn显著下降 | 对Fe、Zn、Cu 无显著影响 | 产量、其他性状无显著影响 | [ |
CRISPR/Cas9技术 | 华占、 五丰B、 五山丝苗、 中早35 | 1-3 bp缺失+ 1 bp插入 | Cd、Mn显著下降 | 对Fe、Zn、Cu、Ca、 As、Se无显著影响 | 减产6.9%,株高、结实率、千粒重小幅降低,有效分蘖略微增加 | [ | |
第5内含子 | T-DNA插入 | 中花11 | 大片段插入 | — | 对K、Ca、Mg、Zn、 Cu无显著影响 | 生长受阻,叶片变黄 | [ |
第8内含子 | 碳离子束辐射诱变 | 隆臻36S、 华恢8612 | 18 bp缺失 | Cd、Mn显著下降 | — | 产量、其他性状无显著影响 | [ |
第10内含子 | 碳离子束辐射诱变 | 隆臻36S、 华恢8612 | 3 bp缺失 | Cd、Mn显著下降 | — | 产量、其他性状无显著影响 | [ |
第12内含子 | T-DNA插入 | 中花11 | 大片段插入 | Cd、Mn显著下降 | 对Fe、Zn、Cu无 显著影响 | 减产89%,生长受阻,叶片严重失绿 | [ |
全基因缺失 | 碳离子束辐射诱变 | 越光 | 227 kb缺失 | Cd<0.05 mg/kg, Mn显著下降 | 对Fe、Zn无显著影响, Cu显著上升 | 产量显著降低,抽穗早,株型小,穗数多,但秸秆产量低 | [ |
全基因缺失 | 60Co辐射诱变 | 粤泰B | 408 kb缺失 | Cd显著下降 | — | — | [ |
表2 OsNramp5不同变异类型对水稻植株金属含量及农艺性状的影响
Table 2. Effects of different mutation types of OsNramp5 on metal content and agronomic traits of rice.
变异位置 Mutation site | 变异来源Mutation method | 遗传背景Genetic background | 变异类型 Mutation type | 籽粒Cd、Mn含量Contents of Cd and Mn in grains | 其他金属含量 Other metal content | 产量及其他性状 Yield and other traits | 参考文献Reference |
---|---|---|---|---|---|---|---|
第1外显子 | CRISPR/Cas9技术 | 南粳46、 淮稻5号 | 1 bp插入 | Cd、Mn显著下降 | 对Fe无显著影响 | 产量、株高、每穗粒数、结实率均显著降低,穗数增加 | [ |
17 bp插入 | Cd、Mn显著下降 | 对Fe无显著影响 | 产量、株高、每穗粒数、结实率均显著降低 | [ | |||
11 bp插入 | Cd、Mn显著下降 | 对Fe无显著影响 | 产量、株高、每穗粒数、结实率均显著降低 | [ | |||
中花11 | 4 bp缺失 | Cd、Mn显著下降 | — | 生长严重受阻,根及地上部干质量显著降低 | [ | ||
第2外显子 | CRISPR/Cas9技术 | 黄华占 | 1 bp插入 | Cd、Mn显著下降 | 对Fe、Zn无显著影响 | 产量、每穗粒数、结实率、秸秆产量均显著降低,米质变劣,分蘖数增加 | [ |
第6外显子 | CRISPR/Cas9技术 | 黄华占 | 2 bp插入 | Cd、Mn显著下降 | 对Fe、Zn无显著影响 | 产量、每穗粒数、结实率、秸秆产量均显著降低,米质变劣 | [ |
第7外显子 | CRISPR/Cas9技术 | 锡稻1号 | 1 bp插入 | Cd显著下降 | — | 产量、其他性状无显著影响 | [ |
EMS诱变 | 9311 | SNP变异 | Cd显著下降 | 对Fe、Zn、Cu无显著影响 | 其他性状无显著影响 | [ | |
第8外显子 | EMS诱变 | Hitomebore | SNP变异 | Cd、Mn显著下降 | — | 产量、其他性状无显著影响 | [ |
第9外显子 | 碳离子束辐射诱变 | 越光 | 1 bp缺失 | Cd<0.05 mg/kg, Mn显著下降 | 对Fe、Zn、Cu无显著 影响 | 产量、其他性状无显著影响 | [ |
CRISPR/Cas9技术 | 华占 | 3 bp缺失+ 1 bp插入 | Cd<0.05 mg/kg, Mn极显著下降 | 对Cu、Zn无显著影响, Fe显著上升 | 产量、其他性状无显著影响 | [ | |
5 bp缺失 | Cd<0.05 mg/kg, Mn极显著下降 | 对Cu、Zn无显著影响, Fe显著上升 | 产量、其他性状无显著影响 | [ | |||
锡稻1号 | 33 bp缺失 | Cd显著下降 | — | 减产44.3%,生长严重受阻,株高降低 | [ | ||
黄华占 | 1 bp插入 | 均显著下降 | 对Fe、Zn无显著 影响 | 产量、每穗粒数、结实率、秸秆生物量均显著降低 | [ | ||
中花11 | 2 bp缺失+ 1 bp插入 | — | — | 产量、千粒重极显著降低,米质变劣 | [ | ||
中花11 | 5 bp缺失+ 1 bp插入 | — | — | 产量、千粒重极显著降低,米质变劣 | [ | ||
第10外显子 | 碳离子束辐射诱变 | 越光 | 433 bp插入 | Cd<0.05 mg/kg,Mn显著下降 | 对Fe、Zn、Cu 无显著影响 | 产量、其他性状无显著影响 | [ |
CRISPR/Cas9技术 | 华占、 五丰B、 五山丝苗、 中早35 | 1-3 bp缺失+ 1 bp插入 | Cd、Mn显著下降 | 对Fe、Zn、Cu、Ca、 As、Se无显著影响 | 减产6.9%,株高、结实率、千粒重小幅降低,有效分蘖略微增加 | [ | |
第5内含子 | T-DNA插入 | 中花11 | 大片段插入 | — | 对K、Ca、Mg、Zn、 Cu无显著影响 | 生长受阻,叶片变黄 | [ |
