中国水稻科学 ›› 2021, Vol. 35 ›› Issue (4): 342-351.DOI: 10.16819/j.1001-7216.2021.200913
江南1,3,#, 颜旭1,2,#, 周延彪1,3, 周群丰1,3, 王凯1,3, 杨远柱1,2,3,4,*()
收稿日期:
2020-09-18
修回日期:
2021-01-15
出版日期:
2021-07-10
发布日期:
2021-07-10
通讯作者:
杨远柱
作者简介:
#共同第一作者
基金资助:
Nan JIANG1,3,#, Xu YAN1,2,#, Yanbiao ZHOU1,3, Qunfeng ZHOU1,3, Kai WANG1,3, Yuanzhu YANG1,2,3,4,*()
Received:
2020-09-18
Revised:
2021-01-15
Online:
2021-07-10
Published:
2021-07-10
Contact:
Yuanzhu YANG
About author:
#These authors contributed equally to this work
摘要:
镉是一种生物毒性极强且分布广泛的重金属元素。农田中的镉不仅影响作物的生长发育,而且可通过食物链进入人体内,当富集到一定程度会危害人体健康。水稻是我国重要的粮食作物之一,在保障我国粮食安全中的地位举足轻重,但水稻同时也是对镉吸收和积累最强的大宗谷类作物之一。近些年“镉大米”事件在我国频繁发生,稻米镉污染已成为一个备受社会关注的严峻问题,治理稻米镉污染迫在眉睫。本文从低镉水稻品种筛选与培育、优化水分管理、调节土壤pH值、施用叶面阻隔剂等方面对稻米镉污染治理技术的研究进展进行了综述,旨在为技术的集成、推广和应用提供理论依据,同时为新技术的研发提供新的思路。
江南, 颜旭, 周延彪, 周群丰, 王凯, 杨远柱. 水稻镉积累影响因素与低镉稻米生产策略[J]. 中国水稻科学, 2021, 35(4): 342-351.
Nan JIANG, Xu YAN, Yanbiao ZHOU, Qunfeng ZHOU, Kai WANG, Yuanzhu YANG. Factors Affecting Cadmium Accumulation in Rice and Strategies for Minimization[J]. Chinese Journal OF Rice Science, 2021, 35(4): 342-351.
品种 Variety | 母本 Female parent | 父本 Male parent | 类型 Type | 审定区域 Certified region |
---|---|---|---|---|
湘早籼45号 Xiangzaoxian 45 | 常规稻 Conventional variety | 湖南 Hunan | ||
中嘉早17 Zhongjiazao 17 | 常规稻 Conventional variety | 长江中下游/湖北 Middle and lower reaches of the Yangtze River/Hubei | ||
湘早籼32号 Xiangzaoxian 32 | 常规稻 Conventional variety | 湖南 Hunan | ||
湘早籼42号 Xiangzaoxian 42 | 常规稻 Conventional variety | 湖南 Hunan | ||
湘晚籼12号Xiangwanxian 12 | 常规稻 Conventional variety | 湖南/长江流域南部/长江中下游 Hunan/Southern reaches of the Yangtze River/Middle and lower reaches of the Yangtze River | ||
湘晚籼13号Xiangwanxian 13 | 常规稻 Conventional variety | 湖南 Hunan | ||
株两优189 Zhuliangyou 189 | 株1S Zhu 1S | R189 | 两系杂交稻 Two-line hybrid rice | 湖南/长江中下游 Hunan/Middle and lower reaches of the Yangtze River |
株两优819 Zhuliangyou 819 | 株1S Zhu 1S | R819 | 两系杂交稻 Two-line hybrid rice | 湖南/江西 Hunan/Jiangxi |
株两优729 Zhuliangyou 729 | 株1S Zhu 1S | E7299 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
株两优706 Zhuliangyou 706 | 株1S Zhu 1S | R706 | 两系杂交稻 Two-line hybrid rice | 江西 Jiangxi |
株两优211 Zhuliangyou 211 | 株1S Zhu 1S | 华211 Hua 211 | 两系杂交稻 Two-line hybrid rice | 江西/湖南/长江中下游 Jiangxi/Hunan/Middle and lower reaches of the Yangtze River |
株两优15 Zhuliangyou 15 | 株1S Zhu 1S | H98-15 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
株两优176 Zhuliangyou 176 | 株1S Zhu 1S | 怀176 Huai 176 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
株两优929 Zhuliangyou 929 | 株1S Zhu 1S | E929 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
潭两优215 Tanliangyou 215 | 潭农S Tannong S | 潭早215 Tanzao 215 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
两优早17 Liangyouzao 17 | 9771S | 中嘉早17 Zhongjiazao 17 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
C两优386 C Liangyou 386 | C815S | R386 | 两系杂交稻 Two-line hybrid rice | 湖南/江西 Hunan/Jiangxi |
C两优651 C Liangyou 651 | C815S | 湘丰651 Xiangfeng 651 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
C两优755 C Liangyou 755 | C815S | 755 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
C两优87 C Liangyou 87 | C815S | 蜀恢527 Shuhui 527 | 两系杂交稻 Two-line hybrid rice | 湖南/浙江 Hunan/Zhejiang |
Y两优2108 Y Liangyou 2108 | Y58S | 怀恢210-8 Huaihui 210-8 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
Y两优488 Y Liangyou 488 | Y58S | 奥R488 Ao R 488 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
Y两优9918 Y Liangyou 9918 | Y58S | R928 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
