中国水稻科学 ›› 2018, Vol. 32 ›› Issue (5): 445-452.DOI: 10.16819/j.1001-7216.2018.7152
张宏根, 仲崇元, 司华, 刘巧泉, 顾铭洪, 汤述翥*()
收稿日期:
2017-12-24
修回日期:
2018-03-01
出版日期:
2018-09-10
发布日期:
2018-09-10
通讯作者:
汤述翥
基金资助:
Honggen ZHANG, Chongyuan ZHONG, Hua SI, Qiaoquan LIU, Minghong GU, Shuzhu TANG*()
Received:
2017-12-24
Revised:
2018-03-01
Online:
2018-09-10
Published:
2018-09-10
Contact:
Shuzhu TANG
摘要:
【目的】高效选育红莲型(Honglian,HL)粳稻恢复系有助于HL型杂交粳稻育种,对促进三系杂交粳稻的发展具有重要的意义。【方法】Rf6是一个HL型恢复基因,来源于HL型籼稻强恢复系9311。前期研究中,在以9311为供体、日本晴为受体的一套染色体片段代换系中鉴定出携带Rf6的株系R1093。本研究利用R1093与BT型粳稻恢复系C418(携带Rf1)杂交,通过常规回交育种结合分子标记辅助选择技术,将Rf6导入C418中,进行Rf6与Rf1聚合育种;利用BT型、HL型六千辛A进行测交鉴定改良系的恢复力。【结果】共获得12个BC3F4株系和55个BC4F3株系,其中6个改良系的农艺性状已基本接近C418;测交鉴定结果表明聚合Rf6的改良系对HL型粳稻不育系的恢复度达到85%以上,可应用于水稻生产;对BT型粳稻不育系的恢复度提升效果不显著。【结论】聚合Rf6能有效改良BT型粳稻恢复系对HL型粳稻不育系恢复力,是选育HL型粳稻恢复系的一条重要途径。
中图分类号:
张宏根, 仲崇元, 司华, 刘巧泉, 顾铭洪, 汤述翥. 分子标记辅助选择改良C418对红莲型粳稻不育系的恢复力[J]. 中国水稻科学, 2018, 32(5): 445-452.
Honggen ZHANG, Chongyuan ZHONG, Hua SI, Qiaoquan LIU, Minghong GU, Shuzhu TANG. Improving the Ability of C418 to Restore the Fertility of the Honglian-type Cytoplasmic Male Sterility japonica Lines via Molecular Marker-assisted Selection[J]. Chinese Journal OF Rice Science, 2018, 32(5): 445-452.
基因 Gene | 标记 Marker | 正向序列 Forward primer(5′→3′) | 反向序列 Reverse primer(5′→3′) |
---|---|---|---|
Rf6 | RM407 | GACTACGAGACGAGTGATTTGAACC | GCGTGGGAAATGACTAGGAGTAGG |
Rf1 | STS10-16 | CAGCAATCGGATCGCCTC | ATCTTTCCGTGATGGGAGGTA |
表1 恢复基因连锁标记及引物序列
Table 1 Primers anchoring Rf6 and Rf1.
基因 Gene | 标记 Marker | 正向序列 Forward primer(5′→3′) | 反向序列 Reverse primer(5′→3′) |
---|---|---|---|
Rf6 | RM407 | GACTACGAGACGAGTGATTTGAACC | GCGTGGGAAATGACTAGGAGTAGG |
Rf1 | STS10-16 | CAGCAATCGGATCGCCTC | ATCTTTCCGTGATGGGAGGTA |
图2 标记STS10-16对52605A/C418 F2群体部分单株琼脂糖凝胶电泳检测结果 P1为52605A;P2为C418;1~44为52605A/C418 F2群体内单株。
Fig. 2. Molecular detection of 52605A/C418 F2 individuals using STS10-16. P1 and P2 are 52605A and C418, respectively, and others are individuals from 52605A/C418 F2 population.
