中国水稻科学 ›› 2022, Vol. 36 ›› Issue (5): 476-486.DOI: 10.16819/j.1001-7216.2022.210813
朱春权1,#, 魏倩倩1,2,#, 党彩霞3, 黄晶1, 徐青山1, 潘林1, 朱练峰1, 曹小闯1, 孔亚丽1, 项兴佳2, 刘佳4, 金千瑜1, 张均华1()
收稿日期:
2021-08-27
修回日期:
2022-01-22
出版日期:
2022-09-10
发布日期:
2022-09-09
通讯作者:
张均华
作者简介:
#共同第一作者
基金资助:
ZHU Chunquan1,#, WEI Qianqian1,2,#, DANG Caixia3, HUANG Jing1, XU Qingshan1, PAN Lin1, ZHU Lianfeng1, CAO Xiaochuang1, KONG Yali1, XIANG Xingjia2, LIU Jia4, JIN Qianyu1, ZHANG Junhua1()
Received:
2021-08-27
Revised:
2022-01-22
Online:
2022-09-10
Published:
2022-09-09
Contact:
ZHANG Junhua
About author:
#These authors contributed equally to the work
摘要:
【目的】深入剖析水杨酸调控水稻低磷胁迫响应的生理与分子机制具有重要意义。【方法】选取常规水稻品种日本晴,外源添加水杨酸后测定水稻体内总磷含量、酸性磷酸酶活性、木质部汁液磷含量、水稻根系特征参数、磷转运子基因表达水平和一氧化氮含量等指标解析水杨酸缓解水稻缺磷胁迫的生理和分子机制。【结果】1)水杨酸对水稻磷吸收的调控存在剂量效应,1 μmol/L水杨酸显著提高低磷条件下水稻体内总磷含量,5 μmol/L水杨酸则降低水稻体内总磷含量。2)低磷条件下,1 μmol/L水杨酸使酸性磷酸酶活性提高了11.35%,根系总长增加了20.90%,根系表面积增加11.86%,根系体积增加了15.38%,总根数增加了23.55%,木质部汁液中的磷含量提高了22.67%。同时,1 μmol/L水杨酸提高了水稻根系磷转运子基因的表达,从而提高水稻对外界磷的吸收和体内磷的转运。3)水杨酸通过提高硝酸还原酶的活性增加水稻根系的一氧化氮含量,从而通过调控磷转运子基因的表达提高低磷条件下水稻对外界磷的吸收。【结论】水杨酸与信号分子一氧化氮互作缓解低磷胁迫。
朱春权, 魏倩倩, 党彩霞, 黄晶, 徐青山, 潘林, 朱练峰, 曹小闯, 孔亚丽, 项兴佳, 刘佳, 金千瑜, 张均华. 水杨酸通过一氧化氮途径调控水稻缓解低磷胁迫[J]. 中国水稻科学, 2022, 36(5): 476-486.
ZHU Chunquan, WEI Qianqian, DANG Caixia, HUANG Jing, XU Qingshan, PAN Lin, ZHU Lianfeng, CAO Xiaochuang, KONG Yali, XIANG Xingjia, LIU Jia, JIN Qianyu, ZHANG Junhua. Salicylic Acid Alleviates Low Phosphorus Stress in Rice via a Nitric Oxide-dependent Manner[J]. Chinese Journal OF Rice Science, 2022, 36(5): 476-486.
图 1 低磷和正常磷条件下水稻根部(A)和地上部(B)的总磷含量 数据用均值±标准差(n = 4)表示。不同的大小写字母代表处理间差异分别在P < 0.01和P < 0.05 水平上显著。P-180 mmol/L;LP-18 mmol/L。
Fig. 1. P contents in roots(A) and shoots (B) under low and normal P levels. Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L.
