中国水稻科学 ›› 2022, Vol. 36 ›› Issue (6): 551-561.DOI: 10.16819/j.1001-7216.2022.211111
• 综述与专论 • 下一篇
巫明明1, 曾维2, 翟荣荣1, 叶靖1, 朱国富1, 俞法明1, 张小明1, 叶胜海1,*()
收稿日期:
2021-11-19
修回日期:
2022-02-15
出版日期:
2022-11-10
发布日期:
2022-11-10
通讯作者:
叶胜海
基金资助:
WU Mingming1, ZENG Wei2, ZHAI Rongrong1, YE Jing1, ZHU Guofu1, YU Faming1, ZHANG Xiaoming1, YE Shenghai1,*()
Received:
2021-11-19
Revised:
2022-02-15
Online:
2022-11-10
Published:
2022-11-10
Contact:
YE Shenghai
摘要:
盐碱土壤对水稻不同生长发育时期均形成盐胁迫,进而导致水稻产量降低。耐盐水稻选育是提高水稻产量的有效途径。本文分析了盐胁迫对水稻不同发育时期农艺性状的影响,并从渗透调节、离子应答、激素调控和活性氧清除四个方面综述了近年来水稻耐盐分子机制的研究进展。最后,本文总结了水稻耐盐育种现状,并对耐盐水稻新品种的选育和推广进行了展望。
巫明明, 曾维, 翟荣荣, 叶靖, 朱国富, 俞法明, 张小明, 叶胜海. 水稻耐盐分子机制与育种研究进展[J]. 中国水稻科学, 2022, 36(6): 551-561.
WU Mingming, ZENG Wei, ZHAI Rongrong, YE Jing, ZHU Guofu, YU Faming, ZHANG Xiaoming, YE Shenghai. Research Progress in Molecular Mechanism and Breeding Status of Salt Tolerance in Rice[J]. Chinese Journal OF Rice Science, 2022, 36(6): 551-561.
基因名称 Gene name | 基因ID Gene ID | 编码蛋白 Coding protein | 参考文献 Reference |
---|---|---|---|
OsP5CS1 | Os05g0455500 | △1-吡咯啉-5-羧酸合成酶 | [ |
OsRPK1 | Os09g0552300 | 受体蛋白激酶 | [ |
OsHKT1;5 | Os01g0307500 | Na+转运蛋白 | [ |
OsMYB106 | Os08g0433400 | MYB转录因子 | [ |
OsSUVH7 | Os01g0811300 | 组蛋白H3K9甲基转移酶 | [ |
OsBAG4 | Os01g0831200 | 包含BAG结构域蛋白 | [ |
OsHKT1;1 | Os04g0607500 | 高亲和性K+转运蛋白 | [ |
OsHKT1;4 | Os04g0607600 | Na+转运蛋白 | [ |
OsHDAC10 | Os12g0182700 | 组蛋白去乙酰化酶 | [ |
OsPRR73 | Os03g0284100 | 生物钟核心转录因子 | [ |
OsHKT2;1 | Os06g0701700 | 高亲和性Na+转运蛋白 | [ |
OsHAK1 | Os04g0401700 | K+转运蛋白 | [ |
SOS1 | Os12g0641100 | 质膜型Na+/H+逆向转运蛋白 | [ |
CIPK24 | Os06g0606000 | 丝氨酸/苏氨酸蛋白激酶 | [ |
CBL4 | Os05g0534400 | 钙调磷酸酶B亚基 | [ |
OsNHX1 | Os07g0666900 | 液泡膜Na+/H+逆向转运蛋白 | [ |
OsCPK21 | Os08g0540400 | Ca2+依赖性蛋白激酶 | [ |
OsCCaMK | Os05g0489900 | Ca2+/CaM依赖性蛋白激酶 | [ |
OsASR1 | Os11g0167800 | ABA-胁迫-成熟诱导蛋白 | [ |
OsABAR1 | Os04g0526800 | GRAM结构域包含蛋白 | [ |
HDA710 | Os02g0215200 | 组蛋白去乙酰化酶 | [ |
OsSAPK8 | Os03g0764800 | 丝氨酸/苏氨酸蛋白激酶 | [ |
OsDSR2 | Os01g0839200 | 胁迫抑制基因 | [ |
OsNAC45 | Os11g0127600 | NAC转录因子 | [ |
ONAC022 | Os03g0133000 | NAC转录因子 | [ |
OsMADS25 | Os04g0304400 | MADS-box转录因子 | [ |
OsbHLH034 | Os02g0726700 | 碱性螺旋-环-螺旋转录因子 | [ |
RSS3 | Os11g0446000 | bHLH转录因子 | [ |
OsCYP94C2b | Os12g0150200 | 细胞色素P450 | [ |
OsEIL1 | Os03g0324300 | 乙烯信号调控因子 | [ |
OsEIL2 | Os07g0685700 | 乙烯信号调控因子 | [ |
IDS1 | Os03g0818800 | AP2/ERF转录因子 | [ |
SLR1 | Os03g0707600 | DELLA蛋白 | [ |
OsPIL14 | Os07g0143200 | 光敏色素互作因子 | [ |
OsDSK2a | Os03g0131300 | 泛素结合蛋白 | [ |
EUI | Os05g0482400 | 细胞色素P450单加氧酶 | [ |
BG3 | Os01g0680200 | 嘌呤通透酶 | [ |
OsAGO2 | Os04g0615700 | ARGONAUTE家族蛋白 | [ |
ALM1 | Os06g0143000 | 铁-超氧化物歧化酶 | [ |
OsCu/Zn-SOD | Os08g0561700 | 铜/锌-超氧化物歧化酶 | [ |
OsAPX8 | Os02g0553200 | 抗坏血酸过氧化物酶 | [ |
OsGR3 | Os10g0415300 | 谷胱甘肽还原酶 | [ |
OsSTLK | Os05g0305900 | 受体蛋白激酶 | [ |
OsSTG1 | Os04g0623300 | 多胺氧化酶 | [ |
表1 水稻耐盐相关基因
Table 1. Genes involved in rice salt tolerance.