第8内含子 | 碳离子束辐射诱变 | 隆臻36S、 华恢8612 | 18 bp缺失 | Cd、Mn显著下降 | — | 产量、其他性状无显著影响 | [ |
第10内含子 | 碳离子束辐射诱变 | 隆臻36S、 华恢8612 | 3 bp缺失 | Cd、Mn显著下降 | — | 产量、其他性状无显著影响 | [ |
第12内含子 | T-DNA插入 | 中花11 | 大片段插入 | Cd、Mn显著下降 | 对Fe、Zn、Cu无 显著影响 | 减产89%,生长受阻,叶片严重失绿 | [ |
全基因缺失 | 碳离子束辐射诱变 | 越光 | 227 kb缺失 | Cd<0.05 mg/kg, Mn显著下降 | 对Fe、Zn无显著影响, Cu显著上升 | 产量显著降低,抽穗早,株型小,穗数多,但秸秆产量低 | [ |
全基因缺失 | 60Co辐射诱变 | 粤泰B | 408 kb缺失 | Cd显著下降 | — | — | [ |
[1] | Ye X X, Ma Y B, Sun B. Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety[J]. Journal of Environmental Sciences, 2012, 24(9): 1647-1654. |
[2] | Grant C A, Clarke J M, Duguid S, Chaney R L. Selection and breeding of plant cultivars to minimize cadmium accumulation[J]. The Science of the Total Environment, 2008, 390(2): 301-310. |
[3] | Sui F Q, Chang J D, Tang Z, Liu W J, Huang X Y, Zhao F J. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize[J]. Plant and Soil, 2018, 433: 377-389. |
[4] | Järup L, Akesson A. Current status of cadmium as an environmental health problem[J]. Toxicology and Applied Pharmacology, 2009, 238(3): 201-208. |
[5] | Rikans L E, Yamano T. Mechanisms of cadmium- mediated acute hepatotoxicity[J]. Journal of Biochemical and Molecular Toxicology, 2000, 14(2): 110-117. |
[6] | Åkesson A, Barregard L, Bergdahl I A, Nordberg G F, Nordberg M, Skerfving S. Non-renal effects and the risk assessment of environmental cadmium exposure[J]. Environmental Health Perspectives, 2014, 122(5): 431-438. |
[7] | Li H, Luo N, Li Y W, Cai Q Y, Li, H Y, Mo C H, Wong M H. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224: 622-630. |
[8] | Jiang M, Jiang J, Li S, Li M, Tan Y Y, Song S Y, Shu Q Y, Huang J Z. Glutamate alleviates cadmium toxicity in rice via suppressing cadmium uptake and translocation[J]. Journal of Hazardous Materials, 2020, 384: 121319. |
[9] | Shan A, Kang K J, Xu H Z, Wu L, Lu M T, Lin Q, Pan M H, Wang G, He Z L, Yang X E. Cadmium accumulation in rice straws and derived biochars as affected by metal exposure, soil types and rice genotypes[J]. International Journal of Phytoremediation, 2021(1): 1-10. |
[10] | Cattani I, Romani M, Boccelli R. Effect of cultivation practices on cadmium concentration in rice grain[J]. Agronomy for Sustainable Development, 2008, 28(2): 265-271. |
[11] | Zhang Q, Li Z W, Huang B, Luo N L, Long L Z, Huang M, Zhai X Q, Zeng G M. Effect of land use pattern change from paddy soil to vegetable soil on the adsorption-desorption of cadmium by soil aggregates[J]. Environmental Science and Pollution Research International, 2017, 24(3): 2734-2743. |
