中国水稻科学 ›› 2019, Vol. 33 ›› Issue (3): 227-234.DOI: 10.16819/j.1001-7216.2019.9005
收稿日期:
2019-01-08
修回日期:
2019-02-18
出版日期:
2019-05-10
发布日期:
2019-05-10
通讯作者:
肖应辉
作者简介:
#共同第一作者;
基金资助:
Haoyu JIANG, Gai ZENG, Ming HAO, Xianggui HUANG, Yinghui XIAO*()
Received:
2019-01-08
Revised:
2019-02-18
Online:
2019-05-10
Published:
2019-05-10
Contact:
Yinghui XIAO
About author:
#These authors contributed equally to this work;
摘要:
【目的】水稻品系75-1-127携带广谱抗稻瘟病基因Pi9,已被广泛应用于抗稻瘟病水稻品种改良。笔者育种实践发现75-1-127表现出较强的褐飞虱抗性,因此鉴定该品系中的褐飞虱抗性基因并进行分子辅助选择育种。【方法】根据水稻品系B5中褐飞虱抗性基因Bph14和Bph15的序列,设计引物扩增75-1-127的基因组DNA,并对PCR产物进行测序分析。采用苗期集团法鉴定了75-1-127和B5的褐飞虱抗性表型。利用与Bph14与Bph15连锁的分子标记筛查了75-1-127为稻瘟病抗源回交转育的两系不育系后代,并鉴定了这些后代的稻瘟病抗性、褐飞虱抗性和主要农艺性状。【结果】75-1-127中含有与B5完全一致的Bph14和Bph15序列。75-1-127和B5苗期褐飞虱抗性均为1级。在以75-1-127为抗源改良的两系不育系中,携带Bph14、Bph15的单基因系或双基因系的褐飞虱抗性均得以改良,其中双基因聚合系的死苗率为8.5%,与供体亲本75-1-127以及阳性对照B5差异不显著,进一步证实75-1-127含有褐飞虱抗性基因。【结论】水稻品系75-1-127携带褐飞虱抗性基因Bph14和Bph15,可以作为抗源应用于水稻褐飞虱抗性育种。
中图分类号:
降好宇, 曾盖, 郝明, 黄湘桂, 肖应辉. 广谱抗稻瘟病种质75-1-127的褐飞虱抗性基因鉴定及分子标记辅助选择育种[J]. 中国水稻科学, 2019, 33(3): 227-234.
Haoyu JIANG, Gai ZENG, Ming HAO, Xianggui HUANG, Yinghui XIAO. Identification of Brown Planthopper Resistance Genes in Broad-spectrum Blast Resistant Rice Germplasm 75-1-127 and Its Molecular Marker-Assisted Selection Breeding[J]. Chinese Journal OF Rice Science, 2019, 33(3): 227-234.
目的基因 | 序列片段 | 正向引物序列 | 反向引物序列 | PCR产物 |
---|---|---|---|---|
Target gene | Sequence fragment | Forward primer sequence | Reverse primer sequence | PCR product / bp |
Bph14-1 | Frag. 1 | AGCTGCTCAGACTCTTGCCTT | TTGCCGCATATATGATGGCA | 1384 |
Frag. 2 | TACACTGCGTACGAAGACCA | AGCTCTTCTCCTTGTACCTCA | 1422 | |
Frag. 3 | TTGCCTGGAAGGACTGGGTA | ATCCAGACGTTGCTGTAGGCT | 1438 | |
Frag. 4 | TATCAGACATTGCGGGAGCT | AGCATAAGGATAGTGGCTAGA | 1046 | |
Bph14-2 | Frag. 1 | TCATTCCAGGCAGCAACTCT | TCGATCTCATGATCCTTGGGA | 1395 |
Frag. 2 | ACGCTATATTGAGCAGAAGCA | AGGCAGTTAGCCTAGGACAA | 1431 | |
Frag. 3 | TGCAGACTGAAGAAGCTTACCT | TCTCGATGTCATCCAGACGT | 1384 | |
Frag. 4 | TGCCCAGGCCTGGTATCCTT | ACAACTCTCATTTGGTCCTG | 908 | |
OsLecRK1 | GGCCTTGTTGAGTCGTATCCA | ACAATGGTTGCTCTGCTACTC | 3729 | |
OsLecRK2 | GATCATGTGGTTGTAGAGGAG | AACCGGTTGCCTCGCAGAGA | 2861 | |
OsLecRK3 | TAGGTAAGCATCAGTGCCCGA | AGCAATGGCTCATCTCCTGT | 2543 |
表1 用于Bph14和Bph15基因测序的PCR引物
Table 1 PCR primers for Bph14 and Bph15 gene sequencing.