基因名称 Gene name | 基因ID Gene ID | 编码蛋白 Coding protein | 参考文献 Reference |
---|---|---|---|
OsP5CS1 | Os05g0455500 | △1-吡咯啉-5-羧酸合成酶 | [ |
OsRPK1 | Os09g0552300 | 受体蛋白激酶 | [ |
OsHKT1;5 | Os01g0307500 | Na+转运蛋白 | [ |
OsMYB106 | Os08g0433400 | MYB转录因子 | [ |
OsSUVH7 | Os01g0811300 | 组蛋白H3K9甲基转移酶 | [ |
OsBAG4 | Os01g0831200 | 包含BAG结构域蛋白 | [ |
OsHKT1;1 | Os04g0607500 | 高亲和性K+转运蛋白 | [ |
OsHKT1;4 | Os04g0607600 | Na+转运蛋白 | [ |
OsHDAC10 | Os12g0182700 | 组蛋白去乙酰化酶 | [ |
OsPRR73 | Os03g0284100 | 生物钟核心转录因子 | [ |
OsHKT2;1 | Os06g0701700 | 高亲和性Na+转运蛋白 | [ |
OsHAK1 | Os04g0401700 | K+转运蛋白 | [ |
SOS1 | Os12g0641100 | 质膜型Na+/H+逆向转运蛋白 | [ |
CIPK24 | Os06g0606000 | 丝氨酸/苏氨酸蛋白激酶 | [ |
CBL4 | Os05g0534400 | 钙调磷酸酶B亚基 | [ |
OsNHX1 | Os07g0666900 | 液泡膜Na+/H+逆向转运蛋白 | [ |
OsCPK21 | Os08g0540400 | Ca2+依赖性蛋白激酶 | [ |
OsCCaMK | Os05g0489900 | Ca2+/CaM依赖性蛋白激酶 | [ |
OsASR1 | Os11g0167800 | ABA-胁迫-成熟诱导蛋白 | [ |
OsABAR1 | Os04g0526800 | GRAM结构域包含蛋白 | [ |
HDA710 | Os02g0215200 | 组蛋白去乙酰化酶 | [ |
OsSAPK8 | Os03g0764800 | 丝氨酸/苏氨酸蛋白激酶 | [ |
OsDSR2 | Os01g0839200 | 胁迫抑制基因 | [ |
OsNAC45 | Os11g0127600 | NAC转录因子 | [ |
ONAC022 | Os03g0133000 | NAC转录因子 | [ |
OsMADS25 | Os04g0304400 | MADS-box转录因子 | [ |
OsbHLH034 | Os02g0726700 | 碱性螺旋-环-螺旋转录因子 | [ |
RSS3 | Os11g0446000 | bHLH转录因子 | [ |
OsCYP94C2b | Os12g0150200 | 细胞色素P450 | [ |
OsEIL1 | Os03g0324300 | 乙烯信号调控因子 | [ |
OsEIL2 | Os07g0685700 | 乙烯信号调控因子 | [ |
IDS1 | Os03g0818800 | AP2/ERF转录因子 | [ |
SLR1 | Os03g0707600 | DELLA蛋白 | [ |
OsPIL14 | Os07g0143200 | 光敏色素互作因子 | [ |
OsDSK2a | Os03g0131300 | 泛素结合蛋白 | [ |
EUI | Os05g0482400 | 细胞色素P450单加氧酶 | [ |
BG3 | Os01g0680200 | 嘌呤通透酶 | [ |
OsAGO2 | Os04g0615700 | ARGONAUTE家族蛋白 | [ |
ALM1 | Os06g0143000 | 铁-超氧化物歧化酶 | [ |
OsCu/Zn-SOD | Os08g0561700 | 铜/锌-超氧化物歧化酶 | [ |
OsAPX8 | Os02g0553200 | 抗坏血酸过氧化物酶 | [ |
OsGR3 | Os10g0415300 | 谷胱甘肽还原酶 | [ |
OsSTLK | Os05g0305900 | 受体蛋白激酶 | [ |
OsSTG1 | Os04g0623300 | 多胺氧化酶 | [ |
[1] | Jamil M, Bashir S, Anwar S, Bibi S, Rha E S. Effect of salinity on physiological and biochemical characteristics of different varieties of rice[J]. Pakistan Journal of Botany, 2012, 44(1): 7-13. |
[2] | 李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究[J]. 干旱地区农业研究, 2005, 23(2): 154-158. |
Li B, Wang Z C, Sun Z G, Chen Y, Yang F. Resources and sustainable resource exploitation of salinized land in China[J]. Agricultural Research in the Arid Areas, 2005, 23(2): 154-158. (in Chinese) | |
[3] | Qin H, Li Y X, Huang R F. Advances and challenges in the breeding of salt-tolerant rice[J]. International Journal of Molecular Sciences, 2020, 21(21): 8385. |
[4] | Woodroffe C D, Nicholls R J, Saito Y, Chen Z, Goodbred S L. Landscape Variability and the Response of Asian Megadeltas to Environmental Change: The Asia-Pacific Region[M]. Springer Netherlands, 2006, doi:10.1007/1-4020-3628-0_10. |
[5] | Busby J, Smith T G, Krishnan N, Wight C, Vallejo-Gutierrez S. In harm's way: Climate security vulnerability in Asia[J]. World Development, 2018, 112: 88-118. |
[6] | Berry P M, Rounsevell M D A, Harrison P A, Audsley E. Assessing the vulnerability of agricultural land use and species to climate change and the role of policy in facilitating adaptation[J]. Environmental Science & Policy, 2006, 9(2): 189-204. |
[7] | Manchanda G, Garg N. Salinity and its effects on the functional biology of legumes[J]. Acta Physiologiae Plantarum, 2008, 30(5): 595-618. |
[8] | Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. |