图2 不同浓度外源水杨酸处理下水稻水杨酸含量和苯丙氨酸解氨酶活性 数据用均值±标准差(n = 4)表示。不同的大小写字母代表处理间差异分别在P < 0.01和P < 0.05 水平上显著。P-180 mmol/L;LP-18 mmol/L。
Fig. 2. Salicylic acid content and phenylalanine ammonia lyase activity under different exogenous salicylic acid levels. Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L.
处理 Treatment | 总根长 Total length/cm | 表面积 Surface area/cm2 | 平均直径 Average diameter/mm | 根系总体积 Root volume/cm3 | 总根尖数 Number of root tips |
---|---|---|---|---|---|
P | 155.99±13.28 c | 14.45±0.97 c | 0.30±0.01 a | 0.11±0.01 c | 745.8±60.3 c |
P+SA | 228.63±18.25 b | 21.00±1.00 ab | 0.28±0.02 a | 0.15±0.01 a | 1034.0±87.6 ab |
LP | 208.66±17.94 b | 20.06±0.84 b | 0.30±0.03 a | 0.13±0.03 b | 1183.8±181.2 b |
LP+SA | 252.27±15.07 a | 22.44±0.54 a | 0.29±0.01 a | 0.15±0.01 a | 1462.5±126.5 a |
表1 水稻根系发育相关指标
Table 1. Indicators associated with rice root development.
处理 Treatment | 总根长 Total length/cm | 表面积 Surface area/cm2 | 平均直径 Average diameter/mm | 根系总体积 Root volume/cm3 | 总根尖数 Number of root tips |
---|---|---|---|---|---|
P | 155.99±13.28 c | 14.45±0.97 c | 0.30±0.01 a | 0.11±0.01 c | 745.8±60.3 c |
P+SA | 228.63±18.25 b | 21.00±1.00 ab | 0.28±0.02 a | 0.15±0.01 a | 1034.0±87.6 ab |
LP | 208.66±17.94 b | 20.06±0.84 b | 0.30±0.03 a | 0.13±0.03 b | 1183.8±181.2 b |
LP+SA | 252.27±15.07 a | 22.44±0.54 a | 0.29±0.01 a | 0.15±0.01 a | 1462.5±126.5 a |
图3 水稻的表型和根部酸性磷酸酶活性和木质部汁液磷含量 数据用均值±标准差(n = 4)表示。不同的大小写字母代表处理间差异分别在P < 0.01和P < 0.05 水平上显著。P-180 mmol/L;LP-18 mmol/L;SA-1 μmol/L水杨酸。
Fig. 3. Phenotype of rice, acid phosphatase activity in rice roots and xylem P concentration. Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L; SA,1 μmol/L salicylic acid.
图4 水稻磷转运相关基因的表达 数据用均值±标准差(n = 4)表示。不同的大小写字母代表处理间差异分别在P < 0.01和P < 0.05 水平上显著。P-180 mmol/L;LP-18 mmol/L。
Fig. 4. Relative expression levels of P transporter genes. Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L.
图5 水稻根尖一氧化氮荧光(A)、荧光强度(B)、硝酸还原酶活性(C)和一氧化氮合酶相对活性(D) 数据用均值±标准差(n = 4)表示。不同的小写字母代表处理间差异在 P < 0.05 水平上显著。P-180 mmol/L;LP-18 mmol/L;SA-1 μmol/L水杨酸。
Fig. 5. Nitric oxide fluorescence (A), fluorescence intensity (B), NR activity (C), and relative NOS activity (D). Mean±SD(n=4). Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L; SA, 1 μmol/L salicylic acid.
图6 添加c-PTIO后水稻根部(A)和地上部(B)的总磷含量 数据用均值±标准差(n = 4)表示。不同大小写字母代表处理间差异分别在P < 0.01和P < 0.05水平上显著。P-180 mmol/L;LP-18 mmol/L;SA-1 μmol/L;cPTIO-1 μmol/L。
Fig. 6. Total P content of rice roots (A) and shoots (B) after c-PTIO application. Mean±SD(n=4). Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L; SA, 1 μmol/L; cPTIO, 1 μmol/L.
