中国水稻科学 ›› 2022, Vol. 36 ›› Issue (1): 1-12.DOI: 10.16819/j.1001-7216.2022.201202
• 综述与专论 • 下一篇
余锋, 李思宇, 邱园园, 卓鑫鑫, 黄健, 汪浩, 朱安, 刘昆, 刘立军()
收稿日期:
2020-12-03
修回日期:
2021-04-09
出版日期:
2022-01-10
发布日期:
2022-01-10
通讯作者:
刘立军
基金资助:
YU Feng, LI Siyu, QIU Yuanyuan, ZHUO Xinxin, HUANG Jian, WANG Hao, ZHU An, LIU Kun, LIU Lijun()
Received:
2020-12-03
Revised:
2021-04-09
Online:
2022-01-10
Published:
2022-01-10
Contact:
LIU Lijun
摘要:
全球变暖是当前亟需解决的环境问题之一。甲烷是仅次于二氧化碳的第二大温室气体,其中稻田甲烷排放约占全球甲烷排放的10%~30%。稻田甲烷的产生与氧化是决定稻田甲烷排放的关键,其过程是在相关微生物参与下完成的,受多种环境条件影响。水分管理直接影响稻田土壤的通气状况,并对土壤微生物活动产生影响,从而直接或间接影响稻田甲烷的产生与排放。本文综述了稻田甲烷产生与排放的微生物学机理,并总结了干湿交替灌溉等常用节水栽培方式对稻田甲烷排放的影响。同时提出未来研究的重点方向。
余锋, 李思宇, 邱园园, 卓鑫鑫, 黄健, 汪浩, 朱安, 刘昆, 刘立军. 稻田甲烷排放的微生物学机理及节水栽培对甲烷排放的影响[J]. 中国水稻科学, 2022, 36(1): 1-12.
YU Feng, LI Siyu, QIU Yuanyuan, ZHUO Xinxin, HUANG Jian, WANG Hao, ZHU An, LIU Kun, LIU Lijun. Microbiological Mechanism of Methane Emission in Paddy Field and Influence of Water-saving Cultivation on Methane Emission[J]. Chinese Journal OF Rice Science, 2022, 36(1): 1-12.
产甲烷古菌目 Order | 产甲烷途径 Methanogenic pathway | 可利用底物 Available substrate |
---|---|---|
甲烷杆菌目Methanobacteriales | H2/CO2途径、含甲基途径 H2/CO2-pathway, methylated compounds pathway | H2+CO2、甲酸、CO、乙醇、甲醇 H2+CO2, formate, CO, ethanol, methanol |
甲烷球菌目Methanococcales | H2/CO2途径 H2/CO2-pathway | H2+CO2、甲酸 H2+CO2, formate |
甲烷火菌目Methanopyrales | H2/CO2途径 H2/CO2-pathway | H2+CO2 H2+CO2 |
甲烷八叠球菌目Methanosarcinales | 含甲基途径、乙酸盐途径、H2/CO2途径 Methylated compounds pathway, acetate pathway、 H2/CO2-pathway | 甲醇、甲胺、乙酸、H2+CO2 Methanol, methylamine, acetate, H2+CO2 |
甲烷微菌目Methanomicrobiales | H2/CO2途径、含甲基途径 H2/CO2-pathway, methylated compounds pathway | H2+CO2、甲酸、乙醇 H2+CO2, formate, ethanol |
甲烷胞菌目Methanocellasles | H2/CO2途径 H2/CO2-pathway | H2+CO2、甲酸盐 H2+CO2, formate |
热原体目Methanomassiliicoccales | 含甲基途径 Methylated compounds pathway | 甲醇 Methanol |
表1 不同产甲烷古菌目代谢特征
Table 1 Metabolic characteristics of different methanogens.
产甲烷古菌目 Order | 产甲烷途径 Methanogenic pathway | 可利用底物 Available substrate |
---|---|---|
甲烷杆菌目Methanobacteriales | H2/CO2途径、含甲基途径 H2/CO2-pathway, methylated compounds pathway | H2+CO2、甲酸、CO、乙醇、甲醇 H2+CO2, formate, CO, ethanol, methanol |
甲烷球菌目Methanococcales | H2/CO2途径 H2/CO2-pathway | H2+CO2、甲酸 H2+CO2, formate |
甲烷火菌目Methanopyrales | H2/CO2途径 H2/CO2-pathway | H2+CO2 H2+CO2 |
甲烷八叠球菌目Methanosarcinales | 含甲基途径、乙酸盐途径、H2/CO2途径 Methylated compounds pathway, acetate pathway、 H2/CO2-pathway | 甲醇、甲胺、乙酸、H2+CO2 Methanol, methylamine, acetate, H2+CO2 |
甲烷微菌目Methanomicrobiales | H2/CO2途径、含甲基途径 H2/CO2-pathway, methylated compounds pathway | H2+CO2、甲酸、乙醇 H2+CO2, formate, ethanol |
甲烷胞菌目Methanocellasles | H2/CO2途径 H2/CO2-pathway | H2+CO2、甲酸盐 H2+CO2, formate |
热原体目Methanomassiliicoccales | 含甲基途径 Methylated compounds pathway | 甲醇 Methanol |
纲 | 类型 | 属 | 代谢途径 |
---|---|---|---|
Class | Type | Genus | Metabolic pathways |
γ-变形菌纲 γ-Proteobacteria | 类型Ⅰ Type Ⅰ | 甲基单胞菌属 Methylomonas 甲基杆菌属 Methylobacter 甲基微菌属 Methylomicrobium 甲基球形菌属 Methylosphaera 甲基热菌属 Methylothermus 甲基盐菌属 Methylohalobius 甲基八叠球菌属 Methylosarcina 甲基苏玛菌属 Methylosoma | 5-磷酸核酮糖途径 RUMP pathway |
类型X Type X | 甲基暖菌属 Methylocaldum 甲基球菌属 Methylococcus | 5-磷酸核酮糖途径/丝氨酸途径 RUMP Pathway/ Serine pathway | |
α-变形菌纲 α-Proteobacteria | 类型Ⅱ Type Ⅱ | 甲基弯曲菌属 Methylosinus 甲基胞囊菌属 Methylocystis 甲基帽菌属 Methylocapsa 甲基阿魏菌属 Methyloferula 甲基细胞菌属 Methylocella | 丝氨酸途径 Serine pathway |
疣微菌门 Verrucomicrobia | - | Methylokorus infernorum Acidimethylosilex fumarolicum Methylocacida kamchakensis | - |
表2 好氧甲烷氧化菌分类及代谢途径
Table 2 Classification and metabolic pathway of aerobic methane-oxidizing bacteria.