[9] | Jamil M, Lee D B, Jung K Y, Ashraf M, Lee S C, Shik Rha E S. Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species[J]. Journal of Central European Agriculture, 2006, 7(2): 273-282. |
[10] | Zhang Z H, Liu Q, Song H X, Rong X M, Ismail A M. Responses of different rice (Oryza sativa L.) genotypes to salt stress and relation to carbohydrate metabolism and chlorophyll content[J]. African Journal of Agricultural Research, 2012, 7(1): 19-27. |
[11] | 谷娇娇, 胡博文, 贾琰, 沙汉景, 李经纬, 马超, 赵宏伟. 盐胁迫对水稻根系相关性状及产量的影响[J]. 作物杂志, 2019(4): 176-182. |
Gu J J, Hu B W, Jia Y, Sha H J, Li J W, Ma C, Zhao H W. Effects of salt stress on root related traits and yield of rice[J]. Crops, 2019(4): 176-182. (in Chinese) | |
[12] | Hussain S, Zhang J H, Zhong C, Zhu L F, Cao X C, Yu S M, James A B, Hu J J, Jin Q Y. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review[J]. Journal of Integrative Agriculture, 2017, 16(11): 2357-2374. |
[13] | Demiral T, Türkan I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance[J]. Environmental & Experimental Botany, 2005, 53(3): 247-257. |
[14] | Joseph B, Jini D, Sujatha S. Biological and physiological perspectives of specificity in abiotic salt stress response from various rice plants[J]. Asian Journal of Agricultural Sciences, 2010, 2(3): 99-105. |
[15] | Mirza H, Masayuki F, Islam M N, Ahamed K U, Kamrun N. Performance of four irrigated rice varieties under different levels of salinity stress[J]. International Journal of Integrative Biology, 2009, 6(2): 85-90. |
[16] | Grattan S R, Zeng L, Shannon M C, Roberts S R. Rice is more sensitive to salinity than previously thought[J]. California Agriculture, 2002, 56(6): 189-198. |
[17] | 王才林, 张亚东, 赵凌, 路凯, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题与建议[J]. 中国稻米, 2019, 25(1): 1-6. |
Wang C L, Zhang Y D, Zhao L, Lu K, Zhu Z, Chen T, Zhao Q Y, Yao S, Zhou L H, Zhao C F, Liang W H, Sun M F, Yan G H. Research status, problems and suggestions on salt-alkali tolerant rice[J]. China Rice, 2019, 25(1): 1-6. (in Chinese with English abstract) | |
[18] | Bhatt M M, Patel D B, Sasidharan N, Jadeja G C. Salinity resistance studies in rice (Oryza sativa L.)[J]. Research on Crops, 2008, 9(2): 215-218. |
[19] | Cotsaftis O, Plett D, Johnson A A T, Walia H, Wilson C, Ismail A M, Close T J, Tester M, Baumann U. Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress[J]. Molecular Plant, 2011, 4(1): 25-41. |
[20] | Amirjani M R. Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice[J]. International Journal of Botany, 2011, 7(1): 73-81. |
[21] | 信彩云, 马惠, 赵庆雷, 王瑜, 刘奇华, 杨军, 陈博聪, 林香青. 不同浓度NaCl胁迫对水稻种子发芽及幼苗生长的影响[J]. 大麦与谷类科学, 2019, 36(3): 7-10. |
Xin C Y, Ma H, Zhao Q L, Wang Y, Liu Q H, Yang J, Cheng B C, Lin X Q. Effects of salt stress on rice seed germination and seedling growth[J]. Barley and Cereal Sciences, 2019, 36(3): 7-10. (in Chinese) | |
[22] | Liu C, Chen K, Zhao X Q, Wang X Q, Shen C C, Zhu Y J, Dai M L, Qiu X J, Yang R W, Xing D Y, Pang Y L, Xu J L. Identification of genes for salt tolerance and yield-related traits in rice plants grown hydroponically and under saline field conditions by genome-wide association study[J]. Rice, 2019, 12(1): 88. |
[23] | 王旭明, 赵夏夏, 陈景阳, 龚茂健, 杨善, 谢平, 莫俊杰, 黄永相, 叶昌辉, 周鸿凯. 盐胁迫下水稻孕穗期SS和SPS活性与糖积累的响应及其相关性分析[J]. 江苏农业学报, 2018, 34(3): 481-486. |
Wang X M, Zhao X X, Chen J Y, Gong M J, Yang S, Xie P, Mo J J, Huang Y X, Ye C H, Zhou H K. The response and correlations between carbohydrate accumulation and activities of SPS, SS at booting stage of rice under salt stress[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(3): 481-486. (in Chinese with English abstract) | |
[24] | Rao P S, Mishra B, Gupta S R, Rathore A. Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes[J]. Plant Breeding, 2010, 127(3): 256-261. |
[25] | 华春, 王仁雷. 盐胁迫对水稻叶片光合效率和叶绿体超显微结构的影响[J]. 山东农业大学学报, 2004(1): 27-31. |
Hua C, Wang R L. Salt stress affects photosynthetic efficiency and chloroplast ultrastructure of rice leaves[J]. Journal of Shandong Agricultural University, 2004(1): 27-31. (in Chinese with English abstract) | |
[26] | Khan M A, Abdullah Z. Salinity-sodicity induced changes in reproductive physiology of rice (Oryza sativa) under dense soil conditions[J]. Environmental and Experimental Botany, 2003, 49(2): 145-157. |
[27] | Lee C K, Yoon Y H, Shin J C, Lee B W, Kim C K. Growth and yield of rice as affected by saline water treatment at different growth stages[J]. Korean Journal of Crop Science, 2002, 47(6): 402-408. |
[28] | Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice[J]. Field Crops Research, 2011, 123(2): 170-182. |
[29] | Abdullah Z, Khan M A, Flowers T J. Causes of sterility in seed set of rice under salinity stress[J]. Journal of Agronomy & Crop Science, 2010, 187(1): 25-32. |
[30] | Zeng L H, Shannon M C. Effects of salinity on grain yield and yield components of rice at different seeding densities[J]. Agronomy Journal, 2000, 92(3): 418-423. |
[31] | 周婵婵, 王术, 黄元财, 王岩, 胡继杰, 贾宝艳. 不同水稻品种产量和品质对盐碱胁迫的响应[J]. 种子, 2017, 36(11): 29-33. |
Zhou C C, Wang S, Huang Y C, Wang Y, Hu J J, Jia B Y. Response of different rice yield and quality to saline-alkali stress. Seed, 2017, 36(11): 29-33. (in Chinese) | |
[32] | Zhao C Z, Zhang H, Song C P, Zhu J K, Shabala S. Mechanisms of plant responses and adaptation to soil salinity[J]. The Innovation, 2020, 1(1): 1-41. |
[33] | Hmida-Sayari A D, Gargouri-Bouzid R, Bidani A, Jaoua L L, Savouré A, Jaoua S. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants[J]. Plant Science, 2005, 169(4): 746-752. |
[34] | Garg A K. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses[J]. Proceedings of the National Academy of Sciences, 2003, 99(25): 15898-15903. |
[35] | 王志春, 杨福, 齐春艳, 梁正伟. 盐碱胁迫下水稻渗透调节的生理响应[J]. 干旱地区农业研究, 2010, 28(6): 153-157. |
Wang Z C, Yang F, Qi C Y, Lian Z W. Osmotic regulation response of rice to soil salinity and alkalinity stresses[J]. Agricultural Research in the Arid Areas, 2010, 28(6): 153-157. (in Chinese with English abstract) | |
[36] | Hong Z L, Lakkineni K, Zhang Z M, Verma D. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology, 2000, 122(4): 1129-1136. |
[37] | 张霞, 唐维, 刘嘉, 刘永胜. 过量表达水稻OsP5CS1和OsP5CS2基因提高烟草脯氨酸的生物合成及其非生物胁迫抗性[J]. 应用与环境生物学报, 2014, 20(4): 717-722. |
Zhong X, Tang W, Liu J, Liu Y S. Co-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance[J]. Chinese Journal of Applied & Environmental Biology, 2014, 20(4): 717-722. (in Chinese with English abstract) | |
[38] | Liang W J, Cui W N, Ma X L, Wang G, Huang Z J. Function of wheat Ta-UnP gene in enhancing salt tolerance in transgenic Arabidopsis and rice[J]. Biochemical & Biophysical Research Communications, 2014, 450(1): 794-801. |
[39] | Li Q R, Li B, Wang J Y, Chang X P, Mao X G, Jing R L. TaPUB15, a U-Box E3 ubiquitin ligase gene from wheat, enhances salt tolerance in rice[J]. Food and Energy Security, 2021, 10(1): e250. DOI: 10.1002/fe33.250. |
[40] | 李晶岚, 陈鑫欣, 石翠翠, 刘方惠, 孙静, 葛荣朝. OsRPK1基因过表达和RNA干涉对水稻苗期耐盐性的影响[J]. 作物学报, 2020(8): 1217-1224. |
Li J L, Chen X X, Shi C C, Liu F H, Sun J, Ge R C. Effects of OsRPK1 gene overexpression and RNAi on the salt-tolerance at seedling stage in rice[J]. Acta Agronomica Sinica, 2020(8): 1217-1224. (in Chinese with English abstract) | |
[41] | Wu H H. Plant salt tolerance and Na+ sensing and transport[J]. The Crop Journal, 2018, 6(3): 215-225. |
[42] | Horie T, Hauser F, Schroeder J I. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants[J]. Trends in Plant Science, 2009, 14(12): 660-668. |
[43] | Zheng X Y, Dong Q Z, Zhang X P, Han Q, Han X, Han Y, Wu J J, Rong X Z, Wang E H. The coiled-coil domain of oncogene RASSF 7 inhibits hippo signaling and promotes non-small cell lung cancer[J]. Oncotarget, 2017, 8(45): 78734-78748. |
[44] | Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics, 2005, 37(10): 1141-1146. |
[45] | Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ratio in leaves during salinity stress[J]. Plant Cell & Environment, 2010, 33(4): 552-565. |
[46] | 王甜甜, 郝怀庆, 冯雪, 景海春. 植物HKT蛋白耐盐机制研究进展[J]. 植物学报, 2018, 53(5): 710-725. |
Wang T T, Hao H Q, Feng X, Jing H C. Research advances in the function of the high-affinity K+ transporter (HKT) proteins and plant salt tolerance[J]. Chinese Bulletin of Botany, 2018, 53(5): 710-725. (in Chinese with English abstract) | |
[47] | Kobayashi N I, Yamaji N, Yamamoto H, Okubo K, Ueno H, Costa A, Tanoi K, Matsumura H, Fujiikashino M, Horiuchi T. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice[J]. Plant Journal, 2017, 91(4): 657-670. |
[48] | Wang J, Nan N, Li N, Liu Y T, Xu Z Y. A DNA lation reader-chaperone regulator-transcription factor complex activates OsHKT1;5 expression during salinity stress[J]. The Plant Cell, 2020, 32(11): 3535-3558. |
[49] | Zhang W H, Wang R, Jing W, Xiao L Y, Shen L. The OsHKT1;1 transporter is involved in salt tolerance and regulated by an MYB-Type transcription factor[J]. Plant Physiology, 2015, 168(3): 1076-1090. |
[50] | Suzuki K, Yamaji N, Costa A, Okuma E, Kobayashi N I, Kashiwagi T, Katsuhara M, Wang C, Tanoi K, Murata Y, Schroeder J I, Ma J F, Horie T. OsHKT1;4-mediated Na(+) transport in stems contributes to Na(+) exclusion from leaf blades of rice at the reproductive growth stage upon salt stress[J]. BMC Plant Biology, 2016, 16: 22. |
[51] | Wei H, Wang X, He Y Q, Xu H, Wang L. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis[J]. The EMBO Journal, 2020: e105086. |
[52] | Amrutha R N, Sekhar P N, Varshney R K, Kishor P B K. Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.)[J]. Plant Science, 2007, 172(4): 708-721. |
[53] | Chen G, Hu Q D, Luo L, Yang T Y, Zhang S, Hu Y B, Yu L, Xu G H. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges[J]. Plant, Cell & Environment, 2015, 38(12): 2747-2765. |
[54] | Chen G, Zhang Y, Ruan B P, Guo L B, Zeng D L, Gao Z Y, Zhu L, Hu J, Ren D Y, Yu L, Xu G H, Qian Q. OsHAK1 controls the vegetative growth and panicle fertility of rice by its effect on potassium-mediated sugar metabolism[J]. Plant Science, 2018, 274: 261-270. |
[55] | El Mahi H, Perez-Hormaeche J, De Luca A, Villalta I, Espartero J, Gamez-Arjona F, Fernandez J L, Bundo M, Mendoza I, Mieulet D. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice[J]. Plant Physiology, 2019, 180(2): 1046-1065. |
[56] | Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes[J]. Planta, 2011, 233(1): 175-188. |
[57] | Liu S P, Zheng L Q, Xue Y H, Zhang Q A, Wang L, Shou H X. Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice[J]. Journal of Plant Biology, 2010, 53(6): 444-452. |
[58] | 朱晓军, 杨劲松, 梁永超, 娄运生, 杨晓英. 盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响[J]. 中国农业科学, 2004, 37(10): 1497-1503. |
Zhu X J, Yang J S, Liang Y C, Lou Y S, Yang X Y. Effects of exogenous calcium on photosynthesis and its related physiological characteristics of rice seedlings under salt stress[J]. Scientia Agricultura Sinica, 2004, 37(10): 1497-1503. (in Chinese with English abstract) | |
[59] | Asano T, Hakata M, Nakamura H, Aoki N, Komatsu S, Ichikawa H, Hirochika H, Ohsugi R. Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice[J]. Plant Molecular Biology, 2011, 75(1-2): 179-191. |
[60] | Yang J, Ji L X, Liu S, Jing P, Hu J, Jin D M, Wang L Q, Xie G S. The CaM1-associated CCaMK-MKK1/6 cascade positively affects lateral root growth via auxin signaling under salt stress in rice[J]. Journal of Experimental Botany, 2021, 72(18): 6611-6627. |
[61] | Jia W S, Wang Y Q, Zhu S Q, Zhang J H. Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots[J]. Journal of Experimental Botany, 2002, 53(378): 2201-2206. |
[62] | Park S I, Kim J J, Shin S Y, Kim Y S, Yoon H S. ASR enhances environmental stress tolerance and improves grain yield by modulating stomatal closure in rice[J]. Frontiers in Plant Science, 2019, 10: 1752. |
[63] | Zheng C K, Zhou J J, Zhang F, Yin J J, Zhou G H, Li Y P, Chen F, Xie X Z. OsABAR1, a novel GRAM domain-containing protein, confers drought and salt tolerance via an ABA-dependent pathway in rice[J]. Plant Physiology and Biochemistry, 2020, 152: 138-146. |
[64] | Ullah F, Xu Q T, Zhao Y, Zhou D X. Histone deacetylase HDA710 controls salt tolerance by regulating ABA signaling in rice[J]. Journal of Integrative Plant Biology, 2021, 63(3): 451-467. |
[65] | Zhong R L, Wang Y X, Gai R N, Xi D D, Mao C J, Ming F. Rice SnRK protein kinase OsSAPK8 acts as a positive regulator in abiotic stress responses[J]. Plant Science, 2020, 292: 110373. |
[66] | Luo C K, Guo C M, Wang W J, Wang L L, Chen L. Overexpression of a new stress-repressive gene OsDSR2 encoding a protein with a DUF966 domain increases salt and simulated drought stress sensitivities and reduces ABA sensitivity in rice[J]. Plant Cell Reports, 2014, 33(2): 323-336. |
[67] | Zhang X, Long Y, Huang J J, Xia J X. OsNAC45 is involved in ABA response and salt tolerance in rice[J]. Rice, 2020, 13(1): 79. |
[68] | Hong Y B, Zhang H J, Huang L, Li D Y, Song F M. Over-expression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice[J]. Frontiers in Plant Science, 2016, 7: 4. |
[69] | Xu N, Chu Y L, Chen H L, Li X X, Wu Q, Jin L, Wang G X, Huang J. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging[J]. PLoS Genetics, 2018, 14(10): e1007662. |
[70] | Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance[J]. Trends Plant Science, 2015, 20(4): 219-229. |
[71] | Ma S S, Gong Q Q, Bohnert H J. Dissecting salt stress pathways[J]. Journal of Experimental Botany, 2006, 57(5): 1097-1107. |
[72] | Onohata T, Gomi K. Overexpression of jasmonate-responsive OsbHLH034 in rice results in the induction of bacterial blight resistance via an increase in lignin biosynthesis[J]. Plant Cell Reports, 2020, 39(9): 1175-1184. |
[73] | Toda Y, Tanaka M, Ogawa D, Kurata K, Kurotani K I, Habu Y, Ando T, Sugimoto K, Mitsuda N, Katoh E, Abe K, Miyao A, Hirochika H, Hattori T, Takeda S. RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation[J]. The Plant Cell, 2013, 25(5): 1709-1725. |