图7 添加1 μmol/L c-PTIO后水稻根部水杨酸含量 数据用均值±标准差(n = 4)表示。不同大小写字母代表处理间差异分别在 P < 0.01和P < 0.05 水平上显著。P-180 mmol/L;LP-18 mmol/L;SA-1 μmol/L;cPTIO-1 μmol/L。
Fig. 7. Salicylic acid content of rice roots after 1 μmol/L c-PTIO application. Mean±SD(n=4). Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L; SA, 1 μmol/L salicylic acid; CP, 1 μmol/L cPTIO.
图8 添加1 μmol/L c-PTIO后水稻根部硝酸还原酶活性 数据用均值±标准差(n = 4)表示。不同的小写字母代表处理间差异在 P < 0.05 水平上显著。P-180 mmol/L,LP-18 mmol/L;SA-1 μmol/L;cPTIO-1 μmol/L。
Fig. 8. NR activity of rice roots after 1 μmol/L c-PTIO application. Mean±SD(n=4). Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L, LP, 18 mmol/L; SA, 1 μmol/L salicylic acid; CP, 1 μmol/L cPTIO.
图9 水稻磷转运相关基因的表达 数据用均值±标准差(n = 4)表示。不同小写字母代表处理间差异在 P < 0.05 水平上显著。P-180 mmol/L; LP-18 mmol/L; SA-1 μmol/L水杨酸;CP-cPTIO,1 μmol/L。
Fig. 9. Relative expression levels of P transporter genes. Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L; SA, 1 μmol/L salicylic acid; CP, 1 μmol/L cPTIO.
[1] | 朱春权, 曹小闯, 朱练峰, 白志刚, 黄洁, 梁清铎, 金千瑜, 张均华. 硫化氢提高水稻磷吸收转运的生理和分子机制[J]. 中国水稻科学, 2019, 33(6): 532-540. |
Zhu C Q, Cao X C, Zhu L F, Bai Z G, Huang J, Liang Q D, Jin Q Y, Zhang J H. Physiological and molecular mechanisms of hydrogen sulfide enhancing phosphorus absorption and transportation in rice[J]. Chinese Journal of Rice Science, 2019, 33(6): 532-540. (in Chinese with English abstract) | |
[2] | 郎印海. 缺磷胁迫下植物应激反应初步研究及应激物质的诱导、提取分离[D]. 泰安: 山东农业大学, 2000. |
Lang Y H. Preliminary study on plants response to phosphorus deficiency stress and the extraction and separation of stress induction substances[D]. Tai’an: Shandong Agricultural University, 2000. | |
[3] | 张海伟, 黄宇, 叶祥盛, 徐芳森. 低磷胁迫下甘蓝型油菜酸性磷酸酶对磷效率的贡献分析[J]. 中国科学: C辑, 2010, 40(5): 418-427. |
Zhang H W, Huang Y, Ye X S, Xu F S. Contribution analysis of phosphorus efficiency for acid phosphatase in Brassica napus L. under low phosphorus stress[J]. Scientia Sinica Vitae, 2010, 40(5): 418-427. (in Chinese) | |
[4] | 李立芹. 植物低磷胁迫适应机制的研究进展[J]. 生物学通报, 2011, 46(2): 13-16. |
Li L Q. Advances in the mechanism of plant adapt to low phosphorus stress[J]. Bulletin of Biology, 2011, 46(2): 13-16. (in Chinese) | |
[5] | 李锋, 潘晓华. 植物适应缺磷胁迫的根系形态及生理特征研究进展[J]. 中国农学通报, 2002, 18(5): 65-69, 76. |
Li F, Pan X H. The research development of morphological and physiological characteristics of plant root system under phosphorus deficiency[J]. Chinese Agricultural Science Bulletin, 2002, 18(5): 65-69, 76. (in Chinese with English abstract) | |
[6] | Plaxton W C, Carswell M C. Metabolic aspects of the phosphate starvation response in plants. Plant responses to environmental stresses: From phytohormones to genome reorganization Marcel Dekker, New York: 1999, 349-372. |
