中国水稻科学 ›› 2022, Vol. 36 ›› Issue (4): 336-347.DOI: 10.16819/j.1001-7216.2022.210902
李霞1,3, 蒋彦婕1, 陶亚军1, 李文奇1, 王芳权1, 陈智慧1, 许扬1,3, 王军1,3, 范方军1, 朱建平1, 杨杰1,3,*()
收稿日期:
2021-09-06
修回日期:
2021-11-10
出版日期:
2022-07-10
发布日期:
2022-07-12
通讯作者:
杨杰
基金资助:
LI Xia1,3, JIANG Yanjie1, TAO Yajun1, LI Wenqi1, WANG Fangquan1, CHEN Zhihui1, XU Yang1,3, WANG Jun1,3, FAN Fangjun1, ZHU Jianping1, Sreenivasulu NESE2, YANG Jie1,3,*()
Received:
2021-09-06
Revised:
2021-11-10
Online:
2022-07-10
Published:
2022-07-12
Contact:
YANG Jie
摘要:
大米是典型的淀粉丰富的食物,是全世界大多数人口尤其是亚洲人口每日主要的卡路里来源。目前水稻品种大多数属高升糖指数(全称为血糖生成指数,glycemic index, GI)水稻,会诱发由于高热量摄入而致血糖失调的健康问题。已有大量研究者在探索降低大米血糖指数的方法。本文重点对稻米升糖指数的影响因素、筛选方法、遗传基础以及遗传改良等的相关研究进行总结,并对未来的研究方向提出了一些建议。
李霞, 蒋彦婕, 陶亚军, 李文奇, 王芳权, 陈智慧, 许扬, 王军, 范方军, 朱建平, 杨杰. 低升糖指数水稻研究进展[J]. 中国水稻科学, 2022, 36(4): 336-347.
LI Xia, JIANG Yanjie, TAO Yajun, LI Wenqi, WANG Fangquan, CHEN Zhihui, XU Yang, WANG Jun, FAN Fangjun, ZHU Jianping, Sreenivasulu NESE, YANG Jie. Research Progress of Rice with Low Glycemic Index[J]. Chinese Journal OF Rice Science, 2022, 36(4): 336-347.
[1] | 范光森, 许岱, 富志磊, 许春艳, 杨然, 孙宝国, 李秀婷. 血糖生成指数研究进展[J]. 中国食品添加剂, 2016(10): 56-68. |
Fan G S, Xu D, Fu Z L, Xu C Y, Yang R, Sun B G, Li X T. Research progress of glycemic index[J]. China Food Additives, 2016(10): 56-68. (in Chinese with English abstract) | |
[2] | 缪铭, 江波, 张涛. 低血糖生成指数淀粉类衍生物的研究进展[J]. 食品科学, 2008, 29(4): 452-456. |
Miao M, Jiang B, Zhang T. Research progress of low glycemic-index starchy derivatives[J]. Food Science, 2008, 29(4): 452-456. (in Chinese with English abstract) | |
[3] | 世界卫生组织. 关于糖尿病的十个事实[J]. 中国卫生政策研究, 2013, 6(10): 35. |
World Health Organization. 10 facts about diabetes[J]. Chinese Journal Health Policy, 2013, 6(10): 35. (in Chinese) | |
[4] | Wee M S M, Henry C J. Reducing the glycemic impact of carbohydrates on foods and meals: Strategies for the food industry and consumers with special focus on Asia[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19: 670-702. |
[5] | Global Rice Science Partnership. Rice Almanac[M]. Los Baňos, Philippines: International Rice Research Institute, 2013. |
[6] | Kataoka M, Venn B J, Williams S M, Te Morenga L A, Heemels I M, Mann J I. Glycaemic responses to glucose and rice in people of Chinese and European ethnicity[J]. Diabet Medicine, 2013, 30(3): e101-e107. |
[7] | Jenkins D, Wolever T, Taylor R H, Barker H, Fielden H, Baldwin J M, Bowling A C, Newman H C, Jenkins A L, Goff D V. Glycemic index of foods: A physiological- basis for carbohydrate exchange[J]. American Journal of Clinical Nutrition, 1981, 34(3): 362-366. |
[8] | Butardo Jr V M, Sreenivasulu N. Chapter Two-tailoring grain storage reserves for a healthier rice diet and its comparative status with other cereals[J]. International Review of Cell and Molecular Biology, 2016, 323: 31-70. |
[9] | Juliano B O, Bechtel D B. The rice grain and its gross composition//Juliano B O. Rice: Chemistry and Technology[M]. American Association of Cereal Chemistry, St Paul, 1985: 17-57. |
[10] | Zhang G, Malik V S, Pan A, Kumar S, Holmes M, Spiegelman D, Lin X, Hu F B. Substituting brown rice for white rice to lower diabetes risk: A focus-group study in Chinese adults[J]. Journal of the American Dietetic Association, 2010, 110(8): 1216-1221. |
[11] | Juliano B O. Rice in Human Nutrition[M]. Rome: International Rice Research Institute in collaboration with Food and Agriculture Organization, 1993: 35-61. |
[12] | Butardo Jr V M, Sreenivasulu N, Juliano B O. Improving rice grain quality: State-of-the-art and future prospects[J]. Methods in Molecular Biology, 2019, 1892: 19-55. |