纲 | 类型 | 属 | 代谢途径 |
---|---|---|---|
Class | Type | Genus | Metabolic pathways |
γ-变形菌纲 γ-Proteobacteria | 类型Ⅰ Type Ⅰ | 甲基单胞菌属 Methylomonas 甲基杆菌属 Methylobacter 甲基微菌属 Methylomicrobium 甲基球形菌属 Methylosphaera 甲基热菌属 Methylothermus 甲基盐菌属 Methylohalobius 甲基八叠球菌属 Methylosarcina 甲基苏玛菌属 Methylosoma | 5-磷酸核酮糖途径 RUMP pathway |
类型X Type X | 甲基暖菌属 Methylocaldum 甲基球菌属 Methylococcus | 5-磷酸核酮糖途径/丝氨酸途径 RUMP Pathway/ Serine pathway | |
α-变形菌纲 α-Proteobacteria | 类型Ⅱ Type Ⅱ | 甲基弯曲菌属 Methylosinus 甲基胞囊菌属 Methylocystis 甲基帽菌属 Methylocapsa 甲基阿魏菌属 Methyloferula 甲基细胞菌属 Methylocella | 丝氨酸途径 Serine pathway |
疣微菌门 Verrucomicrobia | - | Methylokorus infernorum Acidimethylosilex fumarolicum Methylocacida kamchakensis | - |
[1] | 黄亚男, 傅志强, 王勃然, 李超. 水稻根际特性与甲烷排放相关性研究[J]. 华北农学报, 2020,35(5):115-123. |
Huang Y N, Fu Z Q, Wang B R, Li C. Study on the correlation between rhizosphere characteristics and methane emission in rice[J]. Acta Agriculture Boreali-Sinica, 2020,35(5):115-123. (in Chinese with English abstract) | |
[2] | Ma Y C, Liu D L, Schwenke G, Yang B. The global warming potential of straw-return can be reduced by application of straw-decomposing microbial inoculants and biochar in rice-wheat production systems[J]. Environmental Pollution, 2019,252:835-845. |
[3] | Tian H Q, Lu C Q, Ciais P, Michalak A M, Canadell J G, Saikawa E, Huntzinger D N, Gurney K R, Sitch S, Zhang B W, Yang J, Bousquet P, Bruhwiler L, Chen G S, Dlugokencky E, Friedlingstein P, Melillo J, Pan S F, Poulter B, Prinn R, Saunois M, Schwalm C R, Wofsy S C. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere[J]. Nature, 2016,531(7593):225-228. |
[4] | 马莉, 娄运生, 李君, 李睿, 张震. 太阳辐射对稻田甲烷排放的影响[J]. 应用生态学报, 2019,30(8):2725-2736. |
Ma L, Lou Y S, Li J, Li R, Zhang Z. Effects of solar radiation on CH4 emission in paddy field[J]. Chinese Journal of Applied Ecology, 2019,30(8):2725-2736. (in Chinese with English abstract) | |
[5] | 江瑜, 管大海, 张卫建. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报, 2018,26(2):175-181. |
Jiang Y, Guan D H, Zhang W J. The effect of rice plant traits on methane emissions from paddy fields[J]. Chinese Journal of Eco-Agriculture, 2018,26(2):175-181. (in Chinese with English abstract) | |
[6] | Hussain S, Peng S B, Fahad S, Khaliq A, Huang J L, Cui K H, Nie L X. Rice management interventions to mitigate greenhouse gas emissions: A review[J]. Environmental Science and Pollution Research, 2015,22(5):3342-3360. |
[7] | 夏龙龙, 颜晓元, 蔡祖聪. 我国农田土壤温室气体减排和有机碳固定的研究进展及展望[J]. 农业环境科学学报, 2020,39(4):834-841. |
Xia L L, Yan X Y, Cai Z C. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China[J]. Journal of Agro-Environment Science, 2020,39(4):834-841. (in Chinese with English abstract) | |
[8] | Yang J C. Approaches to achieve high grain yield and high resource use efficiency in rice[J]. Frontiers of Agricultural Science and Engineering, 2015,2(2):115-123. |
[9] | Jiao J G, Shi K, Li P, Sun Z, Chang D L, Shen X S, Wu D, Song X C, Liu M Q, Li H X, Hu F, Xu L. Assessing of an irrigation and fertilization practice for improving rice production in the Taihu lake region (China)[J]. Agricultural Water Management, 2018,201:91-98. |
[10] | Masseroni D, Moller P, Tyrell R, Romani M, Lasagna A, Sali G, Facchi A, Gandolfi C. Evaluating performances of the first automatic system for paddy irrigation in Europe[J]. Agricultural Water Management, 2018,201:58-69. |
[11] | 李婷婷, 冯钰枫, 朱安, 黄健, 汪浩, 李思宇, 刘昆, 彭如梦, 张宏路, 刘立军. 主要节水灌溉方式对水稻根系形态生理的影响[J]. 中国水稻科学, 2019,33(4):293-302. |
Li T T, Feng Y F, Zhu A, Huang J, Wang H, Li S Y, Liu K, Peng R M, Zhang H L, Liu L J. Effects of main water-saving irrigation methods on morphological and physiological traits of rice roots[J]. Chinese Journal of Rice Science, 2019,33(4):293-302. (in Chinese with English abstract) | |
