中国水稻科学 ›› 2021, Vol. 35 ›› Issue (4): 407-414.DOI: 10.16819/j.1001-7216.2021.201206
• • 上一篇
收稿日期:
2020-12-09
修回日期:
2021-01-24
出版日期:
2021-07-10
发布日期:
2021-07-10
通讯作者:
朱玉君
基金资助:
Yujun ZHU*(), Ziwei ZUO, Zhenhua ZHANG, Yeyang FAN
Received:
2020-12-09
Revised:
2021-01-24
Online:
2021-07-10
Published:
2021-07-10
Contact:
Yujun ZHU
摘要:
水稻重要农艺性状一般由少数主效QTL和大量微效QTL共同控制。水稻主效QTL克隆已取得显著进展,而微效QTL由于遗传作用弱,表型鉴定易受测量误差影响,克隆进展缓慢,但微效QTL在水稻重要农艺性状调控中的作用不容忽视。本文介绍了一种水稻微效QTL精细定位和克隆的新途径。该途径包含2个阶段:1)应用剩余杂合体构建近等基因系群体进行目标QTL的精细定位;2)应用基因编辑技术创制候选基因突变体验证基因功能。应用该策略笔者所在团队在水稻第1染色体长臂精细定位了6个微效粒重和粒型QTL,并成功克隆首个微效粒重QTL。该技术可在方法上为水稻QTL克隆及新种质创制提供更多选择。
朱玉君, 左紫薇, 张振华, 樊叶杨. 一种水稻微效QTL精细定位和克隆新途径[J]. 中国水稻科学, 2021, 35(4): 407-414.
Yujun ZHU, Ziwei ZUO, Zhenhua ZHANG, Yeyang FAN. A New Approach for Fine-mapping and Map-based Cloning of Minor-Effect QTL in Rice[J]. Chinese Journal OF Rice Science, 2021, 35(4): 407-414.
图1 水稻第1染色体长臂7.1 Mb区间鉴定到的6个控制粒重和粒型的微效QTLZS97-珍汕97;MY46-密阳46;A-加性效应,指一个密阳46等位基因取代珍汕97等位基因所产生的遗传效应;R2-QTL效应对表型方差的贡献率;TGW-千粒重(g);GL-粒长(mm);GW-粒宽(mm)。ns-不显著。
Fig. 1. Six minor QTL for grain weight and size detected in the 7.1 Mb region on the long arm of chromosome 1 in rice.ZS97, Zhenshan 97; MY46, Milyang 46; A, Additive effect measured as the genetic effect when a Zhenshan 97 allele is replaced by a Milyang 46 allele; R2, Proportion of phenotypic variance explained by the QTL effect; TGW, 1000-grain weight (g); GL, Grain length(mm); GW, Grain width (mm). ns, Non-significant.
图2 QTL精细定位技术路线RH-剩余杂合体;SeqRHs-杂合区间连续排列的剩余杂合体;NIL-近等基因系。
Fig. 2. Technical route for QTL fine-mapping.RH, Residual heterozygote; SeqRHs, Sequential residual heterozygotes; NIL, Near isogenic line.
名称 Name | 染色体 Chr. | 群体 Population | 区间 Region/kb | 遗传效应 Genetic effect | 颖壳细胞变化 Alteration of integument cell | 文献 Reference | |||
---|---|---|---|---|---|---|---|---|---|
母本 Female | 父本 Male | 世代 Generation | 大小 Size | ||||||
GW2 | 2 | 丰矮占1号 | WY3 | BC3F2 | 6013 | 8.2 | 粒宽、千粒重主效;粒长微效 | 增殖 | [ |
GS2/GL2 | 2 | 中花11 | 宝大粒 | BC4F2 | 2114 | 7.4 | 粒长、千粒重主效;粒宽微效 | 增殖和扩展 | [ |
秀水09 | 巨大粒 | BC2F2 | 未知 | 31.0 | 扩展 | [ | |||
日本晴 | RW11 | BC3F2 | 3891 | 21.0 | 扩展 | [ | |||
TGW2 | 2 | 培矮64S | 9311 | BC3F2 | 9638 | 11.6 | 粒宽、千粒重主效;粒长微效 | 增殖和扩展 | [ |
OsLG3 | 3 | 自然群体 | 粒长、千粒重主效;粒宽微效 | 扩展 | [ | ||||
OsLG3b/qLGY3 | 3 | 日本晴 | SLG-1 | BC5F2 | 4100 | 23.0 | 粒长、千粒重主效;粒宽无效应 | 扩展 | [ |
RD23 | RIL186 | BC3F2 | 4272 | 8.9 | 扩展 | [ | |||
GS3 | 3 | 明恢63 | 川7 | BC3F2 | 5740 | 7.9 | 粒长、千粒重主效;粒宽微效 | 伸长 | [ |
SG3 | 3 | 南洋占 | 川7 | BC4F3 | 3400 | 42.0 | 粒长主效;千粒重微效;粒宽无效应 | 未知 | [ |
GL3.1/qGL3 | 3 | 丰矮占1号 | WY3 | BC3F2:3 | 5542 | 20.0 | 粒长、千粒重主效;粒宽微效 | 增殖和伸长 | [ |
9311 | N411 | BC2F3 | 2968 | 46.6 | 增殖和伸长 | [ | |||
GSA1 | 3 | 武运粳 | CG14 | BC4F2 | 5260 | 29.5 | 粒长、粒宽、千粒重主效 | 增殖和扩展 | [ |
qTGW3/GL3.3/ TGW3 | 3 | 培矮64S | CW23 | BC3F3 | 3986 | 15.6 | 粒长、千粒重主效;粒宽微效 | 伸长 | [ |
南洋占 | 珍汕97 | BC4F3 | 5200 | 15.0 | 伸长 | [ | |||
黄华占 | 吉资1560 | F2 | 2148 | 18.7 | 伸长 | [ | |||
GS5 | 5 | 珍汕97 | H94 | BC3F2 | 9638 | 11.6 | 粒宽、千粒重主效;粒长微效 | 增殖和伸长 | [ |
GSE5 | 5 | 日本晴 | Kasalath | BC3F3 | 4501 | 2.3 | 粒宽、千粒重主效;粒长微效 | 增殖 | [ |
Asominori | IR24 | BC4F2 | 2180 | 22.0 | 增殖 | [ | |||
GW6 | 6 | 华粳籼74 | 南洋占 | BC5F6 | 7400 | 15.5 | 粒宽、千粒重主效;粒长无效应 | 扩展 | [ |
TGW6 | 6 | 日本晴 | Kasalath | BC1F2 | 6240 | 4.9 | 粒长、千粒重主效;粒宽无效应 | 增殖 | [ |
GW6a | 6 | 日本晴 | Kasalath | F2 | 3012 | 40.0 | 粒长、千粒重主效;粒宽微效 | 增殖 | [ |
GL6 | 6 | GLA4 | W1943 | BC1F5 | 2181 | 6.1 | 粒长、千粒重主效;粒宽无效应 | 增殖 | [ |
GLW7 | 7 | 自然群体 | 粒长、千粒重主效;粒宽无效应 | 增殖 | [ | ||||
GL7/GW7 | 7 | 日本晴 | P13 | BC6F2 | 20160 | 20.4 | 粒长、粒宽主效;千粒重无效应 | 伸长 | [ |
华粳籼74 | 天丰A | BC3F2 | 4500 | 20 | 增殖 | [ | |||
GW8 | 8 | 华粳籼74 | Basmati 385 | BC2F2 | 2000 | 7.5 | 粒宽、千粒重主效;粒长微效 | 增殖 | [ |
GS9 | 9 | N138 | 日本晴 | F3 | 2400 | 5.9 | 粒长、粒宽主效;千粒重无效应 | 增殖 | [ |
表1 已克隆的水稻主效粒重和粒型QTL
Table 1 Major QTLs for grain weight and size in rice.
名称 Name | 染色体 Chr. | 群体 Population | 区间 Region/kb | 遗传效应 Genetic effect | 颖壳细胞变化 Alteration of integument cell | 文献 Reference | |||
---|---|---|---|---|---|---|---|---|---|
母本 Female | 父本 Male | 世代 Generation | 大小 Size | ||||||
GW2 | 2 | 丰矮占1号 | WY3 | BC3F2 | 6013 | 8.2 | 粒宽、千粒重主效;粒长微效 | 增殖 | [ |
GS2/GL2 | 2 | 中花11 | 宝大粒 | BC4F2 | 2114 | 7.4 | 粒长、千粒重主效;粒宽微效 | 增殖和扩展 | [ |
秀水09 | 巨大粒 | BC2F2 | 未知 | 31.0 | 扩展 | [ | |||
日本晴 | RW11 | BC3F2 | 3891 | 21.0 | 扩展 | [ | |||
TGW2 | 2 | 培矮64S | 9311 | BC3F2 | 9638 | 11.6 | 粒宽、千粒重主效;粒长微效 | 增殖和扩展 | [ |
OsLG3 | 3 | 自然群体 | 粒长、千粒重主效;粒宽微效 | 扩展 | [ | ||||
OsLG3b/qLGY3 | 3 | 日本晴 | SLG-1 | BC5F2 | 4100 | 23.0 | 粒长、千粒重主效;粒宽无效应 | 扩展 | [ |
RD23 | RIL186 | BC3F2 | 4272 | 8.9 | 扩展 | [ | |||
GS3 | 3 | 明恢63 | 川7 | BC3F2 | 5740 | 7.9 | 粒长、千粒重主效;粒宽微效 | 伸长 | [ |
SG3 | 3 | 南洋占 | 川7 | BC4F3 | 3400 | 42.0 | 粒长主效;千粒重微效;粒宽无效应 | 未知 | [ |
GL3.1/qGL3 | 3 | 丰矮占1号 | WY3 | BC3F2:3 | 5542 | 20.0 | 粒长、千粒重主效;粒宽微效 | 增殖和伸长 | [ |
9311 | N411 | BC2F3 | 2968 | 46.6 | 增殖和伸长 | [ | |||
GSA1 | 3 | 武运粳 | CG14 | BC4F2 | 5260 | 29.5 | 粒长、粒宽、千粒重主效 | 增殖和扩展 | [ |
qTGW3/GL3.3/ TGW3 | 3 | 培矮64S | CW23 | BC3F3 | 3986 | 15.6 | 粒长、千粒重主效;粒宽微效 | 伸长 | [ |
南洋占 | 珍汕97 | BC4F3 | 5200 | 15.0 | 伸长 | [ | |||
黄华占 | 吉资1560 | F2 | 2148 | 18.7 | 伸长 | [ | |||
GS5 | 5 | 珍汕97 | H94 | BC3F2 | 9638 | 11.6 | 粒宽、千粒重主效;粒长微效 | 增殖和伸长 | [ |
GSE5 | 5 | 日本晴 | Kasalath | BC3F3 | 4501 | 2.3 | 粒宽、千粒重主效;粒长微效 | 增殖 | [ |
Asominori | IR24 | BC4F2 | 2180 | 22.0 | 增殖 | [ | |||
GW6 | 6 | 华粳籼74 | 南洋占 | BC5F6 | 7400 | 15.5 | 粒宽、千粒重主效;粒长无效应 | 扩展 | [ |
TGW6 | 6 | 日本晴 | Kasalath | BC1F2 | 6240 | 4.9 | 粒长、千粒重主效;粒宽无效应 | 增殖 | [ |
GW6a | 6 | 日本晴 | Kasalath | F2 | 3012 | 40.0 | 粒长、千粒重主效;粒宽微效 | 增殖 | [ |
GL6 | 6 | GLA4 | W1943 | BC1F5 | 2181 | 6.1 | 粒长、千粒重主效;粒宽无效应 | 增殖 | [ |
GLW7 | 7 | 自然群体 | 粒长、千粒重主效;粒宽无效应 | 增殖 | [ | ||||
GL7/GW7 | 7 | 日本晴 | P13 | BC6F2 | 20160 | 20.4 | 粒长、粒宽主效;千粒重无效应 | 伸长 | [ |
华粳籼74 | 天丰A | BC3F2 | 4500 | 20 | 增殖 | [ | |||
GW8 | 8 | 华粳籼74 | Basmati 385 | BC2F2 | 2000 | 7.5 | 粒宽、千粒重主效;粒长微效 | 增殖 | [ |
GS9 | 9 | N138 | 日本晴 | F3 | 2400 | 5.9 | 粒长、粒宽主效;千粒重无效应 | 增殖 | [ |
[1] | Ashikari M, Sakakibara H, Lin S, Yanamoto T, Takashi T, Nishimura A, Angeles R E, Qian Q, Kitano H, Matsuoka M.Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309: 741-745. |
[2] | Huo X, Wu S, Zhu Z, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Tan L, Sun C.NOG1 increases grain production in rice[J]. Nature Communications, 2017, 8: 1497. |
[3] | Zhang Z, Wang K, Guo L, Zhu Y, Fan Y, Cheng S, Zhuang J.Pleiotropism of the photoperiod-insensitive allele of Hd1 on heading date, plant height and yield traits in rice[J]. PLoS ONE, 2012, 7: e52538. |
[4] | Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40: 761-767. |
[5] | Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J.DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously[J]. Plant Physiology, 2010, 153: 1747-1758. |
[6] | Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q F.A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice[J]. Molecular Plant, 2011, 4: 319-330. |
[7] | Zhang Z H, Cao L Y, Chen J Y, Zhang Y X, Zhuang J Y, Cheng S H.Effects of Hd2 in the presence of the photoperiod-insensitive functional allele of Hd1 in rice[J]. Biology Open, 2016, 5: 1719-1726. |
[8] | Zhu Y, Fan Y, Wang K, Huang D, Liu W, Ying J, Zhuang J.Rice flowering locus T 1 plays an important role in heading date influencing yield traits in rice[J]. Scientific Reports, 2017, 7: 4918. |