目的基因 | 序列片段 | 正向引物序列 | 反向引物序列 | PCR产物 |
---|---|---|---|---|
Target gene | Sequence fragment | Forward primer sequence | Reverse primer sequence | PCR product / bp |
Bph14-1 | Frag. 1 | AGCTGCTCAGACTCTTGCCTT | TTGCCGCATATATGATGGCA | 1384 |
Frag. 2 | TACACTGCGTACGAAGACCA | AGCTCTTCTCCTTGTACCTCA | 1422 | |
Frag. 3 | TTGCCTGGAAGGACTGGGTA | ATCCAGACGTTGCTGTAGGCT | 1438 | |
Frag. 4 | TATCAGACATTGCGGGAGCT | AGCATAAGGATAGTGGCTAGA | 1046 | |
Bph14-2 | Frag. 1 | TCATTCCAGGCAGCAACTCT | TCGATCTCATGATCCTTGGGA | 1395 |
Frag. 2 | ACGCTATATTGAGCAGAAGCA | AGGCAGTTAGCCTAGGACAA | 1431 | |
Frag. 3 | TGCAGACTGAAGAAGCTTACCT | TCTCGATGTCATCCAGACGT | 1384 | |
Frag. 4 | TGCCCAGGCCTGGTATCCTT | ACAACTCTCATTTGGTCCTG | 908 | |
OsLecRK1 | GGCCTTGTTGAGTCGTATCCA | ACAATGGTTGCTCTGCTACTC | 3729 | |
OsLecRK2 | GATCATGTGGTTGTAGAGGAG | AACCGGTTGCCTCGCAGAGA | 2861 | |
OsLecRK3 | TAGGTAAGCATCAGTGCCCGA | AGCAATGGCTCATCTCCTGT | 2543 |
引物 | 目标基因 | 正向引物序列 | 反向引物序列 |
---|---|---|---|
Primer | Target gene | Forward primer sequence | Reverse primer sequence |
RM7311 | Pi9 | AGTGGTCGTTGAACTCGGAG | TCGTGGCGCCTTTAATCTC |
RM7178 | Pi9 | TAACCTTCACAGCGAACGTG | CCGTGAGATGGGCTACCTAC |
Feb-76 | Bph14 | CTGCTGCTGCTCTCGTATTG | CAGGGAAGCTCCAAGAACAG |
MS5 | Bph15 | TTGTGGGTCCTCATCTCCTC | TGACAACTTTGTGCAAGATCAAA |
表2 用于稻瘟病和褐飞虱抗性基因型分析的分子标记
Table 2 Molecular markers for genotype analysis of rice blast and Bph resistance.
引物 | 目标基因 | 正向引物序列 | 反向引物序列 |
---|---|---|---|
Primer | Target gene | Forward primer sequence | Reverse primer sequence |
RM7311 | Pi9 | AGTGGTCGTTGAACTCGGAG | TCGTGGCGCCTTTAATCTC |
RM7178 | Pi9 | TAACCTTCACAGCGAACGTG | CCGTGAGATGGGCTACCTAC |
Feb-76 | Bph14 | CTGCTGCTGCTCTCGTATTG | CAGGGAAGCTCCAAGAACAG |
MS5 | Bph15 | TTGTGGGTCCTCATCTCCTC | TGACAACTTTGTGCAAGATCAAA |
基因片段 | GenBank登录号 | 序列位置 | 与B5序列相似度 |
---|---|---|---|
Gene fragment | GenBank accession No. | Location of sequence/bp | Similarity with B5 sequence/% |
Bph14-1 | FJ941067.1 | 3043-7659 | 100 |
Bph14-2 | FJ941068.1 | 3753-8387 | 100 |
OsLecRK1 | KF748957 | 1-2442 | 100 |
OsLecRK2 | KF748965 | 1-2436 | 100 |
OsLecRK3 | KF748973 | 1-2436 | 100 |
表3 75-1-127与B5中抗褐飞虱基因Bph14和Bph15序列相似性分析
Table 3 Analysis of sequence similarity of Bph14 and Bph15 genes between 75-1-127 and B5.