[74] | Kurotani K I, Hayashi K, Hatanaka S, Toda Y, Ogawa D, Ichikawa H, Ishimaru Y, Tashita R, Suzuki T, Ueda M, Hattori T, Takeda S. Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice[J]. Plant Cell Physiology, 2015, 56(4): 779-789. |
[75] | Peng J Y, Li Z H, Wen X, Li W Y, Shi H, Yang L S, Zhu H Q, Guo H W. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis[J]. PLoS Genetics, 2014, 10(10): e1004664. |
[76] | Yang C, Ma B, He S J, Xiong Q, Duan K X, Yin C C, Chen H, Lu X, Chen S Y, Zhang J S. MAOHUZI6/ ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice[J]. Plant Physiology, 2015, 169(1): 148-165. |
[77] | Cheng X L, Zhang S X, Tao W C, Zhang X X, Liu J, Zhang H W, Pu L, Huang R F, Chen T. INDETERMINATE SPIKELET 1 recruits histone deacetylase and a transcriptional repression complex to regulate rice salt tolerance[J]. Plant Physiology, 2018, 178(2): 824-837. |
[78] | Zou X, Liu L, Hu Z B, Wang X K, Zhu Y C, Zhang J L, Li X F, Kang Z Y, Lin Y J, Yin C X. Salt-induced inhibition of rice seminal root growth is mediated by ethylene-jasmonate interaction[J]. Journal of Experimental Botany, 2021, 72(15): 5656-5672. |
[79] | Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan M R, Tareen A K, Khan A, Ullah A, Ullah N, Hang J L. Phytohormones and plant responses to salinity stress: A review[J]. Plant Growth Regulation, 2015, 75(2): 391-404. |
[80] | Javid M G, Sorooshzadeh A, Moradi F, Sanavy S A M M, Allahdadi I. The role of phytohormones in alleviating salt stress in crop plants[J]. Australian Journal of Crop Science, 2011, 5(6): 726-734. |
[81] | Mo W P, Tang W J, Du Y X, Jing Y J, Bu Q Y, Lin R C. Phytochrome-Interacting Factor-Like14 and Slender Rice1 interaction controls seedling growth under salt stress[J]. Plant Physiology, 2020, 184(1): 506-517. |
[82] | Wang J, Qin H, Zhou S R, Wei P C, Zhang H W, Zhou Y, Miao Y C, Huang R F. The ubiquitin-binding protein OsDSK2a mediates seedling growth and salt responses by regulating gibberellin metabolism in rice[J]. The Plant Cell, 2020, 32(2): 414-428. |
[83] | Yin W C, Xiao Y H, Niu M, Meng W J, Li L L, Zhang X X, Liu D P, Zhang G X, Qian Y W, Sun Z T, Huang R Y, Wang S P, Liu C M, Chu C C, Tong H N. ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice[J]. The Plant Cell, 2020, 32(7): 2292-2306. |
[84] | Özdemir F, Bor M, Demiral T, Türkan I. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress[J]. Plant Growth Regulation, 2004, 42(3): 203-211. |
[85] | Sharma I, Ching E, Saini S, Bhardwaj R, Pati P K. Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1[J]. Plant Physiology & Biochemistry, 2013, 69: 17-26. |
[86] | Ling F L, Su Q W, Jiang H, Cui J J, He X L, Wu Z H, Liu J, Zhao Y J. Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings[J]. Scientific Reports, 2020, 10(1): 6183. |
[87] | Wang Y W, Deng C, Ai P F, Cui X A, Zhang Z G. ALM1, encoding a Fe-superoxide dismutase, is critical for rice chloroplast biogenesis and drought stress response[J]. Crop Journal, 2021, 9(5): 1018-1029. |
[88] | Guan Q J, Liao X, He M L, Li X F, Wang Z Y, Ma H Y, Yu S, Liu S K. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress[J]. PLoS One, 2017, 12(10): e0186052. |
[89] | Hong C Y, Hsu Y T, Tsai Y C, Kao C H. Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl[J]. Journal of Experimental Botany, 2007, 58(12): 3273-3283. |