[12] | 李茂柏, 曹黎明, 程灿, 张建明, 吕卫光. 水稻节水灌溉技术对甲烷排放影响的研究进展[J]. 作物杂志, 2010(6):98-102. |
Li M B, Cao L M, Cheng C, Zhang J M, Lü W G. Advances in the research on water-efficient irrigation and its effects on methane emissions from paddy field[J]. Crops, 2010(6):98-102. (in Chinese with English abstract) | |
[13] | 徐健鑫, 扆幸运, 李晓明, 丁龙君, 朱永官. 水稻土中铁氧化物对产甲烷古菌群落结构的影响[J]. 生态学报, 2020,40(9):3115-3120. |
Xu J X, Yi X Y, Li X M, Ding L J, Zhu Y G. Effects of iron oxides in paddy soils on methanogens communities[J]. Acta Ecologica Sinica, 2020,40(9):3115-3120. (in Chinese with English abstract) | |
[14] | Lyu Z, Shao N N, Akinyemi T, Whitman W B. Methanogenesis[J]. Current Biology, 2018,28(13):727-732. |
[15] | Roland F A, Darchambeau F, Morana C, Bouillon S, Borges A V. Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium)[J]. Chemosphere, 2017,168:756-764. |
[16] | Holzapfel-Pschorn A, Conrad R, Seiler W. Production, oxidation and emission of methane in rice paddies[J]. FEMS Microbiology Letters, 1985,1(6):343-351. |
[17] | 单丽伟, 冯贵颖, 范三红. 产甲烷菌研究进展[J]. 微生物学杂志, 2003,23(6):42-46. |
Shan L W, Feng G Y, Fan S H. Progress in genome and methanogenesis of methanogens[J]. Journal of Microbiology, 2003,23(6):42-46. (in Chinese with English abstract) | |
[18] | 王洁, 袁俊吉, 刘德燕, 项剑, 丁维新, 蒋先军. 滨海湿地甲烷产生途径和产甲烷菌研究进展[J]. 应用生态学报, 2016,27(3):993-1001. |
Wang J, Yuan J J, Liu D Y, Xiang J, Ding W X, Jiang X J. Research progresses on methanogenesis pathway and methanogens in coastal wetlands[J]. Chinese Journal of Applied Ecology, 2016,27(3):993-1001. (in Chinese with English abstract) | |
[19] | Borrel G, Parisot N, Harris H M, Peyretaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P, O'Toole P W, Brugère J F. Comparative genomics highlights the unique biology of methanomassiliicoccales, a thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine[J]. BMC Genomics, 2014,15(1):679. |
[20] | 承磊, 郑珍珍, 王聪, 张辉. 产甲烷古菌研究进展[J]. 微生物学通报, 2016,43(5):1143-1164. |
Cheng L, Zheng Z Z, Wang C, Zhang H. Recent advances in methanogens[J]. Microbiology, 2016,43(5):1143-1164. (in Chinese with English abstract) | |
[21] | Alpana S, Vishwakarma P, Adhya T K, Inubushi K, Dubey S K. Molecular ecological perspective of methanogenic archaeal community in rice agroecosystem[J]. Science of the Total Environment, 2017, 596-597:136-146. |
[22] | Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments[J]. FEMS Microbiology Ecology, 1999,28(3):193-202. |
[23] | 段昌海, 张翠景, 孙艺华, 李猛. 新型产甲烷古菌研究进展[J]. 微生物学报, 2019,59(6):981-995. |
Duan C H, Zhang C J, Sun Y H, Li M. Recent advances on the novel methanogens[J]. Acta Microbiologica Sinica, 2019,59(6):981-995. (in Chinese with English abstract) | |
[24] | Conrad R, Klose M, Noll M, Kemnitz D. Soil type links microbial colonization of rice roots to methane emission[J]. Global Change Biology, 2010,14(3):657-669. |
[25] | 李思琦, 臧昆鹏, 宋伦. 湿地甲烷代谢微生物产甲烷菌和甲烷氧化菌的研究进展[J]. 海洋环境科学, 2020,39(3):488-496. |
Li S Q, Zang K P, Song L. Review on methanogens and methanotrophs metabolized by methane in wetland[J]. Marine Environmental Science, 2020,39(3):488-496. (in Chinese with English abstract) | |
[26] | 蔡朝阳, 何崭飞, 胡宝兰. 甲烷氧化菌分类及代谢途径研究进展[J]. 浙江大学学报: 农业与生命科学版, 2016,42(3):273-281. |
Cai C Y, He Z F, Hu B L. Progresses in the classification and mechanism of methane-oxidizing bacteria[J]. Journal of Zhejiang University: Agriculture and Life Sciences, 2016,42(3):273-281. (in Chinese with English abstract) | |
[27] | Kalyuzhnaya M G, Puri A W, Lidstrom M E. Metabolic engineering in methanotrophic bacteria[J]. Metabolic Engineering, 2015,29:142-452. |
[28] | 邓永翠, 车荣晓, 吴伊波, 王艳芬, 崔骁勇. 好氧甲烷氧化菌生理生态特征及其在自然湿地中的群落多样性研究进展[J]. 生态学报, 2015,35(14):4579-4591. |