图3 标记对C418//C418/R1093 BC2F2群体部分单株琼脂糖凝胶电泳检测结果 A–标记RM407扩增结果;B–标记STS10-16扩增结果。P1为C418;P2为R1093;1~40为C418//C418/R1093 BC2F2群体内单株。
Fig. 3. Molecular detection of C418//C418/R1093 BC2F2 individuals. A, PCR amplification products using primer RM407; B, PCR amplification products using primer STS10-16. P1 and P2 are C418 and R1093, respectively, and others are individuals from C418//C418/R1093 BC2F2 population.
世代 Generation | 植株数 Number of measured plants | 基因型 Genotype | 频率 Frequency/ % | ||
---|---|---|---|---|---|
Rf6Rf6 | Rf6rf6 | rf6rf6 | |||
BC1F1 | 160 | 0 | 75 | 85 | 46.9 |
BC2F1 | 100 | 0 | 47 | 53 | 47.0 |
BC2F2 | 120 | 29 | 54 | 37 | 24.2 |
BC3F1 | 19 | 0 | 9 | 10 | 47.3 |
BC4F1 | 298 | 0 | 124 | 174 | 41.6 |
BC4F2 | 1000 | 243 | 461 | 296 | 24.3 |
表2 各世代的分子标记辅助选择结果
Table 2 Distribution of individuals of different genotypes at Rf6 locus in BCnF1 and BCnF2 populations.
世代 Generation | 植株数 Number of measured plants | 基因型 Genotype | 频率 Frequency/ % | ||
---|---|---|---|---|---|
Rf6Rf6 | Rf6rf6 | rf6rf6 | |||
BC1F1 | 160 | 0 | 75 | 85 | 46.9 |
BC2F1 | 100 | 0 | 47 | 53 | 47.0 |
BC2F2 | 120 | 29 | 54 | 37 | 24.2 |
BC3F1 | 19 | 0 | 9 | 10 | 47.3 |
BC4F1 | 298 | 0 | 124 | 174 | 41.6 |
BC4F2 | 1000 | 243 | 461 | 296 | 24.3 |
图4 HL型六千辛A与改良系及对照C418测交F1小穗育性(2015) **表示与C418测交F1的小穗育性存在极显著差异。C418和L1基因型为Rf1Rf1rf6rf6,L2~L7基因型为Rf1Rf1Rf6Rf6。
Fig. 4. Spikelet fertility of the testcrossing F1 plants from the crosses between HL-Liuqianxin A and the improved lines, HL-Liuqianxin A and C418, respectively(2015). All values are listed as mean±SD; ** mean significantly different on spikelet fertility between F1s from the improved lines and C418 at 0.01 level. The genotypes of C418 and L1 are Rf1Rf1rf6rf6, and the genotypes of L2-L7 are Rf1Rf1Rf6Rf6.
株系号 Line | 基因型 Genotype | BT型六千辛A BT-type Liuqianxin A | HL型六千辛A HL-type Liuqianxin A |
---|---|---|---|
SL1 | Rf1Rf1Rf6Rf6 | 91.03±4.98 | 95.09±1.69** |
SL2 | Rf1Rf1Rf6Rf6 | 91.65±3.06 | 90.87±1.90** |
SL3 | Rf1Rf1Rf6Rf6 | 92.84±3.72 | 92.25±3.42** |
SL4 | Rf1Rf1Rf6Rf6 | 94.62±3.13 | 94.14±2.53** |
SL5 | Rf1Rf1Rf6Rf6 | 95.82±1.75 | 91.49±3.91** |
SL6 | Rf1Rf1Rf6Rf6 | 92.96±2.00 | 93.00±1.06** |
SL7 | Rf1Rf1Rf6Rf6 | 97.13±2.02 | 85.89±7.25** |
SL8 | Rf1Rf1Rf6Rf6 | 94.13±3.51 | 94.30±2.74** |
SL9 | Rf1Rf1Rf6Rf6 | 94.18±2.25 | 95.02±2.83** |
SL10 | Rf1Rf1Rf6Rf6 | 93.60±2.28 | 83.75±8.52** |
C418 | Rf1Rf1rf6rf6 | 91.88±3.02 | 74.49±5.06 |
表3 BT型、HL型六千辛A测交F1的小穗育性(2016)
Table 3 Spikelet fertility of the testcrossing F1s from BT- and HL-type Liuqianxin A, respectively(2016). %
株系号 Line | 基因型 Genotype | BT型六千辛A BT-type Liuqianxin A | HL型六千辛A HL-type Liuqianxin A |
---|---|---|---|
SL1 | Rf1Rf1Rf6Rf6 | 91.03±4.98 | 95.09±1.69** |
SL2 | Rf1Rf1Rf6Rf6 | 91.65±3.06 | 90.87±1.90** |
SL3 | Rf1Rf1Rf6Rf6 | 92.84±3.72 | 92.25±3.42** |
SL4 | Rf1Rf1Rf6Rf6 | 94.62±3.13 | 94.14±2.53** |
SL5 | Rf1Rf1Rf6Rf6 | 95.82±1.75 | 91.49±3.91** |
SL6 | Rf1Rf1Rf6Rf6 | 92.96±2.00 | 93.00±1.06** |
SL7 | Rf1Rf1Rf6Rf6 | 97.13±2.02 | 85.89±7.25** |
SL8 | Rf1Rf1Rf6Rf6 | 94.13±3.51 | 94.30±2.74** |
SL9 | Rf1Rf1Rf6Rf6 | 94.18±2.25 | 95.02±2.83** |
SL10 | Rf1Rf1Rf6Rf6 | 93.60±2.28 | 83.75±8.52** |
C418 | Rf1Rf1rf6rf6 | 91.88±3.02 | 74.49±5.06 |
株系 Line | 世代 Generation | 播始历期 DTH/d | 株高 PH/cm | 茎粗 CT/mm | 单株穗数 PNP | 穗长 CPL/cm | 主茎穗颖花数SNC | 一次枝梗数 PBN | |
---|---|---|---|---|---|---|---|---|---|
C418 | 81 | 113.3±4.4 | 6.92±0.65 | 5.2±1.0 | 31.0±2.2 | 346.4±47.6 | 13.1±1.3 | ||
G1 | BC3F4 | 81 | 110.0±3.7 | 7.08±0.44 | 5.8±1.0 | 31.3±1.5 | 368.7±50.1 | 14.1±1.6 | |
G2 | BC3F4 | 87 | 117.4±2.9 | 7.22±0.66 | 5.6±1.1 | 32.6±1.1 | 294.8±27.3 | 12.4±0.9 | |
G3 | BC4F3 | 84 | 114.7±3.5 | 7.01±0.51 | 5.2±0.9 | 30.1±2.4 | 343.0±37.9 | 12.8±1.2 | |
G4 | BC4F3 | 87 | 112.4±5.3 | 7.36±0.47 | 5.6±0.8 | 31.6±2.1 | 357.2±40.7 | 13.4±1.2 | |
G5 | BC4F3 | 87 | 110.6±3.4 | 6.86±0.39 | 6.5±0.7 | 32.3±1.6 | 305.4±30.6 | 12.9±1.5 | |
G6 | BC4F3 | 85 | 113.6±3.4 | 7.42±0.32 | 5.7±0.8 | 32.9±2.3 | 389.2±48.4 | 12.9±1.1 | |
株系 Line | 剑叶基角 AFL/° | 倒3叶长 TLL/cm | 倒2叶长 SLL/cm | 剑叶长 FLL/cm | 穗叶差 DPFL/cm | 穗颈粗 PND/mm | 穗弯曲度 PCD/° | ||
C418 | 7.7±3.9 | 52.5±4.9 | 53.7±4.0 | 37.7±7.2 | –2.6±6.8 | 2.77±0.18 | 58.40±13.95 | ||
G1 | 9.6±4.7 | 55.7±3.2 | 58.3±4.8 | 42.5±6.5 | –7.2±5.9 | 2.92±0.20 | 74.75±18.90 | ||
G2 | 10.0±4.1 | 60.4±5.2 | 62.8±4.5 | 46.6±5.3* | –9.0±4.5 | 2.80±0.30 | 88.30±20.41 | ||
G3 | 10.5±3.8 | 57.6±3.1 | 56.8±5.9 | 40.8±6.4 | –5.2±5.6 | 2.84±0.26 | 71.33±14.21 | ||
G4 | 11.1±7.2 | 56.3±4.5 | 56.8±4.8 | 40.6±6.7 | –6.1±7.1 | 2.80±0.26 | 82.42±17.76 | ||
G5 | 7.8±5.3 | 54.6±2.9 | 54.2±4.8 | 43.0±4.3 | –4.8±4.4 | 2.84±0.22 | 67.22±14.67 | ||
G6 | 10.1±5.7 | 55.1±3.2 | 59.7±5.1 | 42.8±6.7 | –5.7±6.6 | 3.08±0.23 | 71.08±14.01 |
表4 改良系与C418主要农艺性状比较(2016)
Table 4 Agronomic traits of the improved lines and C418(2016).
株系 Line | 世代 Generation | 播始历期 DTH/d | 株高 PH/cm | 茎粗 CT/mm | 单株穗数 PNP | 穗长 CPL/cm | 主茎穗颖花数SNC | 一次枝梗数 PBN | |
---|---|---|---|---|---|---|---|---|---|
C418 | 81 | 113.3±4.4 | 6.92±0.65 | 5.2±1.0 | 31.0±2.2 | 346.4±47.6 | 13.1±1.3 | ||
G1 | BC3F4 | 81 | 110.0±3.7 | 7.08±0.44 | 5.8±1.0 | 31.3±1.5 | 368.7±50.1 | 14.1±1.6 | |
G2 | BC3F4 | 87 | 117.4±2.9 | 7.22±0.66 | 5.6±1.1 | 32.6±1.1 | 294.8±27.3 | 12.4±0.9 | |
G3 | BC4F3 | 84 | 114.7±3.5 | 7.01±0.51 | 5.2±0.9 | 30.1±2.4 | 343.0±37.9 | 12.8±1.2 | |
G4 | BC4F3 | 87 | 112.4±5.3 | 7.36±0.47 | 5.6±0.8 | 31.6±2.1 | 357.2±40.7 | 13.4±1.2 | |
G5 | BC4F3 | 87 | 110.6±3.4 | 6.86±0.39 | 6.5±0.7 | 32.3±1.6 | 305.4±30.6 | 12.9±1.5 | |
G6 | BC4F3 | 85 | 113.6±3.4 | 7.42±0.32 | 5.7±0.8 | 32.9±2.3 | 389.2±48.4 | 12.9±1.1 | |
株系 Line | 剑叶基角 AFL/° | 倒3叶长 TLL/cm | 倒2叶长 SLL/cm | 剑叶长 FLL/cm | 穗叶差 DPFL/cm | 穗颈粗 PND/mm | 穗弯曲度 PCD/° | ||
C418 | 7.7±3.9 | 52.5±4.9 | 53.7±4.0 | 37.7±7.2 | –2.6±6.8 | 2.77±0.18 | 58.40±13.95 | ||
G1 | 9.6±4.7 | 55.7±3.2 | 58.3±4.8 | 42.5±6.5 | –7.2±5.9 | 2.92±0.20 | 74.75±18.90 | ||
G2 | 10.0±4.1 | 60.4±5.2 | 62.8±4.5 | 46.6±5.3* | –9.0±4.5 | 2.80±0.30 | 88.30±20.41 | ||
G3 | 10.5±3.8 | 57.6±3.1 | 56.8±5.9 | 40.8±6.4 | –5.2±5.6 | 2.84±0.26 | 71.33±14.21 | ||
G4 | 11.1±7.2 | 56.3±4.5 | 56.8±4.8 | 40.6±6.7 | –6.1±7.1 | 2.80±0.26 | 82.42±17.76 | ||
G5 | 7.8±5.3 | 54.6±2.9 | 54.2±4.8 | 43.0±4.3 | –4.8±4.4 | 2.84±0.22 | 67.22±14.67 | ||
G6 | 10.1±5.7 | 55.1±3.2 | 59.7±5.1 | 42.8±6.7 | –5.7±6.6 | 3.08±0.23 | 71.08±14.01 |
[1] | 邓华凤, 何强, 舒服, 张武汉, 杨飞, 荆彦辉, 东丽, 谢辉. 中国杂交粳稻研究现状与对策. 杂交水稻, 2006, 21(1): 1-6. |
Deng H F, He Q, Shu F, Zhang W H, Yang F, Jing Y H, Dong L, Xie H.Status and technical strategy on development of japonica hybrid rice in China. Hybrid Rice, 2006, 21(1): 1-6. (in Chinese with English abstract) | |
[2] | Fujimura T, Akagi H, Oka M, Nakamura A, Sawada R.Establishment of a rice protoplast culture and application of an asymmetric protoplast fusion technique to hybrid rice breeding. J Food Sci, 2010, 13(3): 243-247. |
[3] | 曾千春, 周开达, 朱祯, 罗琼. 中国水稻杂种优势利用现状. 中国水稻科学, 2000, 14(4): 243-246. |