[7] | Zhu X F, Wang Z W, Wan J X, Sun Y, Wu Y R, Li G X, Shen R F, Zheng S J. Pectin enhances rice (Oryza sativa) root phosphorus remobilization[J]. Journal of Experimental Botany, 2015, 66(3): 1017-1024. |
[8] | Yu B, Xu C, Benning C. Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth[J]. Proceedings of the National Academy of Sciences, 2002, 99(8): 5732-5737. |
[9] | Bandurska H. An update on biosynthesis and action in plant response to water deficit and performance under drought[C]// Hayat S, Ahmad A, Alyemeni M N. Salicylic Acid, Springer, 2013: 1-14. |
[10] | Yusuf M, Hayat S, Alyemeni M N, Fariduddin Q, Ahmad A. Salicylic acid: Physiological roles in plants[C]// Hayat S, Ahmad A, Alyemeni M N. Salicylic Acid, Springer, 2013: 15-30. |
[11] | Pancheva T V, Popova L P, Uzunova A N. Effects of salicylic acid on growth and photosynthesis in barley plants[J]. Journal of Plant Physiology, 1996, 149(1-2): 57-63. |
[12] | Pancheva T V, Popova L P. Effect of salicylic acid on the synthesis of ribulose-1, 5-bisphosphate carboxylase/ oxygenase in barley leaves[J]. Journal of Plant Physiology, 1998, 152(4): 381-386. |
[13] | 张永福, 黄鹤平, 彭声静, 任禛, 陈泽斌, 刘佳妮, 陈瑞. 铝胁迫下水杨酸对水晶葡萄植株生长及营养积累的影响[J]. 中外葡萄与葡萄酒, 2015(2): 10-15. |
Zhang Y F, Huang H P, Peng S J, Ren C, Chen Z B, Liu J N, Chen R. Effects of salicylic acid on growth and nutrition accumulation of Shuijing seedling under aluminum stress[J]. Sino-Overseas Grapevine & Wine, 2015(2): 10-15. (in Chinese with English abstract) | |
[14] | Janda T, Szalai G, Tari I, Páldi E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants[J]. Planta, 1999, 208(8): 175-180. |
[15] | Tasgin E, Attici O, Nalbantoglu B. Effect of salicylic acid and cold on freezing tolerance in winter wheat leaves[J]. Plant Growth Regulation, 2003, 41(3): 231-236. |
[16] | Glass A D. Influence of phenolic acids on ion uptake: I. Inhibition of phosphate uptake[J]. Plant Physiology, 1973, 51(6): 1037-1041. |
[17] | Khorassani R, Hettwer U, Ratzinger A, Ursula H, Reza K, Norbert C. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus[J]. BMC Plant Biology, 2011, 11(1): 121. |
[18] | Gunes A, Inal A, Alpaslan M, Cicek N, Guneri E, Eraslan F, Guzelordu T. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.)[J]. Archives of Agronomy and Soil Science, 2005, 51(6): 687-695. |
[19] | He J Y, Ren Y F, Chen X L, Chen H. Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress[J]. Ecotoxicology and Environmental Safety, 2014, 108: 114-119. |
[20] | Singh V P, Srivastava P K, Prasad S M. Nitric oxide alleviates arsenic-induced toxic effects in ridged Luffa seedlings[J]. Plant Physiology and Biochemistry, 2013, 71: 155-163. |