Deng Y C, Che R X, Wu Y B, Wang Y F, Cui X Y. A review of the physiological and ecological characteristics of methanotrophs and methanotrophic community diversity in the natural wetlands[J]. Acta Ecologica Sinica, 2015,35(14):4579-4591. (in Chinese with English abstract) | |
[29] | Danilova O V, Suzina N E, Kamp J V, Svenning M M, Bodrossy L, Dedysh S N. A new cell morphotype among methane oxidizers: A spiral-shaped obligately microaerophilic methanotroph from northern low-oxygen environments[J]. The International Society for Microbial Ecology Journal, 2016,10(11):2734-2743. |
[30] | Damm E, Rudels B, Schauer U, Mau S, Dieckmann G. Methane excess in Arctic surface water-triggered by sea ice formation and melting[J]. Scientific Reports, 2015,5(1):1334-1337. |
[31] | 蔡元锋, 贾仲君. 土壤大气甲烷氧化菌研究进展[J]. 微生物学报, 2014,54(8):841-853. |
Cai Y F, Jia Z J. Research progress of atmospheric methane oxidizers in soil[J]. Acta Microbiologica Sinica, 2014,54(8):841-853. (in Chinese with English abstract) | |
[32] | 曹淑贞, 沈媛媛, 王风芹, 宋安东, 桑玉强. 土壤甲烷氧化菌群落结构研究进展[J]. 生物学杂志, 2017,34(6):78-82. |
Cao S Z, Shen Y Y, Wang F Q, Song A D, Sang Y Q. Research advance in soil methanotrophs community structure[J]. Journal of Biology, 2017,34(6):78-82. (in Chinese with English abstract) | |
[33] | Murrell J C, Dalton H. Nitrogen fixation in obligate methanotrophs[J]. Microbiology, 1983,129(11):3481-3486. |
[34] | 林惠颖, 辛嘉英, 李春雨, 孙立瑞, 夏春谷. 颗粒性甲烷单加氧酶分离纯化方法的研究进展[J]. 分子催化, 2018,32(1):90-98. |
Lin H Y, Xin J Y, Li C Y, Sun L R, Xia C G. Progress on isolation and purification of particulate methane monooxygenase[J]. Journal of Molecular Catalysis: China, 2018,32(1):90-98. (in Chinese with English abstract) | |
[35] | 陆吉学, 王世珍, 方柏山. 生物分子机器——甲烷单加氧酶的研究进展[J]. 生物工程学报, 2015,31(7):1015-1023. |
Lu J X, Wang S Z, Fang B S. Advances in biomolecular machine: Methane monooxygenases[J]. Chinese Journal of Biotechnology, 2015,31(7):1015-1023. (in Chinese with English abstract) | |
[36] | 李小飞, 侯立军, 刘敏. 长江口沉积物甲烷产生潜力与产甲烷菌群落特征[J]. 环境科学学报, 2019,39(5):1682-1690. |
Li X F, Hou L J, Liu M. Methane production potential and methanogens community in the sediments of the Yangtze estuary[J]. Acta Scientiae Circumstantiae, 2019,39(5):1682-1690. (in Chinese with English abstract) | |
[37] | 王世全, 崔玉波, 朴永哲, 李爱民, 王栋. 基于mcrA基因分析污泥干化芦苇床中产甲烷菌的多样性[J]. 环境工程学报, 2016,10(6):3312-3316. |
Wang S Q, Cui Y B, Piao Y Z, Li A M, Wang D. Characterization of methanogens diversity in sludge drying reed bed based on mcrA gene analysis[J]. Chinese Journal of Environmental Engineering, 2016,10(6):3312-3316. (in Chinese with English abstract) | |
[38] | Tsutsumi M, Kojima H, Fukui M. Vertical profiles of abundance and potential activity of methane-oxidizing bacteria in sediment of Lake Biwa, Japan[J]. Microbes and Environments, 2012,27(1):67-71. |
[39] | 唐千, 薛校风, 王惠, 邢鹏. 湖泊生态系统产甲烷与甲烷氧化微生物研究进展[J]. 湖泊科学, 2018,30(3):597-610. |
Tang Q, Xue X F, Wang H, Xing P. New knowledge of methanogens and methanotrophs in lake ecosystems[J]. Journal of Lake Sciences, 2018,30(3):597-610. (in Chinese with English abstract) | |
[40] | Peng J J, Wegner C E, Bei Q C, Liu P F, Liesack W. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil[J]. Microbiome, 2018,6(1):169-184. |
[41] | 高思齐, 宋艳宇, 宋长春, 马秀艳, 蒋磊. 增温和外源碳输入对泥炭地土壤碳氮循环关键微生物功能基因丰度的影响[J]. 生态学报, 2020,40(13):4617-4627. |
Gao S Q, Song Y Y, Song C C, Ma X Y, Jiang L. Effects of warming and exogenous carbon input on the abundance of key microbial functional genes of carbon-nitrogen cycle in peatland soil[J]. Acta Ecologica Sinica, 2020,40(13):4617-4627. (in Chinese with English abstract) | |
[42] | 吴美容, 张瑞, 周俊, 谢欣欣, 雍晓雨, 闫志英, 葛明民, 郑涛. 温度对产甲烷菌代谢途径和优势菌群结构的影响[J]. 化工学报, 2014,65(5):1602-1606. |