[12] | Mortensen L H, Rønn R, Vestergård M. Bioaccumulation of cadmium in soil organisms: With focus on wood ash application[J]. Ecotoxicology and Environmental Safety, 2018, 156: 452-462. |
[13] | Yang Y, Li Y L, Wang M E, Chen W P, Dai Y T. Limestone dosage response of cadmium phytoavailability minimization in rice: A trade-off relationship between soil pH and amorphous manganese content[J]. Journal of Hazardous Materials, 2021, 403: 123664. |
[14] | Shao J F, Fujii-Kashino M, Yamaji N, Fukuoka S, Shen R F, Ma J F. Isolation and characterization of a rice line with high Cd accumulation for potential use in phytoremediation[J]. Plant and Soil, 2017, 410(1): 357-368. |
[15] | Acosta J A, Abbaspour A, Martínez G R, Martínez- Martínez S, Zornoza R, Gabarrón M, Faz A. Phytoremediation of mine tailings with Atriplex halimus and organic/inorganic amendments: A five-year field case study[J]. Chemosphere, 2018, 204: 71-78. |
[16] | 王林友, 竺朝娜, 王建军, 张礼霞, 金庆生, 石春海. 水稻镉、铅、砷低含量基因型的筛选[J]. 浙江农业学报, 2012, 24(1): 133-138. |
Wang L Y, Zhu C N, Wang J J, Zhang L X, Jin Q S, Shi C H. Screening for rice (Oryza sativa L.) genotypes with lower Cd, Pb and As contents[J]. Acta Agriculturae Zhejiangensis, 2012, 24(1): 133-138. (in Chinese with English abstract) | |
[17] | 叶新新, 周艳丽, 孙波. 适于轻度Cd、As污染土壤种植的水稻品种筛选[J]. 农业环境科学学报, 2012, 31(6): 1082-1088. |
Ye X X, Zhou Y L, Sun B. Screening of suitable rice cultivars for the adaptation to lightly contaminated soil with Cd and As[J]. Journal of Agro-Environment Science, 2012, 31(6): 1082-1088. (in Chinese with English abstract) | |
[18] | Tang G H, Xie H J, Zhu M D, Xiao Y, Fu H R, Ling C Q, Yu Y H. Preliminary study on rice varieties with low cadmium accumulation by mixed planting[J]. Hunan Agricultural Sciences, 2018, 4: 17-20. |
[19] | Shao J F, Xia J, Yamaji N, Shen R F, Ma J F. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter[J]. Journal of Experimental Botany, 2018, 69(10): 2743-2752. |
[20] | Wang T K, Li Y X, Fu Y F, Xie H J, Song S F, Qiu M D, Wen J, Chen M W, Chen G, Tian Y, Li C X, Yuan D Y, Wang J L, Li L. Mutation at different sites of metal transporter gene OsNramp5 affects Cd accumulation and related agronomic traits in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2019, 10: 1081. |
[21] | Chang J D, Huang S, Konishi N, Wang P, Chen J, Huang X Y, Ma J F, Zhao F J. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain[J]. Journal of Experimental Botany, 2020, 71(18): 5705-5715. |
[22] | Nevo Y, Nelson N. The NRAMP family of metal-ion transporters[J]. Biochimica et Biophysica Acta, 2006, 1763(7): 609-620. |