基因片段 | GenBank登录号 | 序列位置 | 与B5序列相似度 |
---|---|---|---|
Gene fragment | GenBank accession No. | Location of sequence/bp | Similarity with B5 sequence/% |
Bph14-1 | FJ941067.1 | 3043-7659 | 100 |
Bph14-2 | FJ941068.1 | 3753-8387 | 100 |
OsLecRK1 | KF748957 | 1-2442 | 100 |
OsLecRK2 | KF748965 | 1-2436 | 100 |
OsLecRK3 | KF748973 | 1-2436 | 100 |
试验材料 | 株系数 | 感病级数# |
---|---|---|
Experimental material | No. of lines | Disease index# |
CO39 | 1 | 8.7±0.6 |
B191S | 1 | 7.3±0.9 |
B191S(Pi9) | 7 | 1.6±0.9** |
B191S(Pi9+Bph14) | 3 | 1.3±1.0** |
B191S(Pi9+Bph15) | 6 | 1.6±0.9** |
B191S(Pi9+Bph14+Bph15) | 2 | 1.6±0.9** |
表4 B191S不同基因型改良系的稻瘟病抗性
Table 4 Rice blast resistance of improved lines with different genotypes.
试验材料 | 株系数 | 感病级数# |
---|---|---|
Experimental material | No. of lines | Disease index# |
CO39 | 1 | 8.7±0.6 |
B191S | 1 | 7.3±0.9 |
B191S(Pi9) | 7 | 1.6±0.9** |
B191S(Pi9+Bph14) | 3 | 1.3±1.0** |
B191S(Pi9+Bph15) | 6 | 1.6±0.9** |
B191S(Pi9+Bph14+Bph15) | 2 | 1.6±0.9** |
试验材料 | Bph基因型 | 死苗率# | 苗期抗性 |
---|---|---|---|
Material | Bph genotype | Seedling mortality#/% | Seedling resistance |
S171002 | Bph14 | 41.8±3.4 B b | 中抗MR |
S171005 | Bph14, Bph15 | 8.5±0.1 C c | 高抗HR |
S171008 | Bph15 | 11.5±2.6 C c | 抗R |
B5 | Bph14, Bph15 | 2.8±1.6 C c | 高抗HR |
75-1-127 | Bph14, Bph15 | 5.0±3.5 C c | 高抗HR |
B191S | 100.0±0.0 A a | 感S | |
TN1 | 100.0±0.0 A a | 感S |
表5 B191S不同基因型改良系的褐飞虱抗性
Table 5 Brown planthopper resistance of improved lines with different genotypes.
试验材料 | Bph基因型 | 死苗率# | 苗期抗性 |
---|---|---|---|
Material | Bph genotype | Seedling mortality#/% | Seedling resistance |
S171002 | Bph14 | 41.8±3.4 B b | 中抗MR |
S171005 | Bph14, Bph15 | 8.5±0.1 C c | 高抗HR |
S171008 | Bph15 | 11.5±2.6 C c | 抗R |
B5 | Bph14, Bph15 | 2.8±1.6 C c | 高抗HR |
75-1-127 | Bph14, Bph15 | 5.0±3.5 C c | 高抗HR |
B191S | 100.0±0.0 A a | 感S | |
TN1 | 100.0±0.0 A a | 感S |
试验材料 | 播始历期 | 株高 | 穗长 | 每穗颖花数 | 双边柱头外露率 | 柱头外露 |
---|---|---|---|---|---|---|
Material | Duration from seeding to heading /d | Plant height | Panicle length /cm | Spikelets per panicle | Percentage of dual exerted stigma/% | Percentage of total exerted stigma/% |
/cm | ||||||
S171002 | 90 | 75.9±3.7** | 24.4±2.9** | 134.5±21.6** | 33.5±1.9** | 70.6±2.5** |
S171005 | 87 | 77.1±3.8** | 18.3±0.8** | 122.6±32.7** | 33.2±2.1** | 69.0±2.2** |
S171008 | 85 | 72.1±3.3** | 19.0±1.4** | 125.5±14.2** | 34.4±2.3** | 70.2±2.6** |
B191S | 81 | 49.6±3.2 | 14.4±1.3 | 74.2±12.6 | 25.6±1.7 | 63.3±2.4 |
表6 改良株系的主要农艺性状
Table 6 Main agronomic traits of the improved lines.