Wu M R, Zhang R, Zhou J, Xie X X, Yong X Y, Yan Z Y, Ge M M, Zheng T. Effect of temperature on methanogens metabolic pathway and structures of predominant bacteria[J]. CIESC Journal, 2014,65(5):1602-1606. (in Chinese with English abstract) | |
[43] | Rajagopal B S, Belay N, Daniels L. Isolation and characterization of methanogenic bacteria from rice paddies[J]. FEMS Microbiology Letters, 1988,53(3-4):153-158. |
[44] | 胡越航, 韦梦, 徐建刚, 裘琼芬. 不同温度下尿素对水稻土甲烷产生及相关古菌群落的影响[J]. 土壤, 2015,47(6):1115-1124. |
Hu Y H, Wei M, Xu J G, Qiu Q F. Effect of urea fertilizer on methane production and methanogenic archaeal community structure in paddy soil at different temperatures[J]. Soils, 2015,47(6):1115-1124. (in Chinese with English abstract) | |
[45] | 俎千惠, 王保战, 郑燕, 贾仲君, 林先贵, 冯有智. 我国8个典型水稻土中产甲烷古菌群落组成的空间分异特征[J]. 微生物学报, 2014,54(12):1397-1405. |
Zu Q H, Wang B Z, Zheng Y, Jia Z J, Lin X G, Feng Y Z. Spatial shifts in methanogenic archaeal community composition in eight Chinese paddy soils[J]. Acta Microbiologica Sinica, 2014,54(12):1397-1405. (in Chinese with English abstract) | |
[46] | Kotsyurbenko O R, Friedrich M W, Simankova M V, Nozhevnikova A N, Golyshin P N, Timmis K N, Conrad R. Shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an acidophilic methanobacterium strain[J]. Applied and Environmental Microbiology, 2007,73(7):2344-2348. |
[47] | 陈美慈, 闵航, 吴伟祥, 贾伯华. 不同类型土壤中甲烷释放特性和产甲烷菌数量的研究[J]. 植物营养与肥料学报, 1996,2(1):79-83. |
Chen M C, Min H, Wu W X, Jia B H. Characteristics of methane emission and its microbiological numbers in six types of soil[J]. Journal of Plant Nutrition and Fertilizers, 1996,2(1):79-83. (in Chinese with English abstract) | |
[48] | Wang P X, Yang Y D, Wang X Q, Zhao J, Peixoto L, Zeng Z H, Zang H D. Manure amendment increased the abundance of methanogens and methanotrophs but suppressed the type Ⅰ methanotrophs in rice paddies[J]. Environmental Science and Pollution Research, 2020,27(8):8016-8027. |
[49] | Ma J, Li X L, Xu H, Han Y, Cai Z C, Yagi K. Effects of nitrogen fertilizer and wheat straw application on CH4 and N2O emissions from a paddy rice field[J]. Australian Journal of Soil Research, 2007,45(5):359-367. |
[50] | 赵晓萌, 刘婧娜, 易丽霞, 朱波, 代红翠, 胡跃高, 曾昭海. 绿肥还田对双季稻根际土壤产甲烷古菌群落结构的影响[J]. 作物学报, 2015,41(5):30-39. |
Zhao X M, Liu J N, Yi L X, Zhu B, Dai H C, Hu Y G, Zeng Z H. Community structure of methanogens from double-rice rhizosphere soil as affected by green manure incorporation[J]. Acta Agronomica Sinica, 2015,41(5):30-39. (in Chinese with English abstract) | |
[51] | Seghers D, Top E M, Reheul D, Bulcke R, Boeckx P, Verstraete W, Siciliano S D. Long-term effects of mineral versus organic fertilizers on activity and structure of the methanotrophic community in agricultural soils[J]. Environmental Microbiology, 2003,5(10):867-877 |
[52] | Conrad R, Klose M, Lu Y H, Amnat C. Methanogenic pathway and archaeal communities in three different anoxic soils amended with rice straw and maize straw[J]. Frontiers in Microbiology, 2012,3:1-12. |
[53] | 张万钦, 吴树彪, 郎乾乾, 董仁杰. 微量元素对沼气厌氧发酵的影响[J]. 农业工程学报, 2013,29(10):1-11. |
Zhang W Q, Wu S B, Lang Q Q, Dong R J. Trace elements on influence of anaerobic fermentation in biogas projects[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(10):1-11. (in Chinese with English abstract) | |
[54] | 马若潺, 魏晓梦, 何若. 低氧生境中好氧甲烷氧化菌的缺氧耐受机理及种群结构研究进展[J]. 应用生态学报, 2017,28(6):2047-2054. |
Ma R C, Wei X M, He R. Mechanism of hypoxia-tolerance and community structure of aerobic methanotrophs in O2-limited environments: A review[J]. Chinese Journal of Applied Ecology, 2017,28(6):2047-2054. (in Chinese with English abstract) | |
[55] | Tate K R. Soil methane oxidation and land-use change: From process to mitigation[J]. Soil Biology and Biochemistry, 2015,80:260-272. |
[56] | 李刚, 杨立中, 欧阳峰. 厌氧消化过程控制因素及pH和Eh的影响分析[J]. 西南交通大学学报, 2001,36(5):518-521. |