[9] | Li N, Xu R, Li Y.Molecular networks of seed size control in plants[J]. Annual Reviews of Plant Biology, 2019, 70: 11. |
[10] | Wang A, Hou Q, Si L, Huang X, Luo J, Lu D, Zhu J, Shangguan Y, Miao J, Xie Y, Wang Y, Zhao Q, Feng Q, Zhou C, Li Y, Fan D, Lu Y, Tian Q, Wang Z, Han B.The PLATZ transcription factor GL6 affect grain length and number in rice[J]. Plant Physiol, 2019, 180: 2077-2090. |
[11] | Ruan B, Shang L, Zhang B, Hu J, Wang Y, Lin H, Zhang A, Liu C, Peng Y, Zhu L, Ren D, Shen L, Dong G, Zhang G, Zeng D, Guo L, Qian Q, Gao Z.Natural variation in the promoter of TGW2 determines grain width and weight in rice[J]. New Phytologist, 2020, 227(2): 3. |
[12] | Shi C L, Dong N Q, Guo T, Ye W W, Shan J X, Lin H X.A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway[J]. Plant Journal, 2020, doi: 10.1111/tpj.14793. |
[13] | Li Q, Lu L, Liu H, Bai X, Zhou X, Wu B, Yuan M, Yang L, Xing Y.A minor QTL, SG3, encoding an R2R3-MYB protein, negatively controls grain length in rice[J]. Theoretical and Applied Genetics, 2020, 133: 2387-2399. doi.org/10.1007/s00122-020-03606-z. |
[14] | Dong N Q, Sun Y, Guo T, Shi C L, Zhang Y M, Kan Y, Xiang Y H, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Wang Y, Ye W W, Shan J X, Lin H X.UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice[J]. Nature Communications, 2020, doi.org/10.1038/s41467-020-16403-5. |
[15] | Chan A N, Wang L L, Zhu Y J, Fan Y Y, Zhuang J Y, Zhuang Z H. Identification through fine mapping and verification using CRISRP/Cas9-targeted mutagenesis for a minor QTL controlling grain weight in rice[J]. Theoretical and Applied Genetics, 2021, 134: 327-337. https://doi.org/10.1007/s00122-020-03699-6. |
[16] | Noriko K, Masayuki K, Kei K, Takuya K, Tsutomu N, Yuji H, Itsuro T, Takashi S, Kiyoaki K.Identification of quantitative trait loci for rice grain quality and yield-related traits in two closely related Oryza L. subsp. japonica cultivars grown near the northernmost limit for rice paddy cultivation[J]. Breeding Science, 2017, 67: 191-206. |
[17] | Zhang H W, Fan Y Y, Zhu Y J, Chen J Y, Yu S B, Zhuang J Y.Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice[J]. BMC Genetics, 2016, 17: 98-107. |
[18] | Wang L L, Chen Y Y, Guo L, Zhang H W, Fan Y Y, Zhuang J Y.Dissection of qTGW1.2 to three QTLs for grain weight and grain size in rice (Oryza sativa L.)[J]. Euphytica, 2015, 202: 119-127. |
[19] | Dong Q, Zhang Z H, Wang LL, Zhu Y J, Fan Y Y, Mou T M, Ma L Y, Zhuang J Y.Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice[J]. Rice, 2018, 11: 44. |
[20] | Wang W, Wang L, Zhu Y, Fan Y, Zhuang J.Fine-mapping of qTGW1.2a, a quantitative trait locus for 1000-grain weight in rice[J]. Rice Science, 2019, 26(4): 220-228. |
[21] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337: 816. |
[22] | Hu X, Meng X, Liu Q, Wang K.Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice[J]. Plant Biotechnology Journal, 2018, 16: 292-297. |
[23] | Meng X, Hu X, Liu Q, Song X, Gao C, Li J, Wang K.Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice[J]. Science China: Life Science, 2018, 61: 122-125. |
[24] | Shan Q, Wang Y, Li J, Gao C.Genome editing in rice and wheat using the CRISPR/Cas system[J]. Nature Protocol, 2014, 9: 2395-2410. |
[25] | Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q.GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications, 2018, 9: 1240. |