Zeng Q C, Zhou K D, Zhu Z, Luo Q.Current status in the use of hybrid rice heterosis in China.Chin J Rice Sci, 2000, 14(4): 243-246. (in Chinese with English abstract) | |
[4] | 汤述翥, 张宏根, 梁国华, 严长杰, 刘巧泉, 顾铭洪. 三系杂交粳稻发展缓慢的原因及对策. 杂交水稻, 2008, 23(1): 1-5. |
Tang S Z, Zhang H G, Liang G H, Yan C J, Liu Q Q, Gu M H.Reasons and counter measures of slow development on three-line japonica hybrid rice. Hybrid Rice, 2008, 23(1): 1-5. (in Chinese with English abstract) | |
[5] | 汤述翥, 孙叶, 张宏根, 顾燕娟, 陆驹飞, 田舜, 余波, 顾铭洪. 同核异质粳稻不育系特性比较. 中国水稻科学2005, 19(6): 521-526. |
Tang S Z, Sun Y, Zhang H G, Gu Y J, Lu J F, Tian S, Yu B, Gu M H.Comparison on the characteristics of the isonuclear alloplasmic CMS lines in japonica rice. Chin J Rice Sci, 2005, 19(6): 521-526. (in Chinese with English abstract). | |
[6] | 汤述翥, 张宏根, 朱正斌, 刘超, 李鹏, 梁国华, 严长杰, 刘巧泉, 于恒秀, 顾铭洪. 红莲型不育细胞质在杂交粳稻育种中的应用. 中国水稻科学, 2010, 24(2): 116-124. |
Tang S Z, Zhang H G, Zhu Z B, Liu C, Li P, Liang G H, Yan C J, Liu Q Q, Yu H X, Gu M H.Application of HL type male sterile cytoplasm in japonica hybrid rice breeding. Chin J Rice Sci, 2010, 24(2): 116-124. (in Chinese with English abstract) | |
[7] | 汤述翥, 张宏根, 朱正斌, 刘巧泉, 梁国华, 严长杰, 刘超, 李鹏, 顾铭洪. 红莲型不育细胞质应用于粳稻杂种优势的思考与初探. 西南农业学报, 2009, 22(4): 1158-1164. |
Tang S Z, Zhang H G, Zhu Z B, Liu Q Q, Liang G H, Yan C J, Liu C, Li P, Gu M H.Toward to apply HL-type male sterile cytoplasm for japonica heterosis utilization: Consideration and practice. Southwest China J Agric Sci, 2009, 22(4): 1158-1164. (in Chinese with English abstract) | |
[8] | 朱正斌, 张宏根, 刘超, 李鹏, 裔传灯, 汤述翥, 顾铭洪. 四种细胞质六千辛A粳稻不育系育种利用特性的比较研究. 作物学报, 2010, 36(1): 1-8. |
Zhu Z B, Zhang H G, Liu C, Li P, Yi C D, Tang S Z, Gu M H.Comparative study on breeding utilization characteristics of the isonuclear alloplasmic japonica CMS lines Liuqianxin A with four different cytoplasm sources. Acta Agron Sin, 2010, 36(1): 1-8. (in Chinese with English abstract) | |
[9] | Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu Y.Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing.Plant Cell, 2006, 18(3): 676-687. |
[10] | Akagi H, Nakamura A, Yokozeki-Misono Y, Inagaki A, Takahashi H, Mori K, Fujimura T.Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor Appl Genet, 2004, 108(8): 1449-1457. |