[90] | Wu T M, Lin W R, Kao C H, Hong C Y. Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice[J]. Plant Molecular Biology, 2015, 87(6): 555-564. |
[91] | Lin F M, Li S, Wang K, Tian H R, Gao J F, Zhao Q Z, Du C Q. A leucine-rich repeat receptor-like kinase, OsSTLK, modulates salt tolerance in rice[J]. Plant Science, 2020, 296: 110465. |
[92] | 刘光宇. 水稻萌发期耐盐基因OsSTG1的克隆与功能分析[D]. 北京: 中国农业大学, 2016: 37. |
Liu G Y. Cloning and functional analysis of the OsSTG1 gene for salt tolerance at the germination stage of rice (Oryza sativa L.)[D]. Beijing: China Agricultural University, 2016: 37. (in Chinese) | |
[93] | Ye N, Zhu G, Liu Y, Li Y, Zhang J. ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant and Cell Physiology 2011, 52: 689-698. |
[94] | Bose J, Rodrigo-Moreno A, Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance[J]. Journal of Experimental Botany, 2014, 65(5): 1241-1257. |
[95] | 王旭明, 赵夏夏, 陈景阳, 许江环, 周柏霖, 王盼盼, 莫素, 莫俊杰, 谢平, 周鸿凯. 盐胁迫下海水稻抗逆生理响应分析[J]. 中国生态农业学报, 2019, 27(5): 747-756. |
Wang X M, Zhao X X, Chen J Y, Xu J H, Zhou B L, Wang P P, Mo S, Mo J J, Xie P, Zhou H K. Physiological adversity resistance of sea rice to salinity stress[J]. Chinese Journal of Eco-Agriculture, 2019, 27(5): 747-756. (in Chinese with English abstract) | |
[96] | Hong C Y, Chao Y Y, Yang M Y, Cheng S Y, Cho S C, Kao C H. NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid[J]. Plant and Soil, 2009, 320(1-2): 103-115. |
[97] | Cheng X L, He Q, Tang S, Wang H R, Zhang X X, Lü M J, Liu H F, Gao Q, Zhou Y, Wang Q, Man X Y, Liu J, Huang R F, Wang H, Chen T, Liu J,. The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops[J]. New Phytologist, 2021, 230(3): 1017-1033. |
[98] | 华春, 王仁雷. 水稻幼苗叶绿体保护系统对盐胁迫的反应[J]. 西北植物学报, 2004, 24(1): 136-140. |
Hua C, Wang R L. Responses of protection system in chloroplasts of rice seedlings to salt stress[J]. Acta Botanica Boreali-occidentalia Sinica, 2004, 24(1): 136-140. (in Chinese with English abstract) | |
[99] | Platten J D, Egdane J A, Ismail A M. Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: Many sources, many genes, one mechanism?[J]. BMC Plant Biology, 2013, 13(1): 32. |
[100] | Rahman M A, Thomson M J, Shah E A M, de Ocampo M, Egdane J, Ismail A M. Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization[J]. Annals of Botany, 2016, 117(6): 1083-1097. |
[101] | 孙明法, 严国红, 王爱民, 朱国永, 唐红生, 何冲霄, 任仲玲, 刘凯, 张桂云, 施伟, 赵绍路, 孙一标, 朱静雯, 宛柏杰, 姚立生. 水稻耐盐育种研究进展[J]. 大麦与谷类科学, 2017, 34(4): 1-9. |
Sun M F, Yan G H, Wang A M, Zhu G Y, Tang H S, He C X, Ren Z L, Liu K, Zhang G Y, Shi W, Zhao S L, Sun Y B, Zhu J W, Wan B J, Yao L S. Research progress on the breeding of salt-tolerant rice varieties[J]. Barley and Cereal Sciences, 2017, 34(4): 1-9. (in Chinese) | |
[102] | 程保山, 袁彩勇, 罗伯祥, 王健, 李刚, 徐卫军. 水稻耐盐性的遗传及育种研究进展[J]. 安徽农学通报, 2016, 22(17): 45-48. |
Chen B S, Yuan C Y, Luo B X, Wang J, Li G, Xu W J. Progresses on genetics and breeding for salt-tolerance in rice[J]. Anhui Agricultural Science Bulletin, 2016, 22(17): 45-48. (in Chinese) | |
[103] | 许雷. 辽盐系列水稻新品种[J]. 农业科技通讯, 1995(2): 9. |
Xu L. The rice varieties of Liaoyan[J]. Bulletin of Agricntural Science and Technology, 1995(2): 9. (in Chinese) | |
[104] | Chen R S, Cheng Y F, Han S Y, Handel B V, Dong L, Li X M, Xie X Q. Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar-sea rice 86[J]. BMC Genomics, 2017, 18(1): 655. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||