[21] | 李鹏飞. 一氧化氮通过调节磷酸盐吸收与转运促进水稻磷营养[D]. 厦门: 厦门大学, 2017. |
Li P F. Nitric oxide enhances phosphate nutrition in rice seedlings by regulating phosphate uptake and translocation[D]. Xiamen: Xiamen University, 2017. | |
[22] | Zhu C Q, Zhu X F, Hu A Y, Wang C, Wang B, Dong X Y, Shen R F. Differential effects of nitrogen forms on cell wall phosphorus remobilization are mediated by nitric oxide, pectin content, and phosphate transporter expression[J]. Plant Physiology, 2016, 171: 1407-1417. |
[23] | Shao R X, Xin L F, Guo J M, Zheng H F, Mao J, Han X P, Jia L, Jia S J, Du C G, Song R, Yang Q H, Elmore R W. Salicylic acid-induced photosynthetic adaptability of Zea mays L. to polyethylene glycol-simulated water deficit is associated with nitric oxide signaling[J]. Photosynthetica, 2018, 56: 1370-1377. |
[24] | Zhang X B, Feng B H, Wang H M, Xu X, Shi Y F, He Y, Chen Z, Sathe A P, Shirle Y L, Wu J L. A substitution mutation in OsPELOTA confers bacterial blight resistance by activating the salicylic acid pathway[J]. Journal of Integrative Plant Biology, 2018, 60(2): 160-172. |
[25] | You C, Zhu H, Xu B, Wang S, Ding Y, Liu Z, Li G, Chen L, Ding C. Effect of removing superior spikelets on grain filling of inferior spikelets in rice[J]. Frontiers in Plant Science, 2016: 7. |
[26] | 李忠光, 龚明. 磺胺比色法测定植物组织硝酸还原酶活性的改进[J]. 植物生理学通讯, 2009, 45(1): 67-68. |
Li Z G, Gong M. Improvement of nitrate reductase activity measurement in plant tissues by sulfa colorimetry method[J]. Plant Physiology Communications, 2009, 45(1): 67-68. (in Chinese) | |
[27] | 张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2003: 41-43. |
Zhang Z L. Experimental Guidance in Plant Physiology. Beijing: Higher Education Press, 2003: 41-43. (in Chinese) | |
[28] | 徐畅, 安书成. 一氧化氮及一氧化氮合酶的测定[J]. 陕西师范大学继续教育学报, 2004, 21(1): 115-118. |
Xu C, An S C. Determination of nitric oxide and nitric oxide synthase[J]. Journal of Further Education of Shanxi Normal University, 2004, 21(1): 115-118. (in Chinese) | |
[29] | 穆师洋, 胡文忠, 姜爱丽. 水杨酸的信号分子作用及其在鲜切果蔬中的应用[J]. 食品安全质量检测学报, 2015(7): 2434-2438. |
Mu S Y, Hu W Z, Jiang A L. The role of salicylic acid as signal molecule and its application in fresh-cut fruits and vegetables[J]. Journal of Food Safety and Quality, 2015(7): 2434-2438. (in Chinese with English abstract) | |
[30] | 侯爽, 陈锦芬, 刘溶荣, 王瑞, 陈俊鸿, 邹聪明, 谢小玉. 外源水杨酸对烟草幼苗低温胁迫的缓解效应[J]. 湖南农业大学学报: 自然科学版, 2020, 46(1): 14-20. |
Hou S, Chen J F, Liu R R, Wang R, Chen J H, Zou C M, Xie X Y. Mitigative effect of exogenous salicylic acid on low temperature stress in tobacco seedlings[J]. Journal of Hunan Agricultural University: Natural Sciences Edition, 2020, 46(1): 14-20. (in Chinese with English abstract) | |