[11] | Huang Q, He Y, Jing R, Zhu R, Zhu Y.Mapping of the nuclear fertility restorer gene for HL cytoplasmic male sterility in rice using microsatellite markers.Chin Sci Bull, 2000, 45(5): 430-432. |
[12] | Huang J, Hu J, Xu X, Li S, Yi P, Yang D, Ren F, Liu X, Zhu Y.Fine mapping of the nuclear fertility restorer gene for HL cytoplasmic male sterility in rice.Bot Bull Acad Sin, 2003, 44(4): 285-289. |
[13] | Hu J, Wang K, Huang W, Liu G, Gao Y, Wang J, Huang Q, Ji Y, Qin X, Wan L, Zhu R, Li S, Yang D, Zhu Y. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell, 2012, 24(1): 109-122. |
[14] | Huang W, Hu J, Yu C, Huang Q, Wan L, Wang L, Qin X, Ji Y, Zhu R, Li S, Zhu Y.Two non-allelic nuclear genes restore fertility in a gametophytic pattern and enhance abiotic stress tolerance in the hybrid rice plant. Theor Appl Genet, 2012, 124(5): 799-807. |
[15] | Huang W, Yu C, Hu J, Wang L, Dan Z, Zhou W, He C, Zeng Y, Yao G, Qi J, Zhang Z, Zhu R, Chen X, Zhu Y.Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility.Proc Natl Acad Sci, 2015, 112(48): 14984-14989. |
[16] | Zhang H, Che J, Ge Y, Pei Y, Zhang L, Liu Q, Tang S, Gu M.Ability of Rf5 and Rf6 to restore fertility of Chinsurah Boro II-type cytoplasmic male sterile Oryza sativa(ssp. japonica) lines. Rice, 2017, 10(1): 2. |
[17] | Rogers S O, Bendich A J.Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76. |
[18] | Zhang H, Zhang L, Si H, Ge Y, Liang G, Gu M, Tang S.Rf5 is able to partially restore fertility to Honglian-type cytoplasmic male sterile japonica rice(Oryza sativa ) lines. Mol Breeding, 2016, 36(7): 102. |
[19] | 杨振玉, 陈秋柏, 陈荣芳, 苏正基, 贾宝清, 佟景兴, 王健群. 水稻粳型恢复系C57的选育. 作物学报, 1981, 7(3): 153-156. |
Yang Z Y, Chen Q B, Chen R F, Su Z J, Jia B Q, Tong J X, Wang J Q.The breeding of japonica rice restorer C57. Acta Agron Sin, 1981, 7(3): 153-156. (in Chinese with English abstract) | |
[20] | 杨振玉, 张宗旭, 魏耀林, 赵迎春, 高勇. 粳型特异亲和恢复系C418的选育及其特性. 杂交水稻, 1998(3): 33-34. |
Yang Z Y, Zhang Z X, Wei Y L, Zhao Y C, Gao Y.Breeding and characteristics ofjaponica type wide compatibility line C418. Hybrid Rice, 1998(3): 33-34. (in Chinese with English abstract) | |