[23] | Bozzi A T, Gaudet R. Molecular mechanism of NRAMP-family transition metal transport[J]. Journal of Molecular Biology, 2021, 433(16): 166991. |
[24] | Petre B, Major I, Rouhier N, Duplessis S. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar[J]. BMC Plant Biology, 2011, 11(1): 33. |
[25] | Nelson N. Metal ion transporters and homeostasis[J]. The EMBO Journal, 1999, 18(16): 4361-4371. |
[26] | Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H. Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities[J]. Plant Physiology and Biochemistry, 2005, 43(8): 793-801. |
[27] | Oomen R J, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts M G, Thomine S. Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens[J]. The New Phytologist, 2009, 181(3): 637-650. |
[28] | Wei W, Chai T Y, Zhang Y X, Han L, Xu J, Guan Z Q. The Thlaspi caerulescens NRAMP homologue TcNRAMP3 is capable of divalent cation transport[J]. Molecular Biotechnology, 2009, 41(1): 15-21. |
[29] | Xiao H H, Yin L P, Xu X F, Li T Z, Han Z H. The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking[J]. Annals of Botany, 2008, 102(6): 881-889. |
[30] | Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M. A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7[J]. Journal of Experimental Botany, 2010, 61(3): 923-934. |
[31] | Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(14): 4843-4850. |
[32] | Li Y, Li J J, Yu Y H, Dai X, Gong C Y, Gu D F, Xu E D, Liu Y H, Zou Y, Zhang P J, Chen X, Zhang W. The tonoplast-localized transporter OsNRAMP2 is involved in iron homeostasis and affects seed germination in rice[J]. Journal of Experimental Botany, 2021, 72(13): 4839-4852. |
[33] | Yamaji N, Sasaki A, Xia J X, Yokosho K, Ma J F. A node-based switch for preferential distribution of manganese in rice[J]. Nature Communications, 2013, 4: 2442. |
[34] | Yang M, Zhang W, Dong H X, Zhang Y Y, Lü K, Wang D J, Lian X M. OsNRAMP3 is a vascular bundles-specific manganese transporter that is responsible for manganese distribution in rice[J]. PLoS ONE, 2013, 8(12): e83990. |
[35] | Xia J, Yamaji N, Kasai T, Ma J F. Plasma membrane-localized transporter for aluminum in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(43): 18381-18385. |
[36] | Li J Y, Liu J, Dong D, Jia X, McCouch S R, Kochian L V. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(17): 6503-6508. |
[37] | Peris-Peris C, Serra-Cardona A, Sánchez-Sanuy F, Campo S, Ariño J, San Segundo B. Two NRAMP6 isoforms function as iron and manganese transporters and contribute to disease resistance in rice[J]. Molecular Plant-Microbe Interactions, 2017, 30(5): 385-398. |