[31] | Liao H, Yan X L. Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency[J]. Acta Botanica Sinica, 2000, 42(2): 158-163. (in Chinese with English abstract) |
[32] | 黄荣, 孙虎威, 刘尚俊, 宋文静, 刘言勋, 余超, 毛颖, 张亚丽, 徐国华. 低磷胁迫下水稻根系的发生及生长素的响应[J]. 中国水稻科学, 2012, 26(5): 563-568. |
Huang R, Sun H W, Liu S J, Song W J, Liu Y X, Yu C, Mao Y, Zhang Y L, Xu G H. Rice Root Growth and Auxin Concentration in Response to Phosphate Deficiency[J]. Chinese Journal of Rice Science, 2012, 26(5): 563-568. (in Chinese with English abstract) | |
[33] | Wissuwa M, Ae N. Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement[J]. Plant Breeding, 2001, 120: 43-48. |
[34] | Li H, Guo L, Tao C, Yang L M, Wang X Z. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family[J]. Plant Cell, 2012, 24: 4236-4251. |
[35] | Paszkowski U, Kroken S, Roux C, Briggs S P. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Science, 2002, 99: 13324-13329. |
[36] | Wang X, Wang Y, Piñeros M A, Wang Z Y, Wang W X, Li C G, Wu Z C, Kochian L V, Wu P. Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice[J]. Plant, Cell and Environment, 2014, 37: 1159-1170. |
[37] | 王文霞. 水稻磷酸盐转运体OsPht1;3和OsPht1;5的功能研究. 杭州: 浙江大学, 2014: 21-30. |
Wang W X. Functional analysis of OsPhtl;3 and OsPht1;5 in Oryza sativa[D]. Hangzhou: Zhejiang University, 2014: 21-30. (in Chinese with English abstract) | |
[38] | Zhang F, Sun Y F, Pei W X, Jain A, Sun R, Cao Y, Wu X, Jiang T, Zhang L, Fan X, Chen A, Shen Q, Xu G, Sun S. Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice[J]. Plant Journal, 2015, 82(4): 556-569. |
[39] | Ai P H, Sun S B, Zhao J N, Fan X R, Xin W J, Guo Q, Yu L, Shen Q R, Wu P, Miller A J, Xu G H. Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6, have different functions and kinetic properties in uptake and translocation[J]. The Plant Journal, 2009, 57(5): 798-809. |
[40] | Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G. The phosphate transporter gene OsPht1; 8 is involved in phosphate homeostasis in rice[J]. Plant Physiology, 2011, 156(3): 1164-1175. |
[41] | 黄沆, 付崇允, 周德贵, 陈光辉, 周少川. 植物磷吸收的分子机理研究进展[J]. 分子植物育种, 2008, 6(1): 117-122. |
Huang H, Fu Z Y, Zhou D G, Chen G H, Zhou S C. Progress in research of molecular mechanism of phosphorus absorption in plants[J]. Molecular Plant Breeding, 2008, 6(1): 117-122. (in Chinese with English abstract) | |
[42] | Klessig D F, Durner J, Noad R, Navarre D A, Wendehenne D, Kumar D, Zhou J M, Shah J, Zhang S Q, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H. Nitric oxide and salicylic acid signaling in plant defense[J]. Proceedings of the National Academy of Science, 2000, 97(16): 8849-8855. |
