中国水稻科学 ›› 2018, Vol. 32 ›› Issue (1): 35-42.DOI: 10.16819/j.1001-7216.2018.7061
汪秉琨1,2, 张慧1, 洪汝科1, 张锦文3, 杨睿2, 罗琼2,*(), 曾千春1,*()
收稿日期:
2017-05-21
修回日期:
2017-08-24
出版日期:
2018-01-10
发布日期:
2018-01-10
通讯作者:
罗琼,曾千春
作者简介:
共同第一作者:汪秉琨 张慧;
基金资助:
Bingkun WANG1,2, Hui ZHANG1, Ruke HONG1, Jinwen ZHANG3, Rui YANG2, Qiong LUO2,*(), Qianchun ZENG1,*()
Received:
2017-05-21
Revised:
2017-08-24
Online:
2018-01-10
Published:
2018-01-10
Contact:
Qiong LUO, Qianchun ZENG
About author:
These authors contributed equally to this work:WANG Bingkun, ZHANG Hui;
摘要:
【目的】 直链淀粉含量与稻米品质密切相关。Wx基因是控制水稻直链淀粉合成的主效基因,通过对Wx基因定点编辑以获得稳定遗传、直链淀粉含量适宜的突变体。【方法】 构建CRISPR/Cas9表达载体pGK03-Wx-gRNA (靶点1和2分别在Wx基因第1和第2外显子),利用工程菌EHA105遗传转化超级稻楚粳27,潮霉素筛选获得转化株系,对转化株系及其后代进行分子检测、测序、基因表达和遗传稳定性分析以及直链淀粉含量测定。【结果】 获得9个独立的T0代转化株系,靶点1(L1~L5) 5个株系,突变频率100%,靶点2(L6~L9) 4个株系,突变频率75%。由T0代突变体衍生出T1和T2代株系,测序发现T0、T1和T2代株系出现缺失(单、双、多碱基缺失)和单碱基插入两种突变类型;T0至T1代部分株系(L1、L2、L3和L6)发生再编辑,T1至T2代遗传稳定。与野生型相比,突变株系RNA水平Wx基因表达量显著下降(P<0.01),稻米直链淀粉含量显著降低(P<0.01),从17.5%降到1.93%。【结论】 利用CRISPR/Cas9系统成功编辑水稻Wx基因,获得了稳定遗传、低直链淀粉含量的突变体,为稻米品质改良提供了材料。
中图分类号:
汪秉琨, 张慧, 洪汝科, 张锦文, 杨睿, 罗琼, 曾千春. CRISPR/Cas9系统编辑水稻Wx基因[J]. 中国水稻科学, 2018, 32(1): 35-42.
Bingkun WANG, Hui ZHANG, Ruke HONG, Jinwen ZHANG, Rui YANG, Qiong LUO, Qianchun ZENG. Wx Gene Editing via CRISPR/Cas9 System in Rice[J]. Chinese Journal OF Rice Science, 2018, 32(1): 35-42.
Oligo名称 | 序列 | 检测引物 | 序列 | ||
---|---|---|---|---|---|
Oligo name | Sequence | Test primer | Sequence | ||
Oligo-Target1-F | TGTGTGGGCGAATGGCCACAGGGTCA | G-Target1-F | GCATGAACGTCGTGTTCGTC | ||
Oligo-Target1-R | AAACTGACCCTGTGGCCATTCGCCCA | G-Target1-R | CCTCACCCTCTCGTACCTGT | ||
Oligo-Target2-F | TGTGTGGCTTGAGGCCCTGGAACCCG | G-Target2-F | TGCAGAGATCTTCCACAGCA | ||
Oligo-Target2-R | AAACCGGGTTCCAGGGCCTCAAGCCA | G-Target2-R | TTGAAGACGACGACGGTCAG |
表1 寡核苷酸序列及检测引物序列
Table 1 Oligo sequence and test primer sequence.
Oligo名称 | 序列 | 检测引物 | 序列 | ||
---|---|---|---|---|---|
Oligo name | Sequence | Test primer | Sequence | ||
Oligo-Target1-F | TGTGTGGGCGAATGGCCACAGGGTCA | G-Target1-F | GCATGAACGTCGTGTTCGTC | ||
Oligo-Target1-R | AAACTGACCCTGTGGCCATTCGCCCA | G-Target1-R | CCTCACCCTCTCGTACCTGT | ||
Oligo-Target2-F | TGTGTGGCTTGAGGCCCTGGAACCCG | G-Target2-F | TGCAGAGATCTTCCACAGCA | ||
Oligo-Target2-R | AAACCGGGTTCCAGGGCCTCAAGCCA | G-Target2-R | TTGAAGACGACGACGGTCAG |
图2 pGK03-Wx-gRNA表达载体 LB–左边界;U6–水稻U6启动子;SG–向导RNA;UBI–UBI启动子;NOS Ter–NOS终止子;35S–35S启动子;Hpt–潮霉素基因;PolyA Ter–PolyA终止子;RB–右边界。
Fig. 2. Vector map of pGK-Wx-gRNA. LB, Left border; U6,Rice U6 promoter; SG, Guide RNA; UBI, UBI promoter; NOS Ter, NOS terminator; 35S, 35S promoter; Hpt, Hygromycin gene; PolyA Ter, PolyA terminator; RB, Right border.