[13] | Panlasigui L N, Thompson L U. Blood glucose lowering effects of brown rice in normal and diabetic subjects[J]. International Journal of Food Sciences and Nutrition, 2006, 57(3-4): 151-158. |
[14] | Hu E A, Pan A, Malik V, Sun Q. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review[J]. British Medical Journal, 2012, 344: e1454. |
[15] | Miller J B, Pang E, Bramall L. Rice: A high or low glycemic index food?[J] American Journal of Clinical Nutrition, 1992, 56: 1034-1036. |
[16] | 王勇, 应剑, 董志忠, 任晨刚. 低升糖指数大米研究进展[J]. 生物产业技术, 2017(4): 41-47. |
Wang Y, Ying J, Dong Z Z, Ren C G. Recent development of research on low glycemic index rice[J]. Biotechnology & Business, 2017(4): 41-47. (in Chinese with English abstract) | |
[17] | Wolever T M S, Vorster H H, Björck I, Brand-Miller J, Brighenti F, Mann J I, Ramdath D D, Granfeldt Y, Holt S, Perry T L, Venter C, Wu X M. Determination of the glycemic index of foods: Interlaboratory study[J]. European Journal of Clinical Nutrition, 2003, 57(3): 475-482. |
[18] | 陈静茹, 孟庆佳, 康乐, 陈然, 王梦倩, 应剑, 王黎明, 邵丹青, 向雪松. 低血糖生成指数谷物及其制品研究进展与法规管理现状[J]. 食品工业科技, 2020, 41(18): 338-343. |
Chen J R, Meng Q J, Kang L, Chen R, Wang M Q, Ying J, Wang L M, Shao D Q, Xiang X S. Research progress and regulation status of low glycemic index grain and its products[J]. Science and Technology of Food Industry, 2020, 41(18): 338-343. (in Chinese with English abstract) | |
[19] | Shah B R, Li B, Wang L, Liu S, Li Y, Wei X, Jin W P, Li Z S. Health benefits of konjac glucomannan with special focus on diabetes[J]. Bioactive Carbohydrates and Dietary Fibre, 2015, 5: 179-187. |
[20] | 谢丽, 李烨琦, 杨艳, 杨莉琴. 糖尿病饮食治疗现状及进展[J]. 现代医药卫生, 2015, 31(1): 75-77. |
Xie L, Li Y Q, Yang Y, Yang L Q. Current situation and progress of diabetes diet treatment[J]. Journal of Mental Health, 2015, 31(1): 75-77. (in Chinese) | |
[21] | Beyer P. Golden rice and Golden crops for human nutrition[J]. New Biotechnology, 2010, 27: 478-481. |
[22] | Anacleto R, Badoni S, Parween S, Butardo V M, Misra G, Cuevas R P, Kuhlmann M, Trinidad T P, Mallillin A C, Acuin C, Bird A R, Morell M K, Sreenivasulu N. Integrating a genome-wide association study with a large-scale transcriptome analysis to predict genetic regions influencing the glycemic index and texture in rice[J]. Plant Biotechnology Journal, 2019, 17(7): 1261-1275. |
[23] | Liu G D, Gu Z B A, Hong Y, Cheng L, Li C M. Structure, functionality and applications of debranched starch: A review[J]. Trends in Food Science & Technology, 2017, 63: 70-79. |
[24] | Jenkins D J, Kendall C W, Augustin L S, Franceschi S, Hamidi M, Marchie A, Jenkins A L, Axelsen M. Glycemic index: Overview of implications in health and disease[J]. American Journal of Clinical Nutrition, 2002, 76: 266S-273S. |
[25] | Fitzgerald M A, Rahman S, Resurreccion A P, Concepcion J C, Daygon V D, Dipti S S, Kabir K A, Klingner B, Morell M K, Bird A R. Identification of a major genetic determinant of glycaemic index in rice[J]. Rice, 2011, 4: 66-74. |
[26] | 杨瑞芳, 朴钟泽, 万常照, 李钢夑, 龚长春, 白建江. 高抗性淀粉水稻新品种优糖稻2号的选育及其特征特性[J]. 中国稻米, 2020, 26(1): 94-95, 99. |
Yang R F, Piao Z Z, Wan C Z, Li G X, Gong C C, Bai J J. Breeding and characteristics of new rice variety Youtangdao 2 with high resistant starch. China Rice, 2020, 26(1): 94-95, 99. (in Chinese with English abstract) | |
[27] | Fatema K, Rahman F, Sumi N, Kobura K, Liaquat A L. Glycemic index of three common varieties of Bangladeshi rice in healthy subjects[J]. African Journal of Food Science, 2010, 4(8): 531-535. |
[28] | Kumar A, Sahoo U, Baisakha B, Okpani OK, Ngangkham U, Parameswaran C, Basak N, Kumar G, Sharma S G. Resistant starch could be decisive in determining the glycemic index of rice cultivars[J]. Journal of Cereal Science, 2018, 79: 348-353. |