Y两优19 Y Liangyou 19 | Y58S | 信丰19 Xinfeng 19 | 两系杂交稻 Two-line hybrid rice | 长江中下游 Middle and lower reaches of the Yangtze River |
深两优5814 Shenliangyou 5814 | Y58S | 丙4114 Bing 4114 | 两系杂交稻 Two-line hybrid rice | 广东/长江中下游/重庆/海南/长江上游 Guangdong/Middle and lower reaches of the Yangtze River/Chongqing/Hainan/Upper reaches of the Yangtze River |
晶两优华占 Jingliangyouhuazhan | 晶4155S Jing 4155S | 华占 Huazhan | 两系杂交稻 Two-line hybrid rice | 湖南/江西/海南/华南/长江上游/长江中下游/广东/广西 Hunan/Jiangxi/Hainan/South China/Middle and lower reaches of the Yangtze River/Upper reaches of the Yangtze River/Guangdong/Guangxi |
建两优华占 Jianliangyouhuazhan | 建S Jian S | 华占 Huazhan | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
皖稻153 Wandao 153 | 1892S | RH003 | 两系杂交稻 Two-line hybrid rice | 安徽/长江中下游/湖北 Anhui/Middle and lower reaches of the Yangtze River |
和两优1号 Heliangyou 1 | 和620S He 620S | 丙4114 Bing 4114 | 两系杂交稻 Two-line hybrid rice | 广西/长江中下游 Guangxi/Middle and lower reaches of the Yangtze River |
C两优266 C Liangyou 266 | C815S | R07266 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
C两优7号 C Liangyou 7 | C815S | R777 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
C两优396 C Liangyou 396 | C815S | R396 | 两系杂交稻 Two-line hybrid rice | 湖南/湖北/长江中下游 Hunan/Hubei/Middle and lower reaches of the Yangtze River |
两优336 Liangyou 336 | C815S | R336 | 两系杂交稻 Two-line hybrid rice | 湖南/长江中下游 Hunan/Middle and lower reaches of the Yangtze River |
欣荣优123 Xinrongyou 123 | 欣荣A Xinrong A | R123 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
深优9595 Shenyou 9595 | 深95A Shen 95A | R6295 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
深优9519 Shenyou 9519 | 深95A Shen 95A | R6319 | 三系杂交稻 Three-line hybrid rice | 长江中下游/广西 Middle and lower reaches of the Yangtze River/Guangxi |
德香4103 Dexiang 4103 | 德香074A Dexiang 074A | 泸恢H103 Luhui H103 | 三系杂交稻 Three-line hybrid rice | 四川/云南普洱、文山、红河/重庆/长江中下游 Sichuan/Puer, Wenshan, Honghe in Yunnan/ Chongqing/ Middle and lower reaches of the Yangtze River |
泸优9803 Luyou 9803 | 泸98A Lu 98A | 泸恢H103 Luhui H103 | 三系杂交稻 Three-line hybrid rice | 长江中下游 Middle and lower reaches of the Yangtze River |
金优59 Jinyou 59 | 金23A Jin 23A | R59 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
金优498 Jinyou 498 | 金23A Jin 23A | R498 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
金优284 Jinyou 284 | 金23A Jin 23A | 华恢284 Huahui 284 | 三系杂交稻 Three-line hybrid rice | 湖南/江西/长江中下游/陕西 Hunan/Jiangxi/Middle and lower reaches of the Yangtze River/Shaanxi |
品种 Variety | 母本 Female parent | 父本 Male parent | 类型 Type | 审定区域 Certified region |
湘菲优8118 Xiangfeiyou 8118 | 湘菲A Xiangfei A | 湘恢8118 Xianghui 8118 | 三系杂交稻 Three-line hybrid rice | 湖南/长江中下游 Hunan/Middle and lower reaches of the Yangtze River |
深优9559 Shenyou 9559 | 深95A Shen 95A | R5359 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
深优9586 Shenyou 9586 | 深95A Shen 95A | R8086 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
H优159 H You 159 | H28A | R51059 | 三系杂交稻 Three-line hybrid rice | 湖南/长江中下游 Hunan/Middle and lower reaches of the Yangtze River |
H优518 H You 518 | H28A | 51084 | 三系杂交稻 Three-line hybrid rice | 湖南/长江中下游 Hunan/Middle and lower reaches of the Yangtze River |
丰源优272 Fengyuanyou 272 | 丰源A Fengyuan A | 华恢272 Huahui 272 | 三系杂交稻 Three-line hybrid rice | 长江中下游 Middle and lower reaches of the Yangtze River |
中优9918 Zhongyou 9918 | 中9A Zhong 9A | R9918 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
隆香优130 Longxiangyou 130 | 隆香A Longxiang A | R130 | 三系杂交稻 Three-line hybrid rice | 湖南/江西 Hunan/Jiangxi |
表1 湖南省筛选认定的镉低积累水稻品种
Table 1 Low-cadmium rice varieties screened and certified by Hunan Province.