试验材料 | 播始历期 | 株高 | 穗长 | 每穗颖花数 | 双边柱头外露率 | 柱头外露 |
---|---|---|---|---|---|---|
Material | Duration from seeding to heading /d | Plant height | Panicle length /cm | Spikelets per panicle | Percentage of dual exerted stigma/% | Percentage of total exerted stigma/% |
/cm | ||||||
S171002 | 90 | 75.9±3.7** | 24.4±2.9** | 134.5±21.6** | 33.5±1.9** | 70.6±2.5** |
S171005 | 87 | 77.1±3.8** | 18.3±0.8** | 122.6±32.7** | 33.2±2.1** | 69.0±2.2** |
S171008 | 85 | 72.1±3.3** | 19.0±1.4** | 125.5±14.2** | 34.4±2.3** | 70.2±2.6** |
B191S | 81 | 49.6±3.2 | 14.4±1.3 | 74.2±12.6 | 25.6±1.7 | 63.3±2.4 |
[1] | Jing S L, Zhao Y, Du B, Chen R Z, Zhu L L, He G C.Genomics of interaction between the brown planthopper and rice.Curr Opin Insect Sci, 2017, 19: 82-87. |
[2] | 蒋春先. 广西兴安地区稻纵卷叶螟和稻飞虱发生规律及迁飞规律的研究. 北京: 中国农业科学院, 2012. |
Jiang C S.Occurrence and migration characteristics of rice leaf roller and rice planthopper in Xingan Guangxi. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese with English abstract) | |
[3] | 王佳妮, 丁波英, 王璐, 王喆, 周国鑫, 娄永根. 外源油菜素甾酮处理水稻对褐飞虱取食和产卵选择性等行为的影响. 植物保护学报, 2018, 45(5): 998-1004. |
Wang J N, Ding B Y, Wang L, Wang Z, Zhou G X, Lou Y G.The effects of exogenous castasterone treatment on rice brown planthopper Nilaparvata lugens behaviors, with special reference to feeding and ovipositing preferences. J Plant Prot, 2018, 45(5): 998-1004. (in Chinese with English abstract) | |
[4] | Hu J, Xiao C, He Y Q.Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice.Rice, 2016, 9: 30. |
[5] | Pathak M D, Cheng C H, Fortuno M E.Resistance to Nephotettix impicticeps and Nilaparvata lugens in varieties of rice. Nature, 1969, 223: 502-504. |
[6] | Cheng X Y, Zhu L L, He G C.Towards understanding of molecular interactions between rice and the brown planthopper.Mol Plant, 2013, 6: 621-634. |
[7] | Fujita D, Kohli A, Horgan F G.Rice resistance to plant hoppers and leaf hoppers.Crit Rev Plant Sci, 2013, 32: 162-191. |
[8] | Kobayashi T.Evolving ideas about genetics underlying insect virulence to plant resistance in rice-brown planthopper interactions.J Insect Physiol, 2016, 84: 32-39. |
[9] | Yang L, Zhang W L.Genetic and biochemical mechanisms of rice resistance to planthopper.Plant Cell Rep, 2016, 35(8): 1559-1572. |
[10] | Wang Y, Cao L M, Zhang Y X, Cao C X, Liu F, Huang F K, Qiu Y F, Li R B, Lou X J.Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. J Exp Bot, 2015, 66: 6035-6045. |
[11] | Jena K K, Kim S M.Current status of brown planthopper (BPH) resistance and genetics.Rice, 2010, 3: 161-171. |
[12] | Yang L, Li R B, Li Y R, Huang F K, Chen Y Z, Huang S S, Huang L F, Liu C, Ma Z F, Huang D H, Jiang J J.Genetic mapping of bph20(t) and bph21(t) loci conferring brown planthopper resistance to Nilaparvata lugens Stål in rice (Oryza sativa L. ). Euphytica, 2011, 183: 161-171. |
[13] | Du B, Zhang W L, Liu B F, Hu J, Wei Z, Shi Z Y, He R F, Zhu L L, Chen R Z, Han B, He G C.Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA, 2009, 106: 22 163-22 168. |