[29] | King R A, Noakes M, Bird R, Morell K, Topping D L. An extruded breakfast cereal made from a high amylose barley cultivar has a low glycemic index and lower plasma insulin response than one made from a standard barley[J]. Journal of Cereal Science, 2008, 48: 526-530. |
[30] | Lee K Y, Lee H G. Comparative effects of slowly digestible and resistant starch from rice in high-fat diet-induced obese mice[J]. Food Science and Biotechnology, 2016, 25: 1443-1448. |
[31] | Harazaki T, Inoue S, Imai C, Mochizuki K, Goda T. Resistant starch improves insulin resistance and reduces adipose tissue weight and CD11c expression in rat OLETF adipose tissue[J]. Nutrition, 2014, 30: 590-595. |
[32] | Marlatt K L, White U A, Beyl R A, Peterson C M, Martin C K, Marco M L, Keenan M J, Martin R J, Aryana K J, Ravussin E. Role of resistant starch on diabetes risk factors in people with prediabetes: Design, conduct, and baseline results of the STARCH trial[J]. Contemporary Clinical Trials, 2018, 65: 99-108. |
[33] | Wang Q, Zheng Y F, Zhuang W J, Lu X, Luo X L, Zheng B D. Genome-wide transcriptional changes in type 2 diabetic mice supplemented with lotus seed resistant starch[J]. Food Chemistry, 2018, 264: 427-434. |
[34] | Fan M Z, Archbold T, Lackeyram D, Liu Q, Mine Y, Paliyath G. Consumption of guar gum and retrograded high-amylose corn resistant starch increases IL-10 abundance without affecting pro-inflammatory cytokines in the colon of pigs fed a high-fat diet[J]. Journal of Animal Science, 2012, 90: 278-280. |
[35] | Jiminez J A, Uwiera T C, Abbott D W, Uwiera R R E, Inglis G D. Impacts of resistant starch and wheat bran consumption on enteric inflammation in relation to colonic bacterial community structures and short-chain fatty acid concentrations in mice[J]. Gut Pathogens, 2016, 8: 67. |
[36] | Birt D F, Boylston T, Hendrich S, Jane J L, Hollis J, Li L, McClelland J, Moore S, Phillips G J, Rowling M, Schalinske K, Scott M P, Whitley E M. Resistant Starch: Promise for improving human health[J]. Advances in Nutrition, 2013, 4(6): 587-601. |
[37] | Fuentes-Zaragoza E, Riquelme-Navarrete M J, Sanchez-Zapata E, Perez-Alvarez J A. Resistant starch as functional ingredient: A review[J]. Food Research International, 2010, 43: 931-942. |
[38] | Dexter F. Fine structure of starch and its relationship to the organization of starch granules[J]. Journal of the Japanese Society of Starch Science, 1972, 19(1): 8-25. (in Japanese with English abstract) |
[39] | Robin J P, Mercier C, Charbonniere R, Guilbot A. Lintnerized starches gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch[J]. Cereal Chemistry, 1974, 51: 389-406. |
[40] | Gidley M J. Factors affecting the crystalline type (AC) of native starches and model compounds-a rationalization of observed effects in terms of polymorphic structures[J]. Carbohydrate Research, 1987, 161: 301-304. |
[41] | Dhital S, Butardo Jr V M, Jobling S A, Gidley M J. Rice starch granule amylolysis-Differentiating effects of particle size, morphology, thermal properties and crystalline polymorph[J]. Carbohydrate Polymers, 2015, 115: 305-316. |
[42] | Hoover R, Hughes T, Chung H J, Liu Q. Composition, molecular structure, properties, and modification of pulse starches: A review[J]. Food Research International, 2010, 43: 399-413. |
[43] | 焦桂爱, 唐绍清, 罗炬, Fitzgerald M, Roferos L T, 胡培松. 水稻抗性淀粉突变体抗性淀粉结构的比较研究[J]. 中国水稻科学, 2006, 20(6): 645-648. |
Jiao G A, Tang S Q, Luo J, Fitzgerald M, Roferos L T, Hu P S. Comparative study on resistant starch structure of resistant starch enriched rice mutants[J]. Chinese Journal of Rice Science, 2006, 20(6): 645-648. (in Chinese with English abstract) | |