Li G, Yang L Z, Ouyang F. Control factors of anaerobic digestion and effect of pH and Eh[J]. Journal of Southwest Jiaotong University, 2001,36(5):518-521. (in Chinese with English abstract) | |
[57] | 李香兰, 徐华, 蔡祖聪. 水分管理影响稻田氧化亚氮排放研究进展[J]. 土壤, 2009,41(1):1-7. |
Li X L, Xu H, Cai Z C. Effect of water management on nitrous oxide emission from rice paddy field: A review[J]. Soils, 2009,41(1):1-7. (in Chinese with English abstract) | |
[58] | 丁维新, 蔡祖聪. 土壤甲烷氧化菌及水分状况对其活性的影响[J]. 中国生态农业学报, 2003,11(1):94-97. |
Ding W X, Cai Z C. Mechanism of methane oxidation by methanotrophs and effect of soil moisture content on their activity[J]. Chinese Journal of Eco-Agriculture, 2003,11(1):94-97. (in Chinese with English abstract) | |
[59] | 许欣, 陈晨, 熊正琴. 生物炭与氮肥对稻田甲烷产生与氧化菌数量和潜在活性的影响[J]. 土壤学报, 2016,53(6):1517-1527. |
Xu X, Chen C, Xiong Z Q. Effects of biochar and nitrogen fertilizer amendment on abundance and potential activity of methanotrophs and methanogens in paddy field[J]. Acta Pedologica Sinica, 2016,53(6):1517-1527. (in Chinese with English abstract) | |
[60] | 邢亚薇, 李春越, 刘津, 王益, 井丽娟, 王苁蓉, 薛英龙, 党廷辉. 长期施肥对黄土旱塬农田土壤微生物丰度的影响[J]. 应用生态学报, 2019,30(4):1351-1358. |
Xing Y W, Li C Y, Liu J, Wang Y, Jing L J, Wang C R, Xue Y L, Dang T H. Effects of long-term fertilization on soil organic phosphorus fractions and wheat yield in farmland of Loess Plateau[J]. Chinese Journal of Applied Ecology, 2019,30(4):1351-1358. (in Chinese with English abstract) | |
[61] | Dong W J, Guo J, Xu L J, Song Z F, Zhang J, Tang A, Zhang X J, Leng C X, Liu Y H, Wang L M, Wang L Z, Yu Y, Yang Z L, Meng Y, Yu Y L, Lai Y C. Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China[J]. Journal of Environmental Sciences, 2018,64(2):289-297. |
[62] | Li J L, Li Y, Wan Y F, Wang B, Waqas M, Cai W W, Guo C, Zhou S H, Su R S, Qin X B, Gao Q Z, Wilkes A. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield[J]. Geoderma, 2018,315:1-10. |
[63] | Wang F Q, Guo W, Zhu S J, Gong X L. Study on CH4 and N2O emissions from water-saving irrigation in phaeozem paddy fields in cold areas[J]. Journal of Environmental Biology, 2016,37(5):1077-1085. |
[64] | 王楷, 李伏生, 方泽涛, 董艳芳, 刘靖雯, 黄忠华, 罗维钢. 不同灌溉模式和施氮量条件下稻田甲烷排放及其与有机碳组分关系[J]. 农业环境科学学报, 2017,36(5):1012-1020. |
Wang K, Li F S, Fang Z T, Dong Y F, Liu J W, Huang Z H, Luo W G. Soil CH4 emission and its relationship with organic carbon fraction under different irrigation methods and nitrogen rates[J]. Journal of Agro-Environment Science, 2017,36(5):1012-1020. (in Chinese with English abstract) | |
[65] | Xu Y, Ge J Z, Tian S Y, Li S Y, Nguy-Robertson A, Zhan M, Cao C G. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China[J]. Science of the Total Environment, 2015,5(5):1043-1052. |
[66] | Zhang G B, Ji Y, Ma J, Xu H, Cai Z C, Yagi K. Intermittent irrigation changes production, oxidation, and emission of CH4 in paddy fields determined with stable carbon isotope technique[J]. Soil Biology and Biochemistry, 2012,52:108-116. |
[67] | Liu B, Cui Y L, Shi Y Z, Cai X L, Luo Y F, Zhang L. Comparison of evapotranspiration measurements between eddy covariance and lysimeters in paddy fields under alternate wetting and drying irrigation[J]. Paddy and Water Environment, 2019,17(4):725-739. |
[68] | 褚光, 陈婷婷, 陈松, 徐春梅, 王丹英, 章秀福. 灌溉模式与施氮量交互作用对水稻产量以及水、氮利用效率的影响[J]. 中国水稻科学, 2017,31(5):513-523. |
Chu G, Chen T T, Chen S, Xu C M, Wang D Y, Zhang X F. Effects of interaction between irrigation regimes and nitrogen rates on rice yield and water and nitrogen use efficiencies[J]. Chinese Journal of Rice Science, 2017,31(5):513-523. (in Chinese with English abstract) | |
[69] | 陈全胜, 李凌浩, 韩兴国, 阎志丹. 水分对土壤呼吸的影响及机理[J]. 生态学报, 2003,23(5):972-978. |