[43] | Song F, Goodman R M. Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance[J]. Molecular Plant-Microbe Interactions, 2001, 14(12): 1458-1462. |
[44] | Zottini M, Costa A, Michele R D, Ruzzene M, Carimi F. Salicylic acid activates nitric oxide synthesis in Arabidopsis[J]. Journal of Experimental Botany, 2007, 6 (58): 1397-1405. |
[45] | Meng Z B, Chen L Q, Suo D, Li G X, Tang C X, Zheng S J. Nitric oxide is the shared signaling molecule in phosphorus- and iron-deficiency-induced formation of cluster roots in white lupin (Lupinus albus)[J]. Annals of Botany, 2012, 109: 1055-1064. |
[46] | Shen J B, Yuan L X, Zhang J L, Li H G, Bai Z H, Chen H P, Zhang W F, Zhang F S. Phosphorus dynamics: From soil to plant[J]. Plant Physiology, 2011, 156: 997-1005. |
[47] | Ae N, Shen R F. Root cell-wall properties are proposed to contribute to phosphorus (P) mobilization by groundnut and pigeonpea[J]. Plant and Soil, 2002, 245: 95-103. |
[1] | 巫明明, 曾维, 翟荣荣, 叶靖, 朱国富, 俞法明, 张小明, 叶胜海. 水稻耐盐分子机制与育种研究进展 [J]. 中国水稻科学, 2022, 36(6): 551-561. |
[2] | 李小秀, 吕启明, 袁定阳. OsNramp5基因变异影响水稻重要农艺性状的研究进展 [J]. 中国水稻科学, 2022, 36(6): 562-571. |
[3] | 张元野, 尹丽颖, 李荣田, 何明良, 刘欣欣, 潘婷婷, 田晓杰, 卜庆云, 李秀峰. 利用CRISPR/Cas9技术创制Rc基因恢复红稻 [J]. 中国水稻科学, 2022, 36(6): 572-578. |
[4] | 毛慧, 彭彦, 毛毕刚, 韶也, 郑文杰, 胡黎明, 周凯, 赵炳然. 水稻直链淀粉合成调控新基因Wx410的功能与效应分析 [J]. 中国水稻科学, 2022, 36(6): 579-585. |
[5] | 史玉良, 杨勇, 李雪飞, 李钱峰, 黄李春, 张昌泉, 宋学堂, 刘巧泉. 不同直链淀粉含量软米品种品质性状的比较 [J]. 中国水稻科学, 2022, 36(6): 601-610. |
[6] | 魏晓东, 张亚东, 宋雪梅, 陈涛, 朱镇, 赵庆勇, 赵凌, 路凯, 梁文化, 赫磊, 黄胜东, 谢寅峰, 王才林. 高产粳稻品种南粳晶谷的光合生理特性研究 [J]. 中国水稻科学, 2022, 36(6): 611-622. |
[7] | 马静静, 潘妍妍, 杨孙玉悦, 王嘉琦, 蒋冬花. 硫藤黄链霉菌St-79对水稻白叶枯病的防效和促生作用 [J]. 中国水稻科学, 2022, 36(6): 623-638. |
[8] | 唐若迪, 陈超. 外包服务对中老年劳动力参与水稻生产的影响 [J]. 中国水稻科学, 2022, 36(6): 647-655. |
[9] | 伏荣桃, 王剑, 陈诚, 赵黎宇, 陈雪娟, 卢代华. 水稻幼穗响应稻曲病菌毒素胁迫早期的转录组分析[J]. 中国水稻科学, 2022, 36(5): 447-458. |
[10] | 尹丽颖, 张元野, 李荣田, 何明良, 王芳权, 许扬, 刘欣欣, 潘婷婷, 田晓杰, 卜庆云, 李秀峰. 利用CRISPR/Cas9技术创制高效抗除草剂水稻[J]. 中国水稻科学, 2022, 36(5): 459-466. |
[11] | 陈红阳, 贾琰, 赵宏伟, 瞿炤珺, 王新鹏, 段雨阳, 杨蕊, 白旭, 王常丞. 结实期低温胁迫对水稻强、弱势粒淀粉形成与积累的影响[J]. 中国水稻科学, 2022, 36(5): 487-504. |
[12] | 景文疆, 顾汉柱, 张小祥, 吴昊, 张伟杨, 顾骏飞, 刘立军, 王志琴, 杨建昌, 张耗. 中籼水稻品种改良过程中米质和根系特征对灌溉方式的响应[J]. 中国水稻科学, 2022, 36(5): 505-519. |
[13] | 陆丹丹, 雍明玲, 陶钰, 叶苗, 张祖建. 优良食味水稻品种籽粒蛋白质积累特征及其对氮素水平的响应[J]. 中国水稻科学, 2022, 36(5): 520-530. |
[14] | 曾文静, 邱岚英, 陈俊杰, 钱浩宇, 张楠, 丁艳锋, 江瑜. 秸秆还田下大气CO2浓度升高对水稻生长和CH4排放的影响[J]. 中国水稻科学, 2022, 36(5): 543-550. |
[15] | 徐云姬, 唐树鹏, 简超群, 蔡文璐, 张伟杨, 王志琴, 杨建昌. 多胺与乙烯对水稻籽粒灌浆、粒重和品质的调控作用[J]. 中国水稻科学, 2022, 36(4): 327-335. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||