品种 Variety | 母本 Female parent | 父本 Male parent | 类型 Type | 审定区域 Certified region |
---|---|---|---|---|
湘早籼45号 Xiangzaoxian 45 | 常规稻 Conventional variety | 湖南 Hunan | ||
中嘉早17 Zhongjiazao 17 | 常规稻 Conventional variety | 长江中下游/湖北 Middle and lower reaches of the Yangtze River/Hubei | ||
湘早籼32号 Xiangzaoxian 32 | 常规稻 Conventional variety | 湖南 Hunan | ||
湘早籼42号 Xiangzaoxian 42 | 常规稻 Conventional variety | 湖南 Hunan | ||
湘晚籼12号Xiangwanxian 12 | 常规稻 Conventional variety | 湖南/长江流域南部/长江中下游 Hunan/Southern reaches of the Yangtze River/Middle and lower reaches of the Yangtze River | ||
湘晚籼13号Xiangwanxian 13 | 常规稻 Conventional variety | 湖南 Hunan | ||
株两优189 Zhuliangyou 189 | 株1S Zhu 1S | R189 | 两系杂交稻 Two-line hybrid rice | 湖南/长江中下游 Hunan/Middle and lower reaches of the Yangtze River |
株两优819 Zhuliangyou 819 | 株1S Zhu 1S | R819 | 两系杂交稻 Two-line hybrid rice | 湖南/江西 Hunan/Jiangxi |
株两优729 Zhuliangyou 729 | 株1S Zhu 1S | E7299 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
株两优706 Zhuliangyou 706 | 株1S Zhu 1S | R706 | 两系杂交稻 Two-line hybrid rice | 江西 Jiangxi |
株两优211 Zhuliangyou 211 | 株1S Zhu 1S | 华211 Hua 211 | 两系杂交稻 Two-line hybrid rice | 江西/湖南/长江中下游 Jiangxi/Hunan/Middle and lower reaches of the Yangtze River |
株两优15 Zhuliangyou 15 | 株1S Zhu 1S | H98-15 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
株两优176 Zhuliangyou 176 | 株1S Zhu 1S | 怀176 Huai 176 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
株两优929 Zhuliangyou 929 | 株1S Zhu 1S | E929 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
潭两优215 Tanliangyou 215 | 潭农S Tannong S | 潭早215 Tanzao 215 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
两优早17 Liangyouzao 17 | 9771S | 中嘉早17 Zhongjiazao 17 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
C两优386 C Liangyou 386 | C815S | R386 | 两系杂交稻 Two-line hybrid rice | 湖南/江西 Hunan/Jiangxi |
C两优651 C Liangyou 651 | C815S | 湘丰651 Xiangfeng 651 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
C两优755 C Liangyou 755 | C815S | 755 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
C两优87 C Liangyou 87 | C815S | 蜀恢527 Shuhui 527 | 两系杂交稻 Two-line hybrid rice | 湖南/浙江 Hunan/Zhejiang |
Y两优2108 Y Liangyou 2108 | Y58S | 怀恢210-8 Huaihui 210-8 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
Y两优488 Y Liangyou 488 | Y58S | 奥R488 Ao R 488 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
Y两优9918 Y Liangyou 9918 | Y58S | R928 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
Y两优19 Y Liangyou 19 | Y58S | 信丰19 Xinfeng 19 | 两系杂交稻 Two-line hybrid rice | 长江中下游 Middle and lower reaches of the Yangtze River |
深两优5814 Shenliangyou 5814 | Y58S | 丙4114 Bing 4114 | 两系杂交稻 Two-line hybrid rice | 广东/长江中下游/重庆/海南/长江上游 Guangdong/Middle and lower reaches of the Yangtze River/Chongqing/Hainan/Upper reaches of the Yangtze River |
晶两优华占 Jingliangyouhuazhan | 晶4155S Jing 4155S | 华占 Huazhan | 两系杂交稻 Two-line hybrid rice | 湖南/江西/海南/华南/长江上游/长江中下游/广东/广西 Hunan/Jiangxi/Hainan/South China/Middle and lower reaches of the Yangtze River/Upper reaches of the Yangtze River/Guangdong/Guangxi |
建两优华占 Jianliangyouhuazhan | 建S Jian S | 华占 Huazhan | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
皖稻153 Wandao 153 | 1892S | RH003 | 两系杂交稻 Two-line hybrid rice | 安徽/长江中下游/湖北 Anhui/Middle and lower reaches of the Yangtze River |
和两优1号 Heliangyou 1 | 和620S He 620S | 丙4114 Bing 4114 | 两系杂交稻 Two-line hybrid rice | 广西/长江中下游 Guangxi/Middle and lower reaches of the Yangtze River |
C两优266 C Liangyou 266 | C815S | R07266 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
C两优7号 C Liangyou 7 | C815S | R777 | 两系杂交稻 Two-line hybrid rice | 湖南 Hunan |
C两优396 C Liangyou 396 | C815S | R396 | 两系杂交稻 Two-line hybrid rice | 湖南/湖北/长江中下游 Hunan/Hubei/Middle and lower reaches of the Yangtze River |
两优336 Liangyou 336 | C815S | R336 | 两系杂交稻 Two-line hybrid rice | 湖南/长江中下游 Hunan/Middle and lower reaches of the Yangtze River |