Chen Q S, Li L H, Han X G, Yan Z D. Effects of water content on soil respiration and the mechanisms[J]. Acta Ecologica Sinica, 2003,23(5):972-978. (in Chinese with English abstract) | |
[70] | 蒋玉兰, 陆凯明, 夏仕明, 陈璐, 刘贺, 刘立军. 干湿交替灌溉对水稻产量、品质和土壤生物学性状的影响[J]. 作物杂志, 2016(6):20-25. |
Jiang Y L, Lu K M, Xia S M, Chen L, Liu H, Liu L J. Current researches on rice yield, grain quality and biological traits of soil under alternate wetting and soil drying irrigation[J]. Crops, 2016(6):20-25. (in Chinese with English abstract) | |
[71] | Takeshi W, Yasukazu H, Ruth A, Lizzida L, Nobuko K, Susumu A, Makoto K. Changes in community structure of methanogenic archaea brought about by water-saving practice in paddy field soil[J]. Soil Biology and Biochemistry, 2013,58:235-243. |
[72] | Xu C M, Chen L P, Chen S, Chu G, Zhang X F, Wang D Y. Effects of soil microbes on methane emissions from paddy fields under varying soil oxygen conditions[J]. Agronomy Journal, 2018,110(5):1738-1747. |
[73] | 徐国伟, 吕强, 陆大克, 王贺正, 陈明灿. 干湿交替灌溉耦合施氮对水稻根系性状及籽粒库活性的影响[J]. 作物学报, 2016,42(10):1495-1505. |
Xu G W, Lü Q, Lu D K, Wang H Z, Chen M C. Effect of wetting and drying alternative irrigation coupling with nitrogen application on root characteristic and grain-sink activity[J]. Acta Agronomica Sinica, 2016,42(10):1495-1505. (in Chinese with English abstract) | |
[74] | Sriphirom P, Chidthaisong A, Towprayoon S. Effect of alternate wetting and drying water management on rice cultivation with low emissions and low water used during wet and dry season[J]. Journal of Cleaner Production, 2019,223(20):980-988. |
[75] | Tran D H, Hoang T N, Tokida T, Tirol-Padre A, Minamikawa K. Impacts of alternate wetting and drying on greenhouse gas emission from paddy field in central Vietnam[J]. Soil Science and Plant Nutrition, 2018,64(1):14-22. |
[76] | 庞桂斌, 徐征和, 杨士红, 徐俊增. 控制灌溉水稻叶片水分利用效率影响因素分析[J]. 农业机械学报, 2017,48(4):233-241. |
Pang G B, Xu Z H, Yang S H, Xu J Z. Influence factors analysis of rice leaf water use efficiency under controlled irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(4):233-241. (in Chinese with English abstract) | |
[77] | 李桂元, 李康勇, 胡春艳. 南方地区超级杂交水稻田间灌溉排水管理最优化研究[J]. 中国农村水利水电, 2018, (5): 14-17+22. |
Li G Y, Li K Y, Hu C Y. Research on optimization of field irrigation and drainage management of super hybrid rice in south China[J]. China Rural Water and Hydropower, 2018, (5): 14-17+22. (in Chinese with English abstract) | |
[78] | 李永松, 陈基旺, 袁帅, 苏雨婷, 崔璨, 蒋艳方, 王晓玉, 陈平平, 易镇邪. 节水灌溉对水稻产量和根系的影响研究进展[J]. 作物研究, 2020,34(2):176-182. |
Li Y S, Chen J W, Yuan S, Su Y T, Cui C, Jiang Y F, Wang X Y, Chen P P, Yi Z X. Research progress on effect of water-saving irrigation on yield and roots of rice[J]. Crop Research, 2020,34(2):176-182. (in Chinese with English abstract) | |
[79] | 胡德勇, 廖健程, 陈哲, 丁鑫, 罗东城, 游峻松. 控制灌溉增氧对超级稻生理生化特性及水分利用效率的影响[J]. 排灌机械工程学报, 2020, 38(5): 500-505+516. |
Hu D Y, Liao J C, Chen Z, Ding X, Luo D C, You J S. Effects of controlled irrigation and oxygenation on physiological and biochemical characteristics and water use efficiency of super rice[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(5): 500-505+516. (in Chinese with English abstract) | |
[80] | 彭世彰, 和玉璞, 杨士红, 徐俊增, 侯会静. 控制灌溉稻田的甲烷减排效果[J]. 农业工程学报, 2013,29(8):100-107. |
Peng S Z, He Y P, Yang S H, Xu J Z, Hou H J. Mitigation of methane emissions from paddy fields under controlled irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(8):100-107. (in Chinese with English abstract) | |
[81] | 侯会静, 杨士红, 徐俊增. 控制灌溉稻田CH4排放的影响因子分析[J]. 节水灌溉, 2016, ( 8):70-75. |
Hou H J, Yang S H, Xu J Z. Influence mechanism of controlled irrigation on CH4 emissions from paddy fields[J]. Water Saving Irrigation, 2016, ( 8):70-75. (in Chinese with English abstract) | |
[82] | 王钧美, 张莉, 徐桃元, 卫琦, 杨士红, 徐俊增. 不同灌溉稻田产甲烷菌与甲烷产生率的变化规律[J]. 灌溉排水学报, 2014,33(4):360-363. |