[44] | Butardo Jr V M, Fitzgerald M A, Bird A R, Gidley M J, Flanagan B M, Larroque O, Resurreccion A P, Laidlaw H K, Jobling S A, Morell M K, Rahman S. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing[J]. Journal of Experimental Botany, 2011, 62(14): 4927-4941. |
[45] | Yang C Z, Shu X L, Zhang L L, Wang X Y, Zhao H J, Ma C X, Wu D X. Starch properties of mutant rice high in resistant starch[J]. Journal of Agricultural and Food Chemistry, 2006, 54(2): 523-528. |
[46] | Butardo Jr V M, Anacleto R, Parween S, Samson I, de Guzman K, Alhambra C M, Misra G, Sreenivasulu N. Systems genetics identifies a novel regulatory domain of amylose synthesis[J]. Plant Physiology, 2017, 173: 887-906. |
[47] | Fredriksson H, Silverio J, Andersson R, Eliasson A C, Aman P. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches[J]. Carbohydrate Polymers, 1998, 35: 119-134. |
[48] | Jane J, Chen Y Y, Lee L F, McPherson A E, Wong K S, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch[J]. Cereal Chemistry, 1999, 76(5): 629-637. |
[49] | Shu X L, Jiao G A, Fitzgerald M A, Yang C Z, Shu Q Y, Wu D X. Starch structure and digestibility of rice high in resistant starch[J]. Starch/Stärke, 2006, 58: 411-417. |
[50] | Takeda Y, Hizukuri S, Juliano B O. Structures of rice amylopectins with low and high affinities for iodine[J]. Carbohydrate Research, 1987, 168: 79-88. |
[51] | Ye J P, Hu X T, Luo S J, McClements D J, Liang L, Liu C M. Effect of endogenous proteins and lipids on starch digestibility in rice flour[J]. Food Research International, 2018, 106: 404-409. |
[52] | Pletsch E A, Hamaker B R, Brown rice compared to white rice slows gastric emptying in humans[J]. European Journal of Clinical Nutrition, 2018, 72(3) 367-373. |
[53] | Kim Y, Keogh J B, Clifton P M. Polyphenols and glycemic control[J]. Nutrients, 2016, 8: 17. |
[54] | Toutounji M R, Farahnaky A, Santhakumar A B, Oli P, Butardo Jr V M, Blanchard C L. Intrinsic and extrinsic factors affecting rice starch digestibility[J]. Trends in Food Science and Technology, 2019, 88: 10-22. |
[55] | De Guzman M K, Parween S, Butardo V M, Alhambra C M, Anacleto R, Seiler C, Bird A R, Chow C P, Sreenivasulu N. Investigating glycemic potential of rice by unraveling compositional variations in mature grain and starch mobilization patterns during seed germination[J]. Scientific Reports, 2017, 7(1): 5854. |
[56] | Barclay A W, Petocz P, McMillan-Price J, Flood V M, Prvan T, Mitchell P, Brand-Miller J C. Glycemic index, glycemic load, and chronic disease risk--a meta-analysis of observational studies[J]. The American Journal of Clinical Nutrition, 2008, 87: 627-637. |
[57] | ISO. Food products-Determination of the glycemic index (GI) and recommendation for food classification:ISO 26642 [S]. Geneva, Switzerland: ISO, 2010. |
[58] | 中华人民共和国国家卫生健康委员会. 食物血糖生成指数测定方法: WS /T 652-2019 [S]. 北京: 中国标准出版社, 2019. |
National Health Commission of the People’s Republic of China. Standard for determination of food glycemic index: WS /T 652-2019 [S]. Beijing: China Standard Press, 2019. (in Chinese) | |
[59] | Woolnough J W, Monro J A, Brennan C S, Bird A R. Simulating human carbohydrate digestion in vitro: A review of methods and the need for standardization. International Journal of Food Science & Technology, 2008, 43, 2245-2256. |
[60] | Kim J C, Kim J I, Kong Y W, Kang M J, Kim M J, Cha I J. Influence of the physical form of processed rice products on the enzymatic hydrolysis of rice starch in vitro and on the postprandial glucose and insulin responses in patients with type 2 diabetes mellitus[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68: 1831-1836. |