[26] | Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J.TGW3, a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant, 2018, 11: 750-753. |
[27] | Zhuang J Y, Fan Y Y, Rao Z M, Wu J L, Xia Y W, Zheng K L.Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice[J]. Theoretical and Applied Genetics, 2002, 105: 1137-1145. |
[28] | Guo L, Wang K, Chen J, Huang D, Fan Y, Zhuang J Y.Dissection of two quantitative trait loci for grain weight linked in repulsion on the long arm of chromosome 1 of rice (Oryza sativa L.)[J]. Crop Journal, 2013, 1: 70-76. |
[29] | Li N, Xu R, Duan P, Li Y H.Control of grain size in rice.Plant Reproduction, 2018, 31: 237-251. DOI: 10.1007/ s00497-018-0333-6. |
[30] | 刘喜, 牟昌铃, 周春雷, 程治军, 江玲, 万建民. 水稻粒型基因克隆和调控机制研究进展[J]. 中国水稻科学, 2018, 32(1): 1-11. |
Liu X, Mou C, Zhou C, Cheng Z, Jiang L, Wang J.Research progress on cloning and regulation mechanism of rice grain shapes genes[J]. Chinese Journal of Rice Science, 2018, 32(1): 1-11. (in Chinese with English abstract). | |
[31] | Fan Y, Li Y.Molecular, cellular and Yin-Yang regulation of grain size and number in rice[J]. Molecular Breeding, 2019, 39: 163. |
[32] | 康艺维, 陈玉宇, 张迎信. 水稻粒型基因克隆研究进展及育种应用展望[J]. 中国水稻科学, 2020, 34(6): 479-490. |
Kang Y W, Chen Y Y, Zhang Y X.Research progress and breeding prospects of grain size associated genes in rice[J]. Chinese Journal of Rice Science, 2020, 34(6): 479-490. (in Chinese with English abstract). | |
[33] | Song X J, Huang W, Shi M, Zhu M Z, Lin H X.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39: 623-630. |
[34] | Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q.A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant, 2015, 8: 1455-1465. |
[35] | Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, Chen H, Zhu X, Li Y.Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nature Plants, 2016, 2: 15203. |
[36] | Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C.Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nature Plants, 2016, 2. |
[37] | Yu J, Xiong H, Zhu X, Zhang H, Li H, Miao J, Wang W, Tang Z, Zhang Z, Yao G, Zhang Q, Pan Y, Wang X, Rashid MAR, Li J, Gao Y, Li Z, Yang W, Fu X, Li Z,.OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap[J]. BMC Biology, 2017, 15: 28-45. |
[38] | Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q, Rashid MAR, Li J, Zhang H, Li Z.Alternative splicing of OsLG3b controls grain length and yield in japonica rice[J]. Plant Biotechnology Journal, 2018, doi:10.1111/pbi.12903. |
[39] | Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X.G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nature Communications, 2018, 9: 852. |
[40] | Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112: 1164-1171. |
[41] | Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L, Gao J P, Lin H X.The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22: 1666-1680. |
[42] | Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 26, 109: 21 534-21 539. |
[43] | Hu Z, Lu S J, Wang M J, He H, Sun L, Wang H, Liu X H, Jiang L, Sun J L, Xin X, Kong W, Chu C, Xue H W, Yang J, Luo X, Liu J X.A novel QTL qTGW3 encodes the GSK3/SHAGGY-Like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant, 2018, 11: 736-749. |