[38] | 吴天昊, 李曜魁, 孙远涛, 董家瑜, 莫伊凡, 唐丽, 赵炳然. 水稻OsNRAMP7基因的克隆、表达及生物信息学分析[J]. 分子植物育种, 2021, 19(7): 2103-2110. |
Wu T H, Li Y K, Sun Y T, Dong J Y, Mo Y F, Tang L, Zhao B R. Cloning, expression and bioinformatical analysis of OsNAMP7 gene in rice[J]. Molecular Plant Breeding, 2021, 19(7): 2103-2110. (in Chinese with English abstract) | |
[39] | Sperotto R A, Boff T, Duarte G L, Santos L S, Grusak M A, Fett J P. Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains[J]. Journal of Plant Physiology, 2010, 167(17): 1500-1506. |
[40] | Sasaki A, Yamaji N, Yokosho K, Ma J F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2155-2167. |
[41] | Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa N K, Nakanishi H. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19166-19171. |
[42] | Ishimaru Y, Bashir K, Nakanishi H, Nishizawa N K. OsNRAMP5, a major player for constitutive iron and manganese uptake in rice[J]. Plant Signaling & Behavior, 2012, 7(7): 763-766. |
[43] | Yang M, Zhang Y Y, Zhang L J, Hu J T, Zhang X, Lu K, Dong H X, Wang D J, Zhao F J, Huang C F, Lian X M. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots[J]. Journal of Experimental Botany, 2014, 65(17): 4849-4961. |
[44] | Uraguchi S, Fujiwara T. Cadmium transport and tolerance in rice: Perspectives for reducing grain cadmium accumulation[J]. Rice, 2012, 5(1): 5. |
[45] | 杨猛. 水稻NRAMP家族基因在Mn和Cd转运中的功能研究[D]. 武汉: 华中农业大学, 2014. |
Yang M. Functional Analysis of Rice NRAMP Genes in Mn and Cd Transport[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese with English abstract) | |
[46] | Tang L, Mao B G, Li Y K, Lü Q M, Zhang L P, Chen C Y, He H J, Wang W P, Zeng X F, Shao Y, Pan Y L, Hu Y Y, Peng Y, Fu X Q, Li H Q, Xia S T, Zhao B R. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7(1): 14438. |
[47] | Yang C H, Zhang Y, Huang C F. Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9- mediated editing of OsNRAMP5[J]. Journal of Integrative Agriculture, 2019, 18: 688-697. |
[48] | Liu S M, Jiang J, Liu Y, Meng J, Xu S L, Tan Y Y, Li Y F, Shu Q Y, Huang J Z. Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice[J]. Rice Science, 2019, 26(2): 88-97. |
[49] | 龙起樟, 黄永兰, 唐秀英, 王会民, 芦明, 袁林峰, 万建林. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻[J]. 中国水稻科学, 2019, 33(5): 407-420. |
Long Q Z, Huang Y L, Tang X Y, Wang H M, Lu M, Yuan L F, Wan J L. Creation of Low-Cd-accumulating indica rice by disruption of OsNramp5 gene via CRISPR/Cas9[J]. Chinese Journal of Rice Science, 2019, 33(5): 407-420. (in Chinese with English abstract) | |
[50] | 胡黎明, 彭彦, 郑文杰, 周凯, 毛慧, 唐丽, 毛毕刚. 利用CRISPR/Cas9技术创制镉低积累香型水稻[J]. 杂交水稻, 2021, 36(6): 77-83. |