[61] | Hur S J, Lim B O, Decker E A, McClements D J. In vitro human digestion models for food applications[J]. Food Chemistry, 2011 125: 1-12. |
[62] | Englyst H N, Kingman S M, Cummings J H. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition, 1992, 46: S33-S50. |
[63] | Goñi I, Garcia-Alonso A, Saura-Calixto F. A starch hydrolysis procedure to estimate glycemic index[J]. Nutrition Research, 1997, 17: 427-437. |
[64] | Venn B J, Kataoka M, Mann J. The use of different reference foods in determining the glycemic index of starchy and non-starchy test foods[J]. Nutrition Journal, 2014, 13: 50. |
[65] | Atkinson F S, Foster-Powell K, Brand-Miller J C. International tables of glycemic index and glycemic load values: 2008[J]. Diabetes Care, 2008, 31: 2281-2283. |
[66] | Rathinasabapathi P, Purushothaman N, Ramprasad V, Parani M. Whole genome sequencing and analysis of Swarna, a widely cultivated indica rice variety with low glycemic index[J]. Scientific Reports, 2015, 5(1): 11303. |
[67] | Hu P S, Zhao H J, Duan Z Y, Zhang L L, Wu D X. Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents[J]. Journal of Cereal Science, 2004, 40(3): 231-237. |
[68] | Deepa G, Singh V, Naidu K A. A comparative study on starch digestibility, glycemic index and resistant starch of pigmented (‘Njavara’ and ‘Jyothi’) and a non-pigmented (‘IR 64’) rice varieties[J]. Journal of Food Science and Technology, 2010, 47: 644-649. |
[69] | Chung H J, Liu Q, Huang R L, Yin Y L, Li A K. Physicochemical properties and in vitro starch digestibility of cooked rice from commercially available cultivars in Canada[J]. Cereal Chemistry, 2010, 87: 297-304. |
[70] | Sumczynski D, Bubelova Z, Fisera M. Determination of chemical, insoluble dietary fibre, neutral-detergent fibre and in vitro digestibility in rice types commercialized in Czech markets[J]. Journal of Food Composition and Analysis, 2015, 40: 8-13. |
[71] | Fernandes J M, Madalena D A, Pinheiro A C, Vicente A A. Rice in vitro digestion: application of INFOGEST harmonized protocol for glycemic index determination and starch morphological study[J]. Journal of Food Science and Technology, 2020, 57(4): 1393-1404. |
[72] | Toutounji M R, Farahnaky A, Santhakumar A B, Oli P, Butardo Jr V M, Blanchard C L. Intrinsic and extrinsic factors affecting rice starch digestibility[J]. Trends in Food Science and Technology, 2019, 88: 10-22. |
[73] | Selvaraj R, Singh A K, Singh V K, Abbai R, Habde S V, Singh U M, Kumar A. Superior haplotypes towards development of low glycemic index rice with preferred grain and cooking quality[J]. Scientific Reports, 2021, 11: 10082. https://doi.org/10.1038/s41598-021-87964-8. |
[74] | Kharabian-Masouleh A, Waters D L, Reinke R F, Ward R, Henry R J. SNP in starch biosynthesis genes associated with nutritional and functional properties of rice[J]. Scientific Reports, 2012, 2(8): 2016-2016. |
[75] | Yang R, Bai J, Fang J, Wang Y, Lee G, Piao Z. A single amino acid mutation of OsSBEIIb contributes to resistant starch accumulation in rice[J]. Breeding Science, 2016, 66(4): 481-489. DOI: 10.1270/jsbbs.16037 |
[76] | 孙春龙, 白建江, 施标, 朱辉明, 孙志敏, 朴钟泽, 都兴林. 水稻抗性淀粉含量性状含量的配合力分析[J]. 中国农学通报, 2012, 28(12): 24-28. |
Sun C L, Bai J J, Shi B, Zhu H M, Sun Z M, Piao Z Z, Du X L. Analysis on combining ability of resistant starch content in rice grain[J]. Chinese Agricultural Science Bulletin, 2012, 28(12): 24-28. (in Chinese with English abstract) | |
[77] | Baysal C, He W, Drapal M, Villorbina G, Medina V, Capell T, Khush G S, Zhu C, Fraser P D, Christou P. Inactivation of rice starch branching enzyme IIb triggers broad and unexpected changes in metabolism by transcriptional reprogramming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(42): 26503-26512. |