图4 野生型与9个T0转化株系突变位点序列比对下划线表示gRNA靶序列;阴影表示PAM序列;“-”示碱基缺失;a示碱基插入。–1表示单碱基缺失;+1表示单碱基插入。
Fig. 4. DNA sequence alignment for wild type and the nine transformants in T0 generation. sequences are shown by black hyphens. One base deletion is recorded by minus one and the one base insertion by plus one. The targeted sequence is highlighted with underline and the PAM sequence in shadow. Mutation with 1 bp insertion is represented by a, the deleted
图5 野生型与9个T0转化株系氨基酸序列比对“-”表示氨基酸缺失;L1~L5和L6~L8翻译提前终止。
Fig. 5. Amino acid sequence alignment for wild type and nine transformants in T0 generation. The deleted amino acids are shown by black hyphens, the translation were terminated earlier in mutants L1-L5 and L6-L8.
图6 野生型与L1~L8株系T1和T2代突变位点序列比对下划线表示gRNA靶序列;阴影表示PAM序列;“-”示碱基缺失;a示碱基插入。
Fig. 6. DNA sequence alignment for the wild type and the L1-L8 in T1 and T2 generations. The targeted sequence is highlighted with underline and the PAM sequence in shadow. Mutation with 1 bp insertion is represented by a, the deleted sequences are shown by black hyphens.
图7 野生型与T1突变体Wx的表达量(平均值±标准差) **表示野生型与T1突变体在P<0.01下差异显著(t检验)。
Fig. 7. Relative expression level of Wx gene in wild type and transformants in T1 generation(Mean±SD). **indicates significant difference at P<0.01(t test).
株系 Line | WT | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | 平均 Average |
---|---|---|---|---|---|---|---|---|---|---|
直链淀粉含量Amylose content/% | 17.5 | 1.78** | 1.82** | 1.76** | 2.15** | 2.06** | 2.04** | 1.93** | 1.87** | 1.93 |
表2 野生型与转化株系L1~L8的直链淀粉含量
Table 2 Amylose content comparison of the wild type and transformants L1-L8.
株系 Line | WT | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | 平均 Average |
---|---|---|---|---|---|---|---|---|---|---|
直链淀粉含量Amylose content/% | 17.5 | 1.78** | 1.82** | 1.76** | 2.15** | 2.06** | 2.04** | 1.93** | 1.87** | 1.93 |
图8 野生型和突变体的糙米表型 WT为楚粳27的糙米表型;L1~L8为突变株系T1代的糙米表型;比例尺,1 cm
Fig. 8. Brown rice of wild type and mutants. WT, Brown rice of Chujing 27; L1-L8, Brown rice of mutants in T1 generation and the bar represents one centimeter.
[1] | Hsu Y C,Tseng M C,Wu Y P,Lin M Y,Wei F J,Hwu K K,Hsing Y I,Lin Y R.Genetic factors responsible for eating and cooking qualities of rice grains in a recombinant inbred population of an inter-subspecific cross.Mol Breeding,2014,34(2):655-673. |
[2] | Wani A A,Singh P,Shah M A,Schweiggert W U,Gul K,Idrees A.Rice starch diversity: Effects on structural, morphological, thermal, and physicochemical properties.Compr Rev Food Sci F,2012,11(5):417-436. |
[3] | Sano Y.Differential regulation of waxy gene expression in rice endosperm. Theor Appl Genet,1984,68(5):467-473. |
[4] | Wang Z Y,Zheng F Q,Shen G Z,Gao J P,Snustad D P,Li M G,Zhang J L,Hong M M.The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J Cell Mol B,1995,7(4):613-622. |
[5] | 陈雅玲,包劲松.水稻胚乳淀粉合成相关酶的结构、功能及其互作研究进展.中国水稻科学,2017,31(1):1-12. |
Chen Y L,Bao J S.Progress in structures, functions and interactions of starch synthesis related enzymes in rice endosperm.Chin J Rice Sci,2017,31(1):1-12. (in Chinese with English abstract) | |
[6] | Frances H,Bligh J,Larkin P D,Roach P S,Jones C A,Fu H,Park W D.Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties.Plant Mol Biol,1998,38(3):407-415. |
[7] | Mikami I,Aikawