中国水稻科学 ›› 2019, Vol. 33 ›› Issue (5): 383-390.DOI: 10.16819/j.1001-7216.2019.9040
• 综述与评论 • 下一篇
收稿日期:
2019-04-08
修回日期:
2019-06-16
出版日期:
2019-09-10
发布日期:
2019-09-10
通讯作者:
高振宇
基金资助:
Shilin DING, Chaolei LIU, Qian QIAN, Zhenyu GAO*()
Received:
2019-04-08
Revised:
2019-06-16
Online:
2019-09-10
Published:
2019-09-10
Contact:
Zhenyu GAO
摘要:
镉是对人体健康具有高度毒害作用的重金属元素之一。人体摄入镉的主要来源是食用镉超标的稻米,因此研究水稻对镉吸收、转运、积累的遗传机制尤为重要。目前,虽然水稻镉积累的遗传通路尚未完全明晰,但已明确了一些重要基因在稻米镉积累过程中的调控作用。本文就镉胁迫对水稻的危害、水稻品种间镉积累量的变异、水稻镉积累相关QTL、水稻镉吸收转运相关基因的研究进展及其育种利用加以综述,探讨了未来研究的方向。
中图分类号:
丁仕林, 刘朝雷, 钱前, 高振宇. 水稻重金属镉吸收和转运的分子遗传机制研究进展[J]. 中国水稻科学, 2019, 33(5): 383-390.
Shilin DING, Chaolei LIU, Qian QIAN, Zhenyu GAO. Research Advances on Molecular Genetic Mechanism for Cadmium Absorption and Transportation in Rice[J]. Chinese Journal OF Rice Science, 2019, 33(5): 383-390.
性状 Character | 数量性状位点 QTL | 染色体 Chromosome | 参考文献 Reference |
---|---|---|---|
地上部镉含量 Shoot Cd concentration | qCd4-1 | 4 | [26] |
qCd4-2 | 4 | [26] | |
qCdT7 | 7 | [30] | |
qCDS7 | 7 | [37] | |
scc10 | 10 | [40] | |
qCd11 | 11 | [20] | |
地下部镉含量 Root Cd concentration | qCDR6.1 | 6 | [37] |
qCDR6.2 | 6 | [37] | |
叶片中镉含量 Leaf Cd concentration | CAL1 | 1 | [38] |
糙米镉含量 Brown rice Cd concentration | qCd-2 | 2 | [41] |
qCdc3 | 3 | [24] | |
qCd3 | 3 | [35] | |
qlGCd3 | 3 | [42] | |
gcc3 | 3 | [40] | |
qCdc4 | 4 | [24] | |
qCdc6 | 6 | [24] | |
qCd5.1 | 5 | [35] | |
qCd5.2 | 5 | [35] | |
gcc9 | 9 | [40] | |
gcc11 | 11 | [40] |
表1 水稻中已报道的调控镉吸收和转运相关的QTL
Table 1 Some of reported QTL regulating cadmium ion uptake and transport in rice.
性状 Character | 数量性状位点 QTL | 染色体 Chromosome | 参考文献 Reference |
---|---|---|---|
地上部镉含量 Shoot Cd concentration | qCd4-1 | 4 | [26] |
qCd4-2 | 4 | [26] | |
qCdT7 | 7 | [30] | |
qCDS7 | 7 | [37] | |
scc10 | 10 | [40] | |
qCd11 | 11 | [20] | |
地下部镉含量 Root Cd concentration | qCDR6.1 | 6 | [37] |
qCDR6.2 | 6 | [37] | |
叶片中镉含量 Leaf Cd concentration | CAL1 | 1 | [38] |
糙米镉含量 Brown rice Cd concentration | qCd-2 | 2 | [41] |
qCdc3 | 3 | [24] | |
qCd3 | 3 | [35] | |
qlGCd3 | 3 | [42] | |
gcc3 | 3 | [40] | |
qCdc4 | 4 | [24] | |
qCdc6 | 6 | [24] | |
qCd5.1 | 5 | [35] | |
qCd5.2 | 5 | [35] | |
gcc9 | 9 | [40] | |
gcc11 | 11 | [40] |
基因符号 Gene symbol | 主要表达部位 Main expression organ | 亚细胞定位 Subcellular localization | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
OsHMA2 | 根、茎节 Root, Node | 细胞质膜 Plasma membrane | 调控镉在木质部的装载 Regulation of cadmium loading in xylem | [52-53] |
OsHMA3 | 根 Root | 液泡膜 Tonoplast | 将镉从细胞质转运至液泡中 Transportation of cadmium from cytoplasm to vacuoles | [31-32] |
OsHMA9 | 花药、叶片 Anther, Leaf | 细胞质膜 Plasma membrane | 调控镉在木质部的装载 Regulation of cadmium loading in xylem | [57] |
OsIRT1 | 根 Root | 细胞质膜 Plasma membrane | 参与根系对镉的吸收 Participation of cadmium absorption by roots | [45] |
OsIRT2 | 根 Root | 细胞质膜 Plasma membrane | 参与根系对镉的吸收 Participation of cadmium absorption by roots | [44] |
OsNRAMP1 | 根 Root | 细胞质膜 Plasma membrane | 参与镉在中柱和木质部装载 Participation of cadmium loading in stele and xylem | [46] |
OsNRAMP5 | 根 Root | 细胞质膜 Plasma membrane | 调控镉转运进入维管束 Regulation of cadmium transport into vascular bundles | [47-48] |
LCD | 根、叶片 Root, Leaf | 细胞质、细胞核 Cytoplasm, nucleus | 调控韧皮部镉转运 Regulation of cadmium transport in phloem | [58] |
OsMTP1 | 根、叶 Root, Leaf | 细胞质膜 Plasma membrane | 将镉外排到细胞间隙 Excretion of cadmium to intercellular space | [59] |
OsPDR5 | 根 Root | 细胞质膜 Plasma membrane | 参与镉的转运 Participation of cadmium transport | [61] |
OsPCR1 | 根、节间、穗 Root, internodes, panicle | 细胞质膜 Plasma membrane | 调控水稻金属离子稳态和粒重 Regulation of metal ion homeostasis and grain weight | [60] |
OsCCX2 | 茎节 Node | 细胞质膜 Plasma membrane | 调控镉在木质部的装载 Regulation of cadmium loading in xylem | [54] |
CAL1 | 根、叶鞘、节间 Root, leaf sheath, internode | 细胞壁 Cell wall | 调控镉在叶片中的积累 Regulation of cadmium accumulation in leaves | [38] |
OsLCT1 | 茎节 Node | 细胞质膜 Plasma membrane | 调控镉向籽粒的运输 Regulation of cadmium transport to grains | [55-56] |
表2 水稻中已克隆的调控镉吸收和转运的基因
Table 2 Cloned genes regulating cadmium uptake and transport in rice.
基因符号 Gene symbol | 主要表达部位 Main expression organ | 亚细胞定位 Subcellular localization | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
OsHMA2 | 根、茎节 Root, Node | 细胞质膜 Plasma membrane | 调控镉在木质部的装载 Regulation of cadmium loading in xylem | [52-53] |
OsHMA3 | 根 Root | 液泡膜 Tonoplast | 将镉从细胞质转运至液泡中 Transportation of cadmium from cytoplasm to vacuoles | [31-32] |
OsHMA9 | 花药、叶片 Anther, Leaf | 细胞质膜 Plasma membrane | 调控镉在木质部的装载 Regulation of cadmium loading in xylem | [57] |
OsIRT1 | 根 Root | 细胞质膜 Plasma membrane | 参与根系对镉的吸收 Participation of cadmium absorption by roots | [45] |
OsIRT2 | 根 Root | 细胞质膜 Plasma membrane | 参与根系对镉的吸收 Participation of cadmium absorption by roots | [44] |
OsNRAMP1 | 根 Root | 细胞质膜 Plasma membrane | 参与镉在中柱和木质部装载 Participation of cadmium loading in stele and xylem | [46] |
OsNRAMP5 | 根 Root | 细胞质膜 Plasma membrane | 调控镉转运进入维管束 Regulation of cadmium transport into vascular bundles | [47-48] |
LCD | 根、叶片 Root, Leaf | 细胞质、细胞核 Cytoplasm, nucleus | 调控韧皮部镉转运 Regulation of cadmium transport in phloem | [58] |
OsMTP1 | 根、叶 Root, Leaf | 细胞质膜 Plasma membrane | 将镉外排到细胞间隙 Excretion of cadmium to intercellular space | [59] |
OsPDR5 | 根 Root | 细胞质膜 Plasma membrane | 参与镉的转运 Participation of cadmium transport | [61] |
OsPCR1 | 根、节间、穗 Root, internodes, panicle | 细胞质膜 Plasma membrane | 调控水稻金属离子稳态和粒重 Regulation of metal ion homeostasis and grain weight | [60] |
OsCCX2 | 茎节 Node | 细胞质膜 Plasma membrane | 调控镉在木质部的装载 Regulation of cadmium loading in xylem | [54] |
CAL1 | 根、叶鞘、节间 Root, leaf sheath, internode | 细胞壁 Cell wall | 调控镉在叶片中的积累 Regulation of cadmium accumulation in leaves | [38] |
OsLCT1 | 茎节 Node | 细胞质膜 Plasma membrane | 调控镉向籽粒的运输 Regulation of cadmium transport to grains | [55-56] |
[1] | Clemens S, Aarts M G, Thomine S, Verbruggen N.Plant science: The key to preventing slow cadmium poisoning.Trends Plant Sci, 2013, 18(2): 92-99. |
[2] | Nawrot T S, Staessen J A, Roels H A, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters H, Vangronsveld J.Cadmium exposure in the population: From health risks to strategies of prevention.Biometals, 2010, 23(5): 769-782. |
[3] | Satarug S, Garrett S H, Sens M A, Sens D A.Cadmium, environmental exposure, and health outcomes.Environ Health Perspect, 2010, 118(2): 182-190. |
[4] | Jarup L, Akesson A.Current status of cadmium as an environmental health problem.Toxicol Appl Pharmacol, 2009, 238(3): 201-208. |
[5] | Uraguchi S, Fujiwara T.Cadmium transport and tolerance in rice: Perspectives for reducing grain cadmium accumulation.Rice, 2012, 5(1): 5. |
[6] | 鄂志国, 张玉屏, 王磊. 水稻镉胁迫应答分子机制研究进展. 中国水稻科学, 2013, 27(5): 539-544. |
E Z G, Zhang Y P, Wang L. Molecular mechanism of rice responses to cadmium stress.Chin J Rice Sci, 2013, 27(5): 539-544. (in Chinese with English abstract) | |
[7] | Yamagata N.Cadmium pollution in perspective.Bull Inst Public Heal, 1970, 19(1): 1-27. |
[8] | Yan J, Wang P, Wang P, Yang M, Lian X, Tang Z, Huang C F, Salt D E, Zhao F J.A loss-of-function allele ofOsHMA3 associated with high cadmium accumulation in shoots and grain of japonica rice cultivars. Plant Cell Environ, 2016, 39(9): 1941-1954. |
[9] | 易江, 甘平洋, 陈渠玲, 张源泉, 裴健儒, 黄天柱, 毛青秀, 陈昌勇. 稻米镉污染及其消减技术研究进展. 湖南农业科学, 2018, 390(3): 110-113. |
Yi J, Gan P Y, Chen Q L, Zhang Y Q,Pei J R,Huang T Z,Mao Q X,Chen C Y.Research progress on pollution of cadmium in rice and its removal technology.Hunan Agric Sci, 2018, 390(3): 110-113. (in Chinese with English abstract) | |
[10] | 田艳芬, 史锟. 镉对水稻等作物的毒害作用. 垦殖与稻作, 2003(5): 26-28. |
Tian Y F, Shi K.Poisonous effects on rice and vegetables by cadmium.Reclaim Rice Cult, 2003(5): 26-28. (in Chinese with English abstract) | |
[11] | 杨明, 陈璐, 徐庆国, 孙亚莉. 镉胁迫对不同水稻品种种子萌发和幼苗生长的影响. 作物研究, 2017, 31(6): 659-663. |
Yang M, Chen L, Xu Q G, Sun Y L.Effects of cadmium stress on seed germination and growth characteristic of different rice cultivars.Crop Res, 2017, 31(6): 659-663. (in Chinese with English abstract) | |
[12] | 何俊瑜, 任艳芳, 严玉萍, 朱诚, 蒋德安. 镉胁迫对水稻幼苗生长和根尖细胞分裂的影响. 土壤学报, 2010, 47(1): 138-144. |
He J Y, Ren Y F, Yan Y P, Zhu C, Jiang D A.Impacts of cadmium stress on the growth of rice seedlings and division of their root tip cells.Acta Pedol Sin, 2010, 47(1): 138-144. (in Chinese with English abstract) | |
[13] | 郭文燕, 田雄, 李尚锟, 李伟, 黄永相, 胡燕, 赵夏夏, 郭建夫. 镉胁迫对水稻光合生理特征及相关营养元素吸收影响研究. 安徽农业科学, 2018, 46(14): 37-43. |
Guo W Y, Tian X, Li S K, Li W, Huang Y X, Hu Y, Zhao X X, Guo J F.Effects of cadmium stress on the physiological and biochemical characters of rice at heading stage.J Anhui Agric Sci, 2018, 46(14): 37-43. (in Chinese with English abstract) | |
[14] | 孙亚莉, 刘红梅, 徐庆国. 镉胁迫对不同水稻品种苗期光合特性与生理生化特性的影响. 华北农学报, 2017, 32(4): 176-181. |
Sun Y L, Liu H M, Xu Q G.Effect of cadmium stress on photosynthetic characteristics and physiological and biochemical traits during seedling stage of different rice cultivars.Acta Agric Boreali-Sin, 2017, 32(4): 176-181. (in Chinese with English abstract) | |
[15] | Xue D W, Jiang H, Deng X X, Zhang X Q, Wang H, Xu X B, Hu J, Zeng D L, Guo L B, Qian Q.Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress.J Hazard Mater, 2014, 280: 269-278. |
[16] | Zhang X Q, Chen H N, Jiang H, Lu W, Pan J J, Qian Q, Xue D W.Measuring the damage of heavy metal cadmium in rice seedlings by SRAP analysis combined with physiological and biochemical parameters.J Sci Food Agric, 2015, 95(11): 2292-2298. |
[17] | 袁珍贵, 陈平平, 郭莉莉, 屠乃美, 易镇邪. 土壤镉含量影响水稻产量与稻穗镉累积分配的品种间差异. 作物杂志, 2018(1): 107-112. |
Yuan Z G, Chen P P, Guo L L, Tu N M, Yi Z X.Varietal difference in yield and Cd accumulation and distribution in panicle of rice affected by soil Cd content.Crops, 2018(1): 107-112. (in Chinese with English abstract) | |
[18] | Arao T, Ae N.Genotypic variations in cadmium levels of rice grain.Soil Sci Plant Nutr, 2003, 49(4): 473-479. |
[19] | Liu J, Qian M, Cai G, Yang J, Zhu Q.Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain.J Hazard Mater, 2007, 143(1-2):443-447. |
[20] | Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma J F.A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytol, 2009, 182(3): 644-653. |
[21] | Duan G, Shao G, Tang Z, Chen H, Wang B, Tang Z, Yang Y, Liu Y, Zhao F J.Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars.Rice, 2017, 10(1): 9. |
[22] | He J, Zhu C, Ren Y, Yan, Y, Jiang D. Genotypic variation in grain cadmium concentration of lowland rice.J Plant Nutr Soil Sci, 2006, 169(5): 711-716. |
[23] | Uraguchi S, Fujiwara T.Rice breaks ground for cadmium-free cereals.Curr Opin Plant Biol, 2013, 16(3): 328-334. |
[24] | Zhang X, Zhang G, Guo L B, Wang H Z, Zeng D L, Dong G J, Qian Q, Xue D W.Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils.Euphytica, 2011, 180(2): 173-179. |
[25] | Wang J H, Fang Y X, Tian B, Zhang X Q, Zeng D L, Guo L B, Hu J, Xue D W.New QTLs identified for leaf correlative traits in rice seedlings under cadmium stress.Plant Growth Regul, 2018, 85(2): 329-335. |
[26] | Kashiwagi T, Shindoh K, Hirotsu N, Ishimaru K.Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice.BMC Plant Biol, 2009, 9(1): 8. |
[27] | Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma J F.Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice.Plant Cell Physiol, 2009, 50(12): 2223-2233. |
[28] | Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S.Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice.J Exp Bot, 2009, 60(9): 2677-2688. |
[29] | Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaguchi M, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H.A single recessive gene controls cadmium translocation in the cadmium hyper- accumulating rice cultivar Cho-Ko-Koku.Theor Appl Genet, 2010, 120(6): 1175-1182. |
[30] | Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Ma J F.Gene limiting cadmium accumulation in rice.Proc Natl Acad Sci USA, 2010, 107(38): 16500-16505. |
[31] | Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H.OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles.New Phytol, 2011, 189(1): 190-199. |
[32] | Sasaki A, Yamaji N, Ma J F.Overexpression ofOsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot, 2014, 65(20): 6013-6021. |
[33] | Liu C L, Gao Z Y, Shang L G, Yang C H, Ruan B P, Zeng D L, Guo L B, Zhao F J, Huang C F, Qian Q.Natural variation in the promoter ofOsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice. J Integr Plant Biol, 2019, doi: 10.1111/jipb.12794. |
[34] | Sui F, Zhao D, Zhu H, Gong Y, Tang Z, Huang X Y, Zhang G, Zhao F J.Map-based cloning of a new total loss-of-function allele ofOsHMA3 causing high cadmium accumulation in rice grain. J Exp Bot, 2019, doi: 10.1093/jxb/erz093 |
[35] | Huang Y, Sun C, Min J, Chen Y, Tong C, Bao J.Association mapping of quantitative trait loci for mineral element contents in whole grain rice (Oryza sativa L.). J Agric Food Chem, 2015, 63(50): 10885-10892. |
[36] | Sun L, Xu X, Jiang Y, Zhu Q, Yang F, Zhou J, Yang Y, Huang Z, Li A, Chen L, Tang W, Zhang G, Wang J, Xiao G, Huang D, Chen C.Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice.Front Plant Sci, 2016, 7: 1407. |
[37] | Xue D W, Chen M C, Zhang G P.Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.). Euphytica, 2009, 165(3): 587-596. |
[38] | Luo J S, Huang J, Zeng D L, Peng J S, Zhang G B, Ma H L, Guan Y, Yi H Y, Fu Y L, Han B, Lin H X, Qian Q, Gong J M.A defensin-like protein drives cadmium efflux and allocation in rice.Nat Commun, 2018, 9(1): 645. |
[39] | Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa N K, Nakanishi H.Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice.Proc Natl Acad Sci USA, 2012, 109(47): 19166-19171. |
[40] | Yan Y F, Lestari P, Lee K J, Kim M Y, Lee S H, Lee B W.Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Genom, 2013, 56(4): 227-232. |
[41] | Liu W Q, Pan X W, Li Y C, Duan Y H, Min J, Liu S X, Liu L C, Sheng X N, Li X X.Identification of QTLs and validation ofqCd-2 associated with grain cadmium concentrations in rice . Rice Sci, 2019, 26(1): 42-49. |
[42] | Abe T, Nonoue Y, Ono N, Omoteno M, Kuramata M, Fukuoka S, Yamamoto T, Yano M, Ishikawa S.Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines.Breed Sci, 2013, 63(3): 284-291. |
[43] | Bughio N, Yamaguchi H, Nishizawa N K, Nakanishi H, Mori S.Cloning an iron-regulated metal transporter from rice.J Exp Bot, 2002, 53(374): 1677-1682. |
[44] | Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K.Iron deficiency enhances cadmium uptake and translocation mediated by the Fe transporters OsIRT1 and OSIRT2 in rice.Soil Sci Plant Nutr, 2006, 52(4): 464-469. |
[45] | Lee S, An G.Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice.Plant Cell Environ, 2009, 32(4): 408-416. |
[46] | Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K.The OsNRAMP1 iron transporter is involved in Cd accumulation in rice.J Exp Bot, 2011, 62(14): 4843-4850. |
[47] | Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K.Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport.Sci Rep, 2012, 2(6071): 286. |
[48] | Yang M, Zhang Y, Zhang L, Hu J, Zhang X, Lu K, Dong H, Wang D, Zhao F J, Huang C F, Lian X.OsNRAMP5 contributes to manganese translocation and distribution in rice shoots.J Exp Bot, 2014, 65(17): 4849-4861. |
[49] | Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, Xia S, Zhao B.Knockout ofOsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep, 2017, 7(1): 14 438. |
[50] | Clemens S, Ma J F.Toxic heavy metal and metalloid accumulation in crop plants and foods.Annu Rev Plant Biol, 2016, 67(1): 489-512. |
[51] | Lu C, Zhang L, Tang Z, Huang X Y, Ma J F, Zhao F J.Producing cadmium-freeIndica rice by overexpressing OsHMA3. Environ Int, 2019, 126: 619-626. |
[52] | Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa N K, Nakanishi H.The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice.Plant Cell Environ, 2012, 35(11): 1948-1957. |
[53] | Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H.Mutations in rice (Oryza sativa) heavy metal atpase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol, 2012, 53(1): 213-224. |
[54] | Hao X, Zeng M, Wang J, Zeng Z, Dai J, Xie Z, Yang Y, Tian L, Chen L, Li D.A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice.Front Plant Sci, 2018, 9: 476. |
[55] | Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T.Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains.Proc Natl Acad Sci USA, 2011, 108(52): 20 959-20 964. |
[56] | Uraguchi S, Kamiya T, Clemens S, Fujiwara T.Characterization of OsLCT1, a cadmium transporter fromindica rice. Physiol Plant, 2014, 151(3): 339-347. |
[57] | Zhao F Y, Han M M, Zhang S Y, Wang K, Zhang C R, Liu T, Liu W.Hydrogen peroxide-mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell-cycle genes in rice seedlings exposed to cadmium stress.J Integr Plant Biol, 2012, 54(12): 991-1006. |
[58] | Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa N K.Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot, 2011, 62(15): 5727-5734. |
[59] | Lan H X, Wang Z F, Wang Q H, Wang M M, Bao Y M, Huang J, Zhang H S.Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.). Mol Biol Rep, 2013, 40(2): 1201-1210. |
[60] | Song W Y, Lee H S, Jin S R, Ko D, Martinoia E, Lee Y, An G, Ahn S N.Rice PCR1 influences grain weight and Zn accumulation in grains.Plant Cell Environ, 2015, 38(11): 2327-2339. |
[61] | Oda K, Otani M, Uraguchi S, Akihiro T, Fujiwara T.Rice ABCG43 is Cd inducible and confers cd tolerance on yeast.Biosci Biotechnol Biochem, 2011, 75(6): 1211-1213. |
[62] | 陈彩艳, 唐文帮. 筛选和培育镉低积累水稻品种的进展和问题探讨. 农业现代化研究, 2018, 39(6): 1044-1051. |
Chen C Y, Tang W B.A perspective on the selection and breeding of low-Cd rice.Res Agric Modern, 2018, 39(6): 1044-1051. (in Chinese with English abstract) | |
[63] | Liu C L, Chen G, Li Y, Peng Y L, Zhang A P, Hong K, Jiang H Z, Ruan B P, Zhang B, Yang S L, Gao Z Y, Qian Q.Characterization of a major QTL for manganese accumulation in rice grain.Sci Rep, 2017, 7(1): 17704. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||