[78] | Lin L S, Zhang L, Cai X L, Liu Q Q, Zhang C Q, Wei C X. The relationship between enzyme hydrolysis and the components of rice starches with the same genetic background and amylopectin structure but different amylose contents[J]. Food Hydrocolloids, 2018, 84: 406-413. https://doi.org/10.1016/j.foodhyd.2018.06.029. |
[79] | Wani A A, Singh P, Shah M A. Rice starch diversity: Effects on structural, morphological, thermal, and physicochemical properties[J]. Comprehensive Reviews in Food Science and Food Safety, 2012, 11: 417-436. |
[80] | Huang L C, Li Q F, Zhang C Q, Chu R, Gu Z W, Tan H Y, Zhao D S, Fan XL, Liu Q Q. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18: 2164-2166 |
[81] | Biselli C, Cavalluzzo D, Perrini R, Gianinetti A, Bagnaresi P, Urso S, Orasen G, Desiderio F, Lupotto E, Cattivelli L, Valè G. Improvement of marker-based predictability of apparent amylose content in japonica rice through GBSSI allele mining[J]. Rice, 2014, 7(1): 1-18. |
[82] | Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano H Y, Suzuki Y, Sano Y. Allelic diversification at the wx locus in landraces of Asian rice[J]. Theoretical and Applied Genetics, 2008, 116(7): 979-989. |
[83] | Hoai T T T, Matsusaka H, Toyosawa Y, Suu T D, Satoh H, Kumamaru T. Influence of single-nucleotide polymorphisms in the gene encoding granule-bound starch synthase I on amylose content in Vietnamese rice cultivars[J]. Breeding Science, 2014, 64: 142-148. |
[84] | Zeng D C, Liu T L, Ma X L, Wang B, Zheng Z Y, Zhang Y L, Xie X R, Yang B W, Zhao Z, Zhu Q L, Liu Y G. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice[J]. Plant Biotechnology Journal, 2020, 18: 2385-2387. |
[85] | Zhou Z K, Robards K, Helliwell S, Blanchard C. Composition and functional properties of rice. Journal of Food Science and Technology, 2002, 37: 849-868. |
[86] | Bao J S, Zhou X, Xu F F, He Q, Park Y J. Genome-wide association study of the resistant starch content in rice grains[J]. Starch/Stärke, 2017, 69(7-8): 1600343. |
[87] | 魏明亮, 杜娟, 曾亚文, 杨树明, 普晓英, 杨涛. 云南稻微核心种质及其回交高代糙米功能成分含量的遗传变异. 湖南农业大学学报: 自然科学版, 2013, 39(2): 121-126. |
Wei M L, Du J, Zeng Y W, Yang S M, Pu X Y, Yang T. Genetic variation of functional components in brown rice of mini core collection of Yunnan landrace rice and its advanced backcross lines[J]. Journal of Hunan Agricultural University: Natural Sciences, 2013, 39(2): 121-126. (in Chinese with English abstract) | |
[88] | Raja R B, Agasimani S, Jaiswal S, Thiruvengadam V, Sabariappan R, Chibbar R N, Ram S G. EcoTILLING by sequencing reveals polymorphisms in genes encoding starch synthases that are associated with low glycemic response in rice[J]. BMC Plant Biology, 2017, 17: 13. DOI 10.1186/s12870-016-0968-0 |
[89] | Zhou H J, Wang L J, Liu G F, Meng X B, Jing Y H, Shu X L, Kong X L, Sun J, Yu H, Smitha S M, Wu D X, Li J Y. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12844-12849. |
[90] | 杨树明, 夏小环, 赵旭, 方晓东, 杜娟, 曾亚文, 普晓英, 杨涛, 彭潞波. 不同基因型粳稻籽粒产量与功能成分的生态变异. 湖南农业大学学报: 自然科学版, 2012, 38(5): 464-471. |
Yang S M, Xia X H, Zhao X, Fang X D, Du J, Zeng Y W, Pu X Y, Yang T, Peng L B. Ecological variations in yield and functional components in different genotypes of japonica rice[J]. Journal of Hunan Agricultural University: Natural Sciences, 2012, 38(5) : 464-471. (in Chinese with English abstract) | |
[91] | 牟方贵, 闫宗武, 冉瑞林, 滕建勋, 陈永波, 杨朝柱, 李明辉, 吴殿星. 水稻抗性淀粉相关SSR标记的初步研究. 分子植物育种, 2008, 6(3): 432-438. |
Mou F G, Yan Z W, Ran R L, Teng J X, Chen Y B, Yang C Z, Li M G, Wu D X. Preliminary studies on resistant starch-linked SSR marker in rice[J]. Molecular Plant Breeding, 2008, 6(3): 432-438. (in Chinese with English abstract) | |