Hu L M, Peng Y, Zheng W J, Zhou K, Mao H, Tang L, Mao B G. Using CRISPR/Cas9 technology to create low cadmium accumulation and aromatic rice[J]. Hybrid Rice, 2021, 36(6): 77-83. (in Chinese with English abstract) | |
[51] | Tanaka N, Nishida S, Kamiya T, Fujiwara T. Large-scale profiling of brown rice ionome in an ethyl methanesulphonate-mutagenized hitomebore population and identification of high- and low-cadmium lines[J]. Plant and Soil, 2016, 407(1): 109-117. |
[52] | Cao Z Z, Lin X Y, Yang Y J, Guan M Y, Xu P, Chen M X. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq[J]. BMC Plant Biology, 2019, 19(1): 250. |
[53] | Tang L, Dong J, Qu M, Lü Q, Zhang L, Peng C, Hu Y, Li Y, Ji Z, Mao B, Peng Y, Shao Y, Zhao B. Knockout of OsNRAMP5 enhances rice tolerance to cadmium toxicity in response to varying external cadmium concentrations via distinct mechanisms[J]. The Science of the Total Environment, 2022, 832: 155006. |
[54] | Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2: 286. |
[55] | 刘松梅. 水稻镉运输基因OsLCT1和OsNramp5的特征与突变分析[D]. 杭州: 浙江大学, 2019. |
Liu S H. Characterization and mutational analysis of cadmium transport genes OsLCTl and OsNramp5 in rice[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract) | |
[56] | Tsunemitsu Y, Yamaji N, Ma J F, Kato S I, Iwasaki K, Ueno D. Rice reduces Mn uptake in response to Mn stress[J]. Plant Signaling & Behavior, 2018, 13(1): 2476-2491. |
[57] | Chang J D, Huang S, Yamaji N, Zhang W W, Ma J F, Zhao F J. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice[J]. Plant, Cell & Environment, 2020, 43(10): 2476-2491. |
[58] | 董家瑜, 吴天昊, 孙远涛, 何含杰, 李曜魁, 彭彦, 冀中英, 孟前程, 赵炳然, 唐丽. 不同锰浓度环境下OsNRAMP5突变对水稻耐热性和主要经济性状的影响[J]. 杂交水稻, 2021, 36(2): 79-88. |
Dong J Y, Wu T H, Sun Y T, He H J, Li Y K, Peng Y, Ji Z Y, Meng Q C, Zhao B R, Tang L. Effects of OsNRAMP5 mutation on heat tolerance and main economic traits of rice under the conditions of different manganese concentration[J]. Hybrid Rice, 2021, 36(2): 79-88. (in Chinese with English abstract) | |
[59] | Sasaki A, Yamaji N, Ma J F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. Journal of Experimental Botany, 2014, 65(20): 6013-6021. |
[60] | Lu C, Zhang L X, Tang Z, Huang X Y, Ma J F, Zhao F J. Producing cadmium-free Indica rice by overexpressing OsHMA3[J]. Environment International, 2019, 126: 619-626. |
[61] | Lü Q M, Li W G, Sun Z Z, Ouyang N, Jing X, He Q, Wu J, Zheng J K, Zheng J T, Tang S Q, Zhu R S, Tian Y, Duan M J, Tan Y N, Yu D, Sheng X B, Sun X W, Jia G F, Gao H Z, Zeng Q, Li Y F, Tang L, Xu Q S, Zhao B R, Huang Z Y, Lu H F, Li N, Zhao J, Zhu L H, Li D, Yuan L P, Yuan D Y. Resequencing of 1,143 indica rice accessions reveals important genetic variations and different heterosis patterns[J]. Nature Communications, 2020, 11(1): 4778. |