[21] | 赵迎春, 杨振玉, 魏耀林, 张忠旭. 从C418的育成再论北方杂交粳稻的发展形势. 杂交水稻, 2000(5): 5-6. |
Zhao Y C, Yang Z Y, Wei Y L, Zhang Z X.A second discussion on development of northernjaponica hybrid rice from the successful breeding of restorer C418. Hybrid Rice, 2000(5): 5-6. (in Chinese with English abstract) |
[1] | 丁正权, 潘月云, 施扬, 黄海祥. 基于基因芯片的嘉禾系列长粒优质食味粳稻综合评价与比较[J]. 中国水稻科学, 2024, 38(4): 397-408. |
[2] | 景秀, 周苗, 王晶, 王岩, 王旺, 王开, 郭保卫, 胡雅杰, 邢志鹏, 许轲, 张洪程. 穗分化末期-灌浆初期干旱胁迫对优质食味粳稻根系形态和叶片光合特性的影响[J]. 中国水稻科学, 2024, 38(1): 33-47. |
[3] | 冯爱卿, 汪聪颖, 苏菁, 封金奇, 陈凯玲, 林晓鹏, 陈炳, 梁美玲, 杨健源, 朱小源, 陈深. 水稻细菌性条斑病抗性新品系的创制及其农艺性状分析[J]. 中国水稻科学, 2023, 37(6): 587-596. |
[4] | 黄亚茹, 徐鹏, 王乐乐, 贺一哲, 王辉, 柯健, 何海兵, 武立权, 尤翠翠. 外源海藻糖对粳稻品系W1844籽粒灌浆特性及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 379-391. |
[5] | 王雨, 孙全翌, 杜海波, 许志文, 吴科霆, 尹力, 冯志明, 胡珂鸣, 陈宗祥, 左示敏. 利用抗稻瘟病基因Pigm和抗纹枯病数量性状基因qSB-9TQ、qSB-11HJX改良南粳9108的抗性[J]. 中国水稻科学, 2023, 37(2): 125-132. |
[6] | 姚姝, 赵春芳, 陈涛, 路凯, 周丽慧, 赵凌, 朱镇, 赵庆勇, 梁文化, 赫磊, 王才林, 张亚东. 低谷蛋白半糯型粳稻营养品质与蒸煮食味品质特征分析[J]. 中国水稻科学, 2023, 37(2): 178-188. |
[7] | 裴峰, 王广达, 高鹏, 冯志明, 胡珂鸣, 陈宗祥, 陈红旗, 崔傲, 左示敏. 敲除OsNramp5基因创制低镉优质粳稻新材料的应用评价[J]. 中国水稻科学, 2023, 37(1): 16-28. |
[8] | 王石光, 陆展华, 刘维, 卢东柏, 王晓飞, 方志强, 巫浩翔, 何秀英. 应用CRISPR/Cas9技术与分子标记辅助选择创制广东丝苗米新种质[J]. 中国水稻科学, 2023, 37(1): 29-36. |
[9] | 陈涛, 赵庆勇, 朱镇, 赵凌, 姚姝, 周丽慧, 赵春芳, 张亚东, 王才林. 利用分子标记辅助选择培育优良食味、低谷蛋白香粳稻新品系[J]. 中国水稻科学, 2023, 37(1): 55-65. |
[10] | 董铮, 王雅美, 黎用朝, 熊海波, 薛灿辉, 潘孝武, 刘文强, 魏秀彩, 李小湘. 基于MAGIC群体的水稻镉含量全基因组关联分析[J]. 中国水稻科学, 2022, 36(1): 35-42. |
[11] | 王才林, 张亚东, 陈涛, 朱镇, 赵庆勇, 姚姝, 赵凌, 赵春芳, 周丽慧, 魏晓东, 路凯, 梁文化. 姊妹系间杂交快速培育优良食味半糯粳稻新品种的育种效果[J]. 中国水稻科学, 2021, 35(5): 455-465. |
[12] | 王孟佳, 殷敏, 褚光, 刘元辉, 徐春梅, 章秀福, 王丹英, 陈松. 长江中下游双季晚粳稻产量、生育时期及温光资源配置的生态性差异[J]. 中国水稻科学, 2021, 35(5): 475-486. |
[13] | 王才林, 张亚东, 陈涛, 朱镇, 赵庆勇, 赵春芳, 姚姝, 周丽慧, 赵凌, 魏晓东, 路凯, 梁文化. 地点和播期对半糯粳稻食味品质的影响[J]. 中国水稻科学, 2021, 35(4): 373-382. |
[14] | 张庆, 胡雅杰, 郭保卫, 张洪程, 徐晓杰, 徐玉峰, 朱邦辉, 徐洁芬, 钮中一, 凃荣文. 太湖地区优良食味高产软米粳稻品种特征研究[J]. 中国水稻科学, 2021, 35(3): 279-290. |
[15] | 路凯, 陈涛, 姚姝, 梁文化, 魏晓东, 张亚东, 王才林. 盐胁迫下四个水稻类受体蛋白激酶的功能分析[J]. 中国水稻科学, 2021, 35(2): 103-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||