Wang J M, Zhang L, Xu T Y, Wei Q, Yang S H, Xu J Z. Methanogens and methane production rate in paddy soil under different irrigation treatments[J]. Journal of Irrigation and Drainage, 2014,33(4):360-363. (in Chinese with English abstract) | |
[83] | 石建初, 金欣欣, 李森, 马雯雯, 左强. 覆膜旱作稻田水均衡及蒸腾耗水规律分析[J]. 水利学报, 2016,47(10):1260-1268. |
Shi J C, Jin X X, Li S, Ma W W, Zuo Q. Transpiration analysis based on water balance in a ground cover rice production system[J]. Journal of Hydraulic Engineering, 2016,47(10):1260-1268. (in Chinese with English abstract) | |
[84] | Li F M, Song Q H, Jemba P, Shi Y C. Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem[J]. Soil Biology and Biochemistry, 2004,36(11):1893-1902. |
[85] | Inubushi K, Cheng W, Mizuno T, Lou Y, Hasegawa T, Sakai H, Kobayashi K. Microbial biomass carbon and methane oxidation influenced by rice cultivars and elevated CO2 in a Japanese paddy soil[J]. European Journal of Soil Science, 2011,62(1):69-73 |
[86] | 蔡昆争, 骆世明, 方祥. 水稻覆膜旱作对根叶性状、土壤养分和土壤微生物活性的影响[J]. 生态学报, 2006, ( 6):1903-1911. |
Cai K Z, Luo S M, Fang X. Effects of film mulching of upland rice on root and leaf traits, soil nutrient content and soil microbial activity[J]. Acta Ecologica Sinica, 2006, ( 6):1903-1911. (in Chinese with English abstract) | |
[87] | 胡国辉, 王军可, 王亚梁, 朱德峰, 陈惠哲, 向镜, 张义凯, 张玉屏. 生物可降解膜覆盖对水稻温室气体排放及产量的影响[J]. 生态环境学报, 2020,29(5):977-986. |
Hu G H, Wang J K, Wang Y L, Zhu D F, Chen H Z, Xiang J, Zhang Y K, Zhang Y P. Effect of biodegradable film mulching on greenhouse gas emission and yield of rice(Oryza sativa L.)[J]. Ecology and Environmental Sciences, 2020,29(5):977-986. (in Chinese with English abstract) | |
[88] | 张怡, 吕世华, 马静, 徐华, 袁江, 董瑜皎. 水稻覆膜节水综合高产技术对稻田CH4排放的影响[J]. 生态环境学报, 2013,22(6):29-35. |
Zhang Y, Lv S H, Ma J, Xu H, Yuan J, Dong Y J. Effect of high-yield rice planting technique integrated with plastic mulching for water saving on methane emission from rice fields[J]. Ecology and Environmental Sciences, 2013,22(6):29-35. (in Chinese with English abstract) | |
[89] | 商雨晴, 解梦怡, 王俊, 张少宏. 不同覆盖措施下旱作玉米田土壤呼吸对氮添加的响应[J]. 西北大学学报: 自然科学版, 2020,50(5):711-719. |
Shang Y Q, Xie M Y, Wang J, Zhang S H. Response of soil respiration to nitrogen addition under different mulching measures in a dryland corn field[J]. Journal of Northwest University: Natural Science Edition, 2020,50(5):711-719. (in Chinese with English abstract) | |
[90] | 王栋, 李辉信, 胡锋. 不同耕作方式下覆草旱作稻田土壤肥力特征[J]. 土壤学报, 2011,48(6):1203-1209. |
Wang D, Li H X, Hu F. Effects of mulching and tillage on soil fertility of upland rice field[J]. Acta Pedologica Sinica, 2011,48(6):1203-1209. (in Chinese with English abstract) | |
[91] | 李大明, 成艳红, 刘满强, 秦江涛, 焦加国, 李辉信, 胡锋. 秸秆覆盖旱作对稻田甲烷排放和水稻产量的影响[J]. 农业环境科学学报, 2012,31(10):2053-2059. |
Li D M, Cheng Y H, Liu M Q, Qin J T, Jiao J G, Li H X, Hu F. Effects of non-flooded with straw mulching management on m ethane emission and rice yield[J]. Journal of Agro-Environment Science, 2012,31(10):2053-2059. (in Chinese with English abstract) | |
[92] | 李曼莉, 徐阳春, 沈其荣, 周春霖, 黄新宇, 殷晓燕, 尹金来, Dittert K. 旱作及水作条件下稻田CH4和N2O排放的观察研究[J]. 土壤学报, 2003,40(6):864-869. |
Li M L, Xu Y C, Shen Q R, Zhou C L, Huang X Y, Yin X Y, Yi J L, Dittert K. Methane and nitrous oxide fluxes in aerobic and waterlogged production systems of rice crop[J]. Acta Pedologica Sinica, 2003,40(6):864-869. (in Chinese with English abstract) | |
[93] | 刘芳, 李天安, 樊小林. 控释肥和覆草旱种对晚稻稻田CH4和N2O排放的影响[J]. 西北农林科技大学学报: 自然科学版, 2015,43(10):94-102. |
Liu F, Li T A, Fan X L. Effects of controlled release fertilizer and straw mulching upland rice on CH4 and N2O emissions from late rice field[J]. Journal of Northwest A&F University: Natural Science Edition, 2015,43(10):94-102. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||