欣荣优123 Xinrongyou 123 | 欣荣A Xinrong A | R123 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
深优9595 Shenyou 9595 | 深95A Shen 95A | R6295 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
深优9519 Shenyou 9519 | 深95A Shen 95A | R6319 | 三系杂交稻 Three-line hybrid rice | 长江中下游/广西 Middle and lower reaches of the Yangtze River/Guangxi |
德香4103 Dexiang 4103 | 德香074A Dexiang 074A | 泸恢H103 Luhui H103 | 三系杂交稻 Three-line hybrid rice | 四川/云南普洱、文山、红河/重庆/长江中下游 Sichuan/Puer, Wenshan, Honghe in Yunnan/ Chongqing/ Middle and lower reaches of the Yangtze River |
泸优9803 Luyou 9803 | 泸98A Lu 98A | 泸恢H103 Luhui H103 | 三系杂交稻 Three-line hybrid rice | 长江中下游 Middle and lower reaches of the Yangtze River |
金优59 Jinyou 59 | 金23A Jin 23A | R59 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
金优498 Jinyou 498 | 金23A Jin 23A | R498 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
金优284 Jinyou 284 | 金23A Jin 23A | 华恢284 Huahui 284 | 三系杂交稻 Three-line hybrid rice | 湖南/江西/长江中下游/陕西 Hunan/Jiangxi/Middle and lower reaches of the Yangtze River/Shaanxi |
品种 Variety | 母本 Female parent | 父本 Male parent | 类型 Type | 审定区域 Certified region |
湘菲优8118 Xiangfeiyou 8118 | 湘菲A Xiangfei A | 湘恢8118 Xianghui 8118 | 三系杂交稻 Three-line hybrid rice | 湖南/长江中下游 Hunan/Middle and lower reaches of the Yangtze River |
深优9559 Shenyou 9559 | 深95A Shen 95A | R5359 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
深优9586 Shenyou 9586 | 深95A Shen 95A | R8086 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
H优159 H You 159 | H28A | R51059 | 三系杂交稻 Three-line hybrid rice | 湖南/长江中下游 Hunan/Middle and lower reaches of the Yangtze River |
H优518 H You 518 | H28A | 51084 | 三系杂交稻 Three-line hybrid rice | 湖南/长江中下游 Hunan/Middle and lower reaches of the Yangtze River |
丰源优272 Fengyuanyou 272 | 丰源A Fengyuan A | 华恢272 Huahui 272 | 三系杂交稻 Three-line hybrid rice | 长江中下游 Middle and lower reaches of the Yangtze River |
中优9918 Zhongyou 9918 | 中9A Zhong 9A | R9918 | 三系杂交稻 Three-line hybrid rice | 湖南 Hunan |
隆香优130 Longxiangyou 130 | 隆香A Longxiang A | R130 | 三系杂交稻 Three-line hybrid rice | 湖南/江西 Hunan/Jiangxi |
[1] | Zhao F J, Ma Y, Zhu Y G, Tang Z, McGrath S P. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science and Technology, 2015, 49(2): 750-759. |
[2] | 程旺大, 姚海根, 吴伟, 张国平. 土壤-水稻体系中的重金属污染及其控制[J]. 中国农业科技导报, 2005, 7(4): 51-54. |
Cheng W D, Yao H G, Wu W, Zhang G P.Heavy metal pollution and its countermeasures in soil-rice system[J]. Journal of Agricultural Science and Technology, 2005, 7(4): 51-54. (in Chinese with English abstract) | |
[3] | World Health Organization (WHO). Environmental health criteria 134: Cadmium[R]. Geneva: WHO, 1992. |
[4] | International Agency for Research on Cancer (IARC). Beryllium, cadmium, mercury and exposures in the glass manufacturing industry[R]. Lyon: IARC, 1993. |
[5] | Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for cadmium[R]. Atlanta: ATSDR, 1999. |
[6] | Clemens S, Ma J F.Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology, 2016, 67(1): 489. |
[7] | Chen H P, Tang Z, Wang P, Zhao F J.Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice[J]. Environmental Pollution, 2018, 238: 482-490. |
[8] | 王蜜安, 尹丽辉, 彭建祥, 聂凌利, 李翊君, 何杰, 张文, 敖和军. 综合降镉(VIP)技术对降低糙米镉含量的影响研究[J]. 中国稻米, 2016, 22(1): 43-47. |
Wang M A, Yin L H, Peng J X, Nie L L, Li Y J, He J, Zhang W, Ao H J.Effects of VIP technology on reducing cadmium content in rice[J]. China Rice, 2016, 22(1): 43-47. (in Chinese with English abstract) | |
[9] | Zhu H H, Xu C, Zhu Q H, Huang D Y.Strategies to enable the safe use of cadmium-contaminated paddy soils in Southern China[M]// Luo Y M, Tu C. Twenty Years of Research and Development on Soil Pollution and Remediation in China. Singapore: Springer, 2018: 429-439. |
[10] | 杨小粉, 刘钦云, 袁向红, 吴勇俊, 郑海飘, 聂凌利, 李翊君, 张文, 敖和军. 综合降镉技术在不同污染程度稻田土壤下的应用效果研究[J]. 中国稻米, 2018, 24(2): 37-41. |