[14] | Liu Y Q, Wu H, Chen H, Liu Y L, He J, Kang H Y, Sun Z G, Pan G, Wang Q, Hu J L, Zhou F, Zhou K N, Zheng X M, Ren Y L, Chen L M, Wang Y H, Zhao Z G, Lin Q B, Wu F Q, Zhang X, Guo X P, Cheng X N, Jiang L, Wu C Y, Wang H Y, Wan J M.A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice.Nat Biotechnol, 2015, 33: 301-305. |
[15] | Lv W T, Du B, Shangguan X X, Zhao Y, Pan Y F, Zhu L L, He Y Q, He G C.BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism. BMC Genom, 2014, 15: 674. |
[16] | Tamura Y, Hattori M, Yoshioka H, Yoshioka M, Takahashi A, Wu J, Sentoku N, Yasui H.Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Sci Rep, 2014, 4: 5872. |
[17] | Ji H, Kim S R, Kim Y H, Suh J P, Park H M, Sreenivasulu N, Misra G, Kim S M, Hechanova S L, Kim H, Lee G S, Yoon U H, Kim T H, Lim H, Suh S C, Yang J, An G, Jena K K.Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to brown planthopper (BPH) insect pest. Sci Rep, 2016, 6: 34376. |
[18] | Zhao Y, Huang J, Wang Z Z, Jing S G, Wang Y, Ouyang Y D, Cai B D, Xin X F, Liu X, Zhang C X, Pan Y F, Ma R, Li Q F, Jiang W H, Zeng Y, Shangguan X X, Wang H Y, Du B, Zhu L L, Xu X, Feng Y Q, Yang S, Chen R Z, Zhang Q F, He G C. Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proc Natl Acad Sci USA, 2016, 113: 12850-12855. |
[19] | Ren J S, Gao F Y, Wu X T, Lu X J, Zeng L H, Lv J Q, Su X W, Luo H, Ren G J.Bph32, a novel gene encoding an unknown SCR domain containing protein, confers resistance against the brown planthopper in rice. Sci Rep, 2016, 6: 37645. |
[20] | Cheng X Y, Wu Y, Guo J P, Du B, Chen R Z, Zhu L L, He G C.A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination.Plant J, 2013, 76: 687-698. |
[21] | 李进波, 夏明元, 戚华雄, 何光存, 万丙良, 查中萍. 水稻抗褐飞虱基因Bphl4和Bph15的分子标记辅助选择. 中国农业科学, 2006, 39(10): 2132-2137. |
Li J B, Xia M Y, Qi H X, He G C, Wan B L, Zha Z P.Marker-assisted selection for brown planthopper (Nilaparvata lugens Stål) resistance genes Bph14 and Bph15 in rice. Sci Agric Sin, 2006, 39(10): 2132-2137. (in Chinese with English abstract) | |
[22] | Hu J, Li X, Wu C J, Yang C J, Hua H X, Gao G J, Xiao J H, He Y Q.Pyramiding and evaluation of the brown planthopper resistance genes Bph14 and Bph15 in hybrid rice. Mol Breed, 2012, 29(1): 61-69. |
[23] | 阎勇, 粟学俊, 梁曼玲, 黄凤宽, 陈彩虹. 抗褐飞虱基因Bph14和Bph15杂交稻的分子标记辅助选育与抗性评价. 分子植物育种, 2015, 13(7): 1450-1456. |
Yan Y, Su X J, Liang M L, Huang F K, Chen C H.Resistance evaluation and marker-assisted selection (MAS) for brown planthopper resistance genes Bph14 and Bph15 in hybrid rice. Mol Plant Breed, 2015, 13(7): 1450-1456. (in Chinese with English abstract) | |
[24] | 蔡之军, 周德银, 高荣村, 王建华, 李金军. 水稻抗褐飞虱基因Bph14和Bph15在粳稻育种上的应用. 江苏农业学报, 2016, 32(2): 257-261. |
Cai Z J, Zhou D Y, Gao R C, Wang J H, Li J J.Application of brown planthopper-resistant genes Bph14 and Bph15 in japonica rice breeding. Jiangsu J Agric Sci, 2016, 32(2): 257-261. (in Chinese with English abstract) | |
[25] | 徐晓明, 程攀, 陈龙, 曲姗姗, 阴云伙, 田发春, 彭炳生, 吴帅, 李土明, 周卫营. 应用分子标记辅助选育抗褐飞虱水稻两系不育系. 安徽农业科学, 2016, 44(20): 107-108, 213. |