[62] | 王天抗, 李懿星, 宋书锋, 傅岳峰, 余应弘, 柏连阳, 李莉. 水稻籽粒镉低积累资源挖掘及其新材料创制[J]. 杂交水稻, 2021, 36(1): 68-74. |
Wang T K, Li Y X, Song S F, Fu Y F, Yu Y H, Bai L Y, Li L. Excavation of rice resources with low cadmium accumulation in grains and development of new materials[J]. Hybrid Rice, 2021, 36(1): 68-74. (in Chinese with English abstract) | |
[63] | 韶也, 彭彦, 毛毕刚, 余丽霞, 唐丽, 李曜魁, 胡远艺, 张丹, 袁智成, 罗武中, 彭选明, 李文建, 周利斌, 柏连阳, 赵炳然. M_1TDS技术及镉低积累杂交水稻亲本创制与组合选育[J]. 杂交水稻, 2022, 37(1): 1-11. |
Shao Y, Peng Y, Mao B G, Yu L X, Tang L, Li Y K, Hu Y Y, Zhang D, Yuan Z C, Luo W Z, Peng X M, Li W J, Zhou L B, Bai L Y, Zhao B R. M_1TDS technology and creation of low-cadmium accumulation parents for hybrid rice breeding[J]. Hybrid Rice, 2022, 37(1): 1-11. (in Chinese with English abstract) |
[1] | 刘淑丽, 张瑞, Shahid HUSSAIN, 王洋, 陈英龙, 韦还和, 侯红燕, 戴其根. 外源物质对水稻盐胁迫缓解效应研究进展 [J]. 中国水稻科学, 2023, 37(1): 1-15. |
[2] | 裴峰, 王广达, 高鹏, 冯志明, 胡珂鸣, 陈宗祥, 陈红旗, 崔傲, 左示敏. 敲除OsNramp5基因创制低镉优质粳稻新材料的应用评价 [J]. 中国水稻科学, 2023, 37(1): 16-28. |
[3] | 袁洋, 敖和军, 周仲华, 应杰政, 张健, 倪深. 水稻杂种偏分离位点SegD8的精细定位 [J]. 中国水稻科学, 2023, 37(1): 37-44. |
[4] | 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻光温敏雄性不育突变体tms3650的鉴定和基因定位 [J]. 中国水稻科学, 2023, 37(1): 45-54. |
[5] | 张露, 梁青铎, 吴龙龙, 黄晶, 田仓, 张均华, 曹小闯, 朱春权, 孔亚丽, 金千瑜, 朱练峰. 减氮和增氧灌溉对水稻产量和氮素利用的影响 [J]. 中国水稻科学, 2023, 37(1): 78-88. |
[6] | 巫明明, 曾维, 翟荣荣, 叶靖, 朱国富, 俞法明, 张小明, 叶胜海. 水稻耐盐分子机制与育种研究进展[J]. 中国水稻科学, 2022, 36(6): 551-561. |
[7] | 张元野, 尹丽颖, 李荣田, 何明良, 刘欣欣, 潘婷婷, 田晓杰, 卜庆云, 李秀峰. 利用CRISPR/Cas9技术创制Rc基因恢复红稻[J]. 中国水稻科学, 2022, 36(6): 572-578. |
[8] | 毛慧, 彭彦, 毛毕刚, 韶也, 郑文杰, 胡黎明, 周凯, 赵炳然. 水稻直链淀粉合成调控新基因Wx410的功能与效应分析[J]. 中国水稻科学, 2022, 36(6): 579-585. |
[9] | 史玉良, 杨勇, 李雪飞, 李钱峰, 黄李春, 张昌泉, 宋学堂, 刘巧泉. 不同直链淀粉含量软米品种品质性状的比较[J]. 中国水稻科学, 2022, 36(6): 601-610. |
[10] | 魏晓东, 张亚东, 宋雪梅, 陈涛, 朱镇, 赵庆勇, 赵凌, 路凯, 梁文化, 赫磊, 黄胜东, 谢寅峰, 王才林. 高产粳稻品种南粳晶谷的光合生理特性研究[J]. 中国水稻科学, 2022, 36(6): 611-622. |
[11] | 马静静, 潘妍妍, 杨孙玉悦, 王嘉琦, 蒋冬花. 硫藤黄链霉菌St-79对水稻白叶枯病的防效和促生作用[J]. 中国水稻科学, 2022, 36(6): 623-638. |
[12] | 唐若迪, 陈超. 外包服务对中老年劳动力参与水稻生产的影响[J]. 中国水稻科学, 2022, 36(6): 647-655. |
[13] | 伏荣桃, 王剑, 陈诚, 赵黎宇, 陈雪娟, 卢代华. 水稻幼穗响应稻曲病菌毒素胁迫早期的转录组分析[J]. 中国水稻科学, 2022, 36(5): 447-458. |
[14] | 尹丽颖, 张元野, 李荣田, 何明良, 王芳权, 许扬, 刘欣欣, 潘婷婷, 田晓杰, 卜庆云, 李秀峰. 利用CRISPR/Cas9技术创制高效抗除草剂水稻[J]. 中国水稻科学, 2022, 36(5): 459-466. |
[15] | 朱春权, 魏倩倩, 党彩霞, 黄晶, 徐青山, 潘林, 朱练峰, 曹小闯, 孔亚丽, 项兴佳, 刘佳, 金千瑜, 张均华. 水杨酸通过一氧化氮途径调控水稻缓解低磷胁迫[J]. 中国水稻科学, 2022, 36(5): 476-486. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||