[92] | 罗曦, 黄锦峰, 朱永生, 谢鸿光, 吴方喜, 张木清, 张建福, 谢华安. 水稻功米3号高抗性淀粉性状的遗传分析. 农业生物技术学报, 2014, 22(1): 10-16. |
Luo X, Huang J F, Zhu Y S, Xie H G, Wu F X, Zhang M Q, Zhang J S, Xie H A. Genetic analysis of high resistant starch characteristics for rice variety Gongmi 3(Oryza sativa ssp. indica)[J]. Journal of Agricultural Biotechnology, 2014, 22(1): 10-16. (in Chinese with English abstract) | |
[93] | Yang R, Sun C, Bai J, Luo Z, Shi B, Zhang J, Yan W, Piao Z. A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L.)[J]. PloS One, 2012, 7: e43026. |
[94] | Kumar A, Sahoo U, Baisakha B, Okpani O K, Ngangkham U, Parameswaran C, Basak N, Kumar G, Sharma S G. Resistant starch could be decisive in determining the glycemic index of rice cultivars[J]. Journal of Cereal Sciences, 2018, 79: 348-353. |
[95] | Zhu F. Interactions between starch and phenolic compound[J]. Trends in Food Science & Technology, 2015, 43(2), 129-143. |
[96] | Chusak C, Pasukamonset P, Chantarasinlapin P, Adisakwattana S, Glycemia P, Insulinemia, and antioxidant status in healthy subjects after ingestion of bread made from anthocyanin-rich Riceberry Rice[J]. Nutrients, 2020, 12: 782. DOI: 10.3390/nu12030782 |
[97] | Parween S, Anonuevo J J, Butardo V M, Misra G, Anacleto R, Llorente C, Kosik O, Romero M V, Bandonill E H, Mendioro M S, Lovegrove A, Fernie A R, Brotman Y, Sreenivasulu N. Balancing the double-edged sword effect of increased resistant starch content and its impact on rice texture: Its genetics and molecular physiological mechanisms[J]. Plant Biotechnology Journal, 2020, 18(8): 1763-1777. |
[98] | 吴伟, 刘成梅, 李俶, 刘伟, 万婕, 徐雨佳. 高膳食纤维营养强化大米的制备研究. 食品科学, 2009, 30: 76-80. |
Wu W, Liu C M, Li T, Liu W, Wan J, Xu Y J. Preparation of nutritional rice fortified with dietary fiber[J]. Food Science, 2009, 30: 76-80. (in Chinese with English abstract) | |
[99] | Liu D, Wang W, Cai X. Modulation of amylose content by structure-based modification of OsGBSS1 activity in rice (Oryza sativa L.)[J]. Plant Biotechnology Journal, 2014, 12: 1297-1307 |
[100] | Zhang C Q, Yang Y, Chen S J, Liu X J, Zhu J H, Zhou L H, Lu Y, Li Q F, Fan X L, Tang S Z, Gu M H, Liu Q Q. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 20202021, 63(5):889-901 |
[101] | Zhang J S, Zhang H, Botella J R, Zhu J K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties[J]. Journal of Integrative Plant Biology, 2018, 60: 369-375. DOI: 10.1111/jipb.12620 |
[102] | Shu X, Xu J, Wang Y, Rasmussen S K, Wu D. Effects of gamma irradiation on starch digestibility of rice with different resistant starch content[J]. International Journal of Food Science & Technology, 2013, 48(1): 35-43. https://doi.org/10.1111/j.1365-2621. 2012.03154. |
[103] | Park J, Oh S W, Chung H J, Park H J. Structural and physicochemical properties of native starches and non-digestible starch residues from Korean rice cultivars with different amylose contents[J]. Food Hydrocolloids, 2020, 102: 105544. |
[104] | 沈伟桥, 舒小丽, 张琳琳, 夏英武, 吴殿星. 加工型功能早籼稻新品种浙辐201 的选育与特性[J]. 核农学报, 2006, 20(4) : 312-314. |
Shen W Q, Shu X L, Zhang L L, Xia Y W, Wu DX. Development and characteristics of processing- functional indica early rice cultivar “Zhefu 201”[J]. Journal of Nuclear Agricultural Sciences, 2006, 20(4) : 312-314. (in Chinese with English abstract) | |
[105] | 杨朝柱, 李春寿, 舒小丽, 张志转, 张磊, 赵海军, 马传喜, 吴殿星. 富含抗性淀粉水稻突变体的淀粉特性[J]. 中国水稻科学, 2005, 19(6): 516-520. |
Yang C Z, Li C S, Shu X L, Zhang Z Z, Zhang L, Zhao H J, Ma C X, Wu D X. Starch properties of rice mutant enriched with resistant starch[J]. Chinese Journal of Rice Science, 2005, 19(6): 516-520. (in Chinese with English abstract) | |
[106] | 林静, 孙宝霞, 方先文, 王艳平, 张所兵, 汪迎节. 富含抗性淀粉稻米淀粉特性研究[J]. 华北农学报, 2013, 28(1): 58-61. |