Yang X F, Liu Q Y, Yuan X H, Wu Y J, Zhen H P, Nie L L, Li Y J, Zhang W, Ao H J.Effects of VIP technology on reducing cadmium under different cadmium pollution degree paddy soil[J]. China Rice, 2018, 24(2): 37-41. (in Chinese with English abstract) | |
[11] | Morishita T, Fumoto N, Yoshizawa T, Kagawa K.Varietal differences in cadmium levels of rice grains of japonica, indica, javanica, and hybrid varieties produced in the same plot of a field[J]. Soil Science and Plant Nutrition, 1987, 33(4): 629-637. |
[12] | 陈彩艳, 唐文帮. 筛选和培育镉低积累水稻品种的进展和问题探讨[J]. 农业现代化研究, 2018, 39(6): 1044-1051. |
Chen C Y, Tang W B.A perspective on the selection and breeding of low-Cd rice[J]. Research of Agricultural Modernization, 2018, 39(6): 1044-1051. (in Chinese) | |
[13] | Liu X J, Tian G J, Jiang D, Zhang C, Kong L Q.Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale[J]. Environmental Science and Pollution Research, 2016, 23(18): 17941-17952. |
[14] | Duan G L, Shao G S, Tang Z, Chen H P, Wang B X, Tang Z, Yang Y P, Liu Y C, Zhao F J.Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10(1): 9. |
[15] | Chen J G, Zou W L, Meng L J, Fan X R, Xu G H, Ye G Y.Advances in the uptake and transport mechanisms and QTLs mapping of cadmium in rice[J]. International Journal of Molecular Sciences, 2019, 20(14): 3417. |
[16] | 丁仕林, 刘朝雷, 钱前, 高振宇. 水稻重金属镉吸收和转运的分子遗传机制研究进展[J]. 中国水稻科学, 2019, 33(5): 383-390. |
Ding S L, Liu C L, Qian Q, Gao Z Y.Research advances on molecular genetic mechanism for cadmium absorption and transportation in rice.Chinese Journal of Rice Science, 2019, 33(5): 383-390. (in Chinese with English abstract) | |
[17] | Nelson N.Metal ion transporters and homeostasis[J]. The EMBO Journal, 1999, 18(16): 4361-4371. |
[18] | Sasaki A, Yamaji N, Yokosho K, Ma J F.Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2155-2167. |
[19] | Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K.Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2: 286. |
[20] | Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa N K, Nakanishi H.Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19166-19171. |
[21] | Yang M, Zhang Y Y, Zhang L J, Hu J T, Zhang X, Lu K, Dong H X, Wang D J, Zhao F J, Huang C F, Lian X M.OsNRAMP5 contributes to manganese translocation and distribution in rice shoots[J]. Journal of Experimental Botany, 2014, 65(17): 4849-4861. |
[22] | Tang L, Mao B G, Li Y K, Lv Q M, Zhang L P, Chen C Y, He H J, Wang W P, Zeng X F, Pan Y L, Hu Y Y, Peng Y, Fu X Q, Li H Q, Xia S T, Zhao B R.Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7(1): 1-12. |
[23] | Yang C H, Zhang Y, Huang C F.Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5[J]. Journal of Integrative Agriculture, 2019, 18(3): 688-697. |
[24] | Wang T K, Li Y X, Fu Y F, Xie H J, Song S F, Qiu M D, Wen J, Chen M W, Chen G, Tian Y, Li C X, Yuan D Y, Wang J L, Li L.Mutation at different sites of metal transporter gene OsNramp5 affects Cd accumulation and related agronomic traits in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2019, 10: 1081. |
[25] | Liu C L, Chen G, Li Y Y, Peng Y L, Zang A P, Hong K, Jiang H Z, Ruan B P, Zhang B, Yang S L, Gao Z Y, Qian Q.Characterization of a major QTL for manganese accumulation in rice grain[J]. Scientific Reports, 2017, 7(1): 1-12. |
[26] | Lv Q M, Li W G, Sun Z Z, Ouyang N, Jing X, He Q, Wu J, Zheng J K, Zheng J T, Tao S Q, Zhu R S, Tian Y, Duan M J, Tan Y N, Yu D, Sheng X B, Sun X W, Jia G F, Gao H Z, Qin Zeng, Li Y F, Tang L, Xu Q S, Zhao B R, Huang Z Y, Lu H F, Li N, Zhao J, Zhu L H, Li D, Yuan L P, Yuan D Y.Resequencing of 1,143 indica rice accessions reveals important genetic variations and different heterosis patterns[J]. Nature Communications, 2020, 11(1): 1-10. |
[27] | Chang J D, Huang S, Konishi N, Wang P, Chen J, Huang X Y, Ma J F, Zhao F J.Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain[J]. Journal of Experimental Botany, 2020, 71(18): 5705-5715. |
[28] | Chang J D, Huang S, Yamaji N, Zhang W W, Ma J F, Zhao F J.OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice[J]. Plant, Cell and Environment, 2020, 43(10): 2476-2491. |
[29] | Ueno D, Koyama E, Kono I, Tsuyu A, Yano M, Ma J F.Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice[J]. Plant and Cell Physiology, 2009, 50(12): 2223-2233. |
[30] | Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Ma J F.Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38): 16500-16505. |
[31] | Sasaki A, Yamaji N, Ma J F.Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. Journal of Experimental Botany, 2014, 65(20): 6013-6021. |
[32] | Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H.OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011, 189(1): 190-199. |
[33] | Ueno D, Koyama E, Yamaji N, Ma J F.Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan[J]. Journal of Experimental Botany, 2011, 62(7): 2265-2272. |
[34] | Yan J L, Wang P T, Wang P, Yang M, Lian X M, Tang Z, Huang C F, Salt D E, Zhao F J.A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of japonica rice cultivars[J]. Plant, Cell and Environment, 2016, 39(9): 1941-1954. |
[35] | Sun C J, Yang M, Li Y, Tian J J, Zhang Y Y, Lian L M, Liu Z H, Chen K, Li Y T, Lv K, Lian X M.Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3[J]. Journal of Experimental Botany, 2019, 70(21): 6389-6400. |
[36] | Sui F Q, Zhao D K, Zhu H T, Gong Y F, Tang Z, Huang X Y, Zhang G Q, Zhao F J.Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain[J]. Journal of Experimental Botany, 2019, 70(10): 2857-2871. |
[37] | Liu C L, Gao Z Y, Shang L G, Shang L G, Yang C H, Ruan B P, Zeng D L, Guo L B, Zhao F J, Huang C F, Qian Q.Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice[J]. Journal of Integrative Plant Biology, 2020, 62(3): 314-329. |
[38] | Yan H L, Xu W X, Xie J Y, Gao Y W, Wu L L, Sun L, Feng L, Chen X, Zhang T, Dai C H, Li T, Lin X N, Zhang Z Y, Wang X Q, Li F M, Zhu X Y, Li J J, Li Z C, Chen C Y, Ma M, Zhang H L, He Z Y.Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies[J]. Nature Communications, 2019, 10(1): 1-12. |
[39] | Ishikawa S, Abe T, Kuramata M, Hayashi S.Development of Low-Cadmium-Accumulating Rice[M] //Cadmium Toxicity. Singapore: Springer, 2019: 139-150. |
[40] | Cao Z Z, Lin X Y, Yang Y J, Guan M Y, Xu P, Chen M X.Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq[J]. BMC Plant Biology, 2019, 19(1): 1-13. |
[41] | Wang K, Yan T, Xu S, Yan X, Zhou Q, Zhao X, Li Y, Wu Z, Qin P, Fu C, Fu J, Zhou Y, Yang Y.Validating a segment on chromosome 7 of japonica for establishing low-cadmium accumulating indica rice variety[J]. Scientific Reports, 2021, 11(1): 1-10. |
[42] | Chen Q H, Tang W, Zeng G, Sheng H W, Shi W J, Xiao Y H.Reduction of cadmium accumulation in the grains of male sterile rice Chuang-5S carrying Pi48 or Pi49 through marker-assisted selection[J]. 3 Biotech, 2020, 10(12): 1-10. |
[43] | Liu S M, Jiang J, Liu Y, Meng J, Xu S L, Tan Y Y, Li Y F, Shu Q Y, Huang J Z.Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice[J]. Rice Science, 2019, 26(2): 88-97. |
[44] | Honma T, Ohba H, Kaneko-Kadokura A, Makino T, Nakamura K, Katou H.Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science and Technology, 2016, 50(8): 4178-4185. |
[45] | de Livera J, McLaughlin M J, Hettiarachchi G M, Kirby J K, Beak D G. Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions[J]. Science of the Total Environment, 2011, 409(8): 1489-1497. |
[46] | Liu J, Cao C, Wong M, Wong M H, Zhang Z J, Chai Y H.Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake[J]. Journal of Environmental Sciences, 2010, 22(7): 1067-1072. |
[47] | Sebastian A, Prasad M N V. Iron-and manganese-assisted cadmium tolerance in Oryza sativa L.: lowering of rhizotoxicity next to functional photosynthesis[J]. Planta, 2015, 241(6): 1519-1528. |
[48] | Zhou H, Zeng M, Zhou X, Liao B H, Peng P Q, Hu M, Zhu W, Wu Y J, Zou Z J.Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars[J]. Plant Soil, 2015, 386: 317-329. |
[49] | Wang J, Wang P M, Gu Y, Kopittke P M, Zhao F J, Wang P.Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of cd during soil drainage in paddy soil systems[J]. Environmental Science and Technology, 2019, 53(5): 2500-2508. |
[50] | Furuya M, Hashimoto Y, Yamaguchi N.Time-course changes in speciation and solubility of cadmium in reduced and oxidized paddy soils[J]. Soil Science Society of America Journal, 2016, 80(4): 870-877. |
[51] | Zeng F R, Ali S, Zhang H T, Ouyang Y N, Qiu B Y, Wu F B, Zhang G P.The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution, 2011, 159(1): 84-91. |
[52] | Zhu H, Chen C, Xu C, Zhu Q H, Huang D Y.Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 2016, 219: 99-106. |
[53] | Smolders E, Mertens J.Cadmium//Alloway B J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability. Netherlands, Dordrecht: Springer 2013: 283-311. |
[54] | Hindersmann I, Mansfeldt T.Trace element solubility in a multimetal-contaminated soil as affected by redox conditions[J]. Water, Air, and Soil Pollution, 2014, 225(10): 2158. |
[55] | Pan Y Y, Bonten L T C, Koopmans G F, Song J, Luo Y M, Temminghoff E J M, Comans R N J. Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage[J]. Geoderma, 2016, 261: 59-69. |
[56] | 张丽娜, 宗良纲, 付世景, 沈振国. 水分管理方式对水稻在Cd污染土壤上生长及其吸收Cd的影响[J]. 安全与环境学报, 2006, 6(5): 49-52. |
Zhang L N, Zong L G, Fu S J, Shen Z G.Effects of water management on rice growth and cadmium absorption on cadmium-contaminated soil[J]. Journal of Safety and Environment, 2006, 6(5): 49-52. (in Chinese with English abstract) | |
[57] | Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S.Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J]. Environmental Science and Technology, 2009, 43(24): 9361-9367. |
[58] | 刘昭兵, 纪雄辉, 官迪, 谢运河, 朱坚, 彭建伟. 镉胁迫条件下淹水时间对水稻吸收累积镉的影响[J]. 生态与农村环境学报, 2017, 33(12): 1125-1131. |
Liu Z B, Ji X H, Guan D, Xie Y H, Zhu J, Peng J W.Effects of timing and duration of waterlogging on Cd absorption and accumulation.Journal of Ecology and Rural Environment, 2017, 33(12): 1125-1131. (in Chinese with English abstract) | |
[59] | 杨小粉, 吴勇俊, 张玉盛, 汪泽钱, 敖和军. 水分管理对水稻镉吸收的影响[J]. 中国稻米, 2019, 25(4): 34-37. |
Yang X F, Wu Y J, Zhang Y S, Wang Z Q, Ao H J.Effects of water management on rice cadmium absorption[J]. China Rice, 2019, 25(4): 34-37. (in Chinese with English abstract) | |
[60] | Hu P J, Li Z, Yuan C, Ouyang Y N, Zhou L Q, Huang J X, Huang Y J, Luo Y M, Christie P, Wu L H.Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities[J]. Journal of Soils and Sediments, 2013, 13(5): 916-924. |
[61] | Sun L M, Zheng M N, Liu H Y, Peng S B, Huang J L, Cui K H, Nie L X.Water management practices affect arsenic and cadmium accumulation in rice grains[J]. The Scientific World Journal, 2014: 596438. |
[62] | Matsumoto S, Kasuga J, Taiki N, Makino T, Arao T.Reduction of the risk of arsenic accumulation in rice by the water management and material application in relation to phosphate status[J]. Journal of Plant Interactions, 2015, 10(1): 65-74. |
[63] | Bolan N S, Makino T, Kunhikrishnan A, Kim P, Ishikawa S, Murakami M, Naidu R, Kirkham M B.Cadmium contamination and its risk management in rice ecosystems[J]. Advances in Agronomy, 2013, 119: 183-273. |
[64] | Wang M E, Yang Y, Chen W P.Manganese, zinc, and pH affect cadmium accumulation in rice grain under field conditions in southern China[J]. Journal of Environmental Quality, 2018, 47(2): 306-311. |
[65] | Chen H P, Zhang W W, Yang X P, Wang P, McGrath S P, Zhao F J. Effective methods to reduce cadmium accumulation in rice grain[J]. Chemosphere, 2018, 207: 699-707. |