Xu X M, Cheng P, Chen L, Qu S S, Yin Y H, Tian F C, Peng B S, Wu S, Li T M, Zhou W Y.Breeding TGMS lines with resistance to brown planthopper by marker-assisted selection.J Anhui Agric Sci, 2016, 44(20): 107-108, 213. (in Chinese with English abstract) | |
[26] | 任西明, 向聪, 雷定强, 雷东阳. 利用分子标记辅助选择改良水稻两系不育系C815S的褐飞虱抗性研究. 杂交水稻, 2018, 33(3): 54-58. |
Ren X M, Xiang C, Lei D Q, Lei D Y.Improvement of BPH resistance of rice TGMS line C815 through molecular marker-assisted selection.Hybrid Rice, 2018, 33(3): 54-58. (in Chinese with English abstract) | |
[27] | Qu S H, Liu G F, Zhou B, Bellizzi M, Zeng L Y, Dai L Y, Han B,. Wang G L.The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172(3): 1901-1914. |
[28] | 马文清, 裴庆利, 梁云涛, 刘丕庆, 赵开军, 王春连, 林纬, 杨培忠, 于洁. 聚合抗稻瘟病基因Pi9和抗褐飞虱基因Bph18(t)选育水稻恢复系. 分子植物育种, 2014, 12(06): 1082-1088. |
Ma W Q, Pei Q L, Liang Y T, Liu P Q, Zhao K J, Wang C L, Lin W, Yang P Z, Yu J.Pyramiding the blast resistant gene Pi9 and the brown planthopper gene Bph18(t) to develop restorer lines in rice(Oryza sativa L.). Mol Plant Breed, 2014, 12(6): 1082-1088. (in Chinese with English abstract) | |
[29] | 殷得所, 夏明元, 李进波, 万丙良, 査中萍, 杜雪树, 戚华雄. 抗稻瘟病基因Pi9的STS连锁标记开发及在分子标记辅助育种中的应用. 中国水稻科学, 2011, 25(1): 25-30. |
Yin D S, Xia M Y, Li J B, Wan B L, Zha Z P, Du X S, Qi H X.Development of STS marker linked to rice blast resistance gene Pi9 in marker-assisted selection breeding. Chin J Rice Sci, 2011, 25(1): 25-30. (in Chinese with English abstract) | |
[30] | Ni D H, Song F S, Ni J L, Zhang A F, Wang C L, Zhao K J, Yang Y C, Wei P C, Yang J B, Li L.Marker-assisted selection of two-line hybrid rice for disease resistance to rice blast and bacterial blight.Field Crops Res, 2015, 184: 1-8. |
[31] | 曾盖. 利用MAS改良水稻两用核不育系的稻瘟病和褐飞虱抗性[D]. 长沙: 湖南农业大学, 2017. |
Zeng G.Improving blast and BPH resistance of dual-purpose genic sterile rice using molecular marker-assisted selection[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese with English abstract) | |
[32] | 曹志, 曾盖, 郝明, 盛浩闻, 叶乃忠, 肖应辉. 利用MAS技术改良水稻两用核不育系C815S的稻瘟病抗性. 分子植物育种, 2015, 13(6): 1193-1200. |
Cao Z, Zeng G, Hao M, Sheng H W, Ye N Z, Xiao Y H.Improving blast resistance of dual-purpose genic sterile line C815S by using molecular marker-assisted selection.Mol Plant Breed, 2015, 13(6): 1193-1200. (in Chinese with English abstract) | |
[33] | IRRI. Standard Evaluation System for Rice (SES). Los Banos, Philippines: IRRI, 2013: 18. |
[34] | 黄得润, 陈洁, 赖凤香, 刘光杰, 庄杰云. 东乡野生稻抗褐飞虱QTL分析. 作物学报, 2012, 38(2): 210-214. |
Huang D Y, Chen J, Lai F X, Liu G J, Zhuang J Y.Analysis of quantitative trait loci for resistance to brown planthopper in Dongxiang wild rice (Oryza rufipogon Griff.). Acta Agron Sin, 2012, 38(2): 210-214. (in Chinese with English abstract) | |
[35] | 卢宝荣, 葛颂, 桑涛, 陈家宽, 洪德元. 稻属分类的现状及存在问题. 植物分类学报, 2001(4): 373-388, 394. |
Lu B R, Ge S, Sang T, Chen J K, Hong D Y.The current taxonomy and perplexity of the genusOryza(Poaceae). Acta Phytotaxon Sin, 2001(4): 373-388, 394. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||