[44] | Xia D, Zhou H, Liu R, Dan W, Li P, Wu B, Chen J, Wang L, Gao G, Zhang Q, He Y.GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to form extra-long grains in rice[J]. Molecular Plant, 2018, 11: 754-756. |
[45] | Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q.Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43: 1266-1269. |
[46] | Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M.Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics, 2008, 40(8): 1023-1028. |
[47] | Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J.Isolation and initial characterization of GW5, a major QTL associated with grain width and weight[J]. Cell Research, 2008, 18: 1199-1209. |
[48] | Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu Bun-ichi, Onishi A, Miyagawa H, Katoh E.Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 2013, 45: 707-711. |
[49] | Song X J, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen S E, Ashikari M.Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 76-81. |
[50] | Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B.OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics, 2016, 48: 447-456. |
[51] | Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q.Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47: 944-948. |
[52] | Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X.The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47: 949-954. |
[53] | Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X.Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44: 950-954. |
[54] | Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler S E, Qian Q, Zhang Q-F, Li J, Han B.Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 2010, 42(11): 961-969. |
[55] | Huang L, Zhang R, Huang G, Li Y, Melaku G, Zhang S, Chen H, Zhao Y, Zhang J, Zhang Y, Hu F.Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system[J]. Crop Journal, 2018, 6: 475-481. |
[56] | Wang C, Liu Q, Shen Y, Hua Y, Wang J, Lin J, Wu M, Sun T, Cheng Z, Mercier R, Wang K.Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nature Biotechnology, 2019, doi.org/10.1038/s41587-018-0003-0. |
[57] | Li S, Shen L, Hu P, Liu Q, Zhu X, Qian Q, Wang K, Wang Y.Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing[J]. Journal of Integrative Plant Biology, 2019, doi: 10.1111/jipb.12774. |
[58] | 黄忠明, 周延彪, 唐晓丹, 赵新辉, 周在为, 符星学, 王凯, 史江伟, 李艳锋, 符辰建, 杨远柱. 基于CRISPR/Cas9技术的水稻温敏不育基因tms5突变体的构建[J]. 作物学报, 2018, 44(6): 844-851. |
Huang Z M, Zhou Y B, Tang X D, Zhao X H, Zhou Z W, Fu X X, Wang K, Shi J W, Li Y F, Fu C J, Yang Y Z.Construction of tms5 mutants in rice based on CRISPR/Cas9 technology[J]. Acta Agronomica Sinica, 2018, 44(6): 844-851. (in Chinese with English abstract). |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 丁正权, 潘月云, 施扬, 黄海祥. 基于基因芯片的嘉禾系列长粒优质食味粳稻综合评价与比较[J]. 中国水稻科学, 2024, 38(4): 397-408. |
[5] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[6] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[7] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[8] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[9] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[10] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[11] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[12] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[13] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[14] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[15] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||