Lin J, Sun B X, Fang X W, Wang Y P, Zhang S B, Wang Y J. Starch properties of rice enriched with resistant starch[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(1): 58-61. (in Chinese with English abstract) | |
[107] | 田亲亲, 陆长梅, 刘小龙, 李霞, 魏晓东, 方先文, 张所兵, 宗寿余, ‘扎西玛’与‘南粳46’籼粳杂交F1花药培养及再生体系的建立[J]. 西北农业学报, 2014, 23(6): 88-95. |
Tian Q Q, Lu C M, Liu X L, Li X, Wei X D, Fang X W, Zhang S B, Zong S Y. Anther culture of hybrid F1 of indica and japonica varieties ‘Zaxima’/‘Nanjing 46’[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(6): 88-95. (in Chinese with English abstract) | |
[108] | 杨树明, 曾亚文, 王江民, 杜娟, 普晓英, 杨涛, 王雨辰, 普正贵, 方晓东, 粳型水稻高钙新品系功米1号的选育与营养评价[J]. 西南农业学报, 2008, 21(6): 1515-1518. |
Yang S M, Zeng Y W, Wang J M, Du J, Pu X Y, Yang T, Wang Y C, Pu Z G, Fang X D. Breeding and nutrient valuation on japonica rice strain Gongmi 1 with high Ca content[J]. Southwest China Journal of Agricultural Sciences, 2008, 21(6): 1515-1518. (in Chinese with English abstract) | |
[109] | Sun Y W, Jiao G A, Liu Z P, Zhang X, Li J Y, Guo X P, Du W M, Du J L, Francis F, Zhao Y D, Xia LQ. Generation of high-amylose rice through CRISPR/Cas9- mediated targeted mutagenesis of starch branching enzymes[J]. Frontiers in Plant Science, 2017, 8: 298. https://doi.org/10.3389/fpls.2017.00298 |
[110] | 白建江, 张建明, 朴钟泽, 方军, 李刚燮, 王亚, 杨瑞芳. 应用CRISPR/Cas9系统编辑水稻SBE3基因获得高抗性淀粉水稻新品系[J]. 分子植物育种, 2018, 16(5): 1510-1516. |
Bai J J, Zhang J M, Piao Z Z, Fang J, Li G X, Wang Y, Yang R F. 9 system[J]. Molecular Plant Breeding, 2018, 16(5): 1510-1516. (in Chinese with English abstract) | |
[111] | Jukanti A K, Pautong P A, Liu Q Q, Sreenivasulu N. Low glycemic index rice-a desired trait in starchy staples[J]. Trends in Food Science and Technology, 2020, 106: 132-149. https://doi.org/10.1016/j.tifs.2020.10.006 |
[112] | 魏霞, 徐延浩, 丁保淼, 王容, 胡倩文, 张文英. 抗性淀粉及其遗传改良研究进展[J]. 长江大学学报: 自然科学版), 2019, 16(8): 101-107. |
Wei X, Xu Y H, Ding B M, Wamg R, Hu Q W, Zhang W Y. Research progress of resistant starch and its genetic improvement[J]. Journal of Yangtze University: Natural Science Edition, 2019, 16(8): 101-107. (in Chinese) | |
[113] | Swamy H K M, Anila M, Kale R R, Rekha G, Bhadana V P, Anantha M S, Brajendra P, Balachiranjeevi C H, Hajira S K, Prasanna B L, Pranathi K, Dilip T, Kousik M B V N, Harika G, Surekha K, Kumar R M, Cheralu C, Shankar V G, Laha G S, Prasad M S, Rao L V S, Madhav M S, Balachandran S M, Sundaram R M. Marker assisted improvement of low soil phosphorus tolerance in the bacterial blight resistant, fine-grain type rice variety, Improved Samba Mahsuri[J]. Scientific Reports, 2020, 10: 21143. |
[114] | Kim D Y, Kim Y, Lim H. Glycemic indices and glycemic loads of common Korean carbohydrate-rich foods[J]. British Journal of Nutrition, 2019, 121(4): 416-425. |
[115] | Tripathy S K, Maharana M, Ithape D M, Mohanty M R, Dash A P, Reshmi R K R, Ganik N, Panda S. An insight into the glycemic index of rice[J]. Molecular Plant Breeding, 2016, 7(30): 1-6. |
[116] | 胡时开, 胡培松. 功能稻米研究现状与展望[J]. 中国水稻科学, 2021, 35(4): 311-325. |
Hu S K, Hu P S. Research progress and prospect of functional rice[J]. Chinese Journal of Rice Science, 35(4): 311-325. (in Chinese with English abstract) | |
[117] | 魏兴华. 我国水稻品种资源研究进展与展望[J]. 中国稻米, 2019, 25(5): 8-11. |
Wei X H. Progress and prospect of rice germplasm research in China[J]. China Rice, 2019, 25(5): 8-11. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 肖正午, 方升亮, 曹威, 胡丽琴, 黎星, 解嘉鑫, 廖成静, 康玉灵, 胡玉萍, 张珂骞, 曹放波, 陈佳娜, 黄敏. 米粉质构特性与稻米理化性状的关系[J]. 中国水稻科学, 2024, 38(3): 316-323. |
[14] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[15] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||