[66] | Wang P, Chen H P, Kopittke P M, Zhao F J.Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 2019, 249: 1038-1048. |
[67] | Cao X D, Harris W.Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14): 5222-5228. |
[68] | Beesley L, Moreno-Jiménez E, Gomez-Eyles J L, Harris E, Robinson B, Sizmur T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental Pollution, 2011, 159(12): 3269-3282. |
[69] | Bian R J, Chen D, Liu X Y, Cui L Q, Li L Q, Pan G X, Xie D, Zheng J W, Zhang X H, Zheng J F, Chang A.Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment[J]. Ecological Engineering, 2013, 58: 378-383. |
[70] | Chan K Y, Van Zwieten L, Meszaros I, Downie A, Joseph S.Agronomic values of greenwaste biochar as a soil amendment[J]. Soil Research, 2008, 45(8): 629-634. |
[71] | Chan K Y, Van Zwieten L, Meszaros I, Downie A, Joseph S.Using poultry litter biochars as soil amendments[J]. Soil Research, 2008, 46(5): 437-444. |
[72] | 孙丽娟, 秦秦, 宋科, 乔红霞, 薛永. 镉污染农田土壤修复技术及安全利用方法研究进展[J]. 生态环境学报, 2018(7): 1377-1386. |
Sun L J, Qin Q, Song K, Qiao H X, Xue Y.The remediation and safety utilization techniques for Cd contaminated farmland soil: A review[J]. Ecology and Environment, 2018(7): 1377-1386. (in Chinese with English abstract) | |
[73] | Liu J H, Hou H, Zhao L, Sun Z J, Lu Y F, Li H.Mitigation of Cd accumulation in rice from Cd-contaminated paddy soil by foliar dressing of S and P[J]. Science of the Total Environment, 2019, 690: 321-328. |
[74] | Ma J F, Yamaji N.Silicon uptake and accumulation in higher plants[J]. Trends in Plant Science, 2006, 11(8): 392-397. |
[75] | Epstein E.The anomaly of silicon in plant biology[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(1): 11-17. |
[76] | Ma J F, Yamaji N.Silicon uptake and accumulation in higher plants[J]. Trends in Plant Science, 2006, 11(8): 392-397. |
[77] | Meharg C, Meharg A A.Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice?[J]. Environmental and Experimental Botany, 2015, 120: 8-17. |
[78] | Nascimento A M, Assis F A, Moraes J C, Souza B H S. Silicon application promotes rice growth and negatively affects development of Spodoptera frugiperda (JE Smith)[J]. Journal of Applied Entomology, 2018, 142(1-2): 241-249. |
[79] | 王世华, 罗群胜, 刘传平, 李芳柏, 沈振国. 叶面施硅对水稻籽实重金属积累的抑制效应[J]. 生态环境, 2007(3): 875-878. |
Wang S H, Luo Q S, Liu C P, Li F B, Shen Z G.Effects of foliar application of nanometer silicon to the accumulation of heavy metals in rice grains[J]. Ecology and Environment, 2007, 16(3): 875-878. (in Chinese with English abstract) | |
[80] | Liu C P, Li F B, Luo C L, Liu X M, Wang S H, Liu T X, Li X D.Foliar application of two silica sols reduced cadmium accumulation in rice grains[J]. Journal of Hazardous Materials, 2009, 161(2-3): 1466-1472. |
[81] | Gao M, Zhou J, Liu H L, Zhang W T, Hu Y M, Liang J N, Zhou J,.Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]. Science of the Total Environment, 2018, 631: 1100-1108. |
[82] | Shao J F, Che J, Yamaji N, Shen R F, Ma J F.Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice[J]. Journal of Experimental Botany, 2017, 68(20): 5641-5651. |
[83] | Lin L, Zhou W H, Dai H X, Cao F B, Zhang G P, Wu F B.Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]. Journal of Hazardous Materials, 2012, 235: 343-351. |
[84] | Hu Y, Norton G J, Duan G L, Huang Y C, Liu Y X.Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants[J]. Plant and Soil, 2014, 384(1-2): 131-140. |
[85] | Gao M, Zhou J, Liu H, et al.Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]. Science of the Total Environment, 2018, 631: 1100-1108. |
[86] | Cui J H, Liu T X, Li Y D, Li F B.Selenium reduces cadmium uptake into rice suspension cells by regulating the expression of lignin synthesis and cadmium-related genes[J]. Science of the Total Environment, 2018, 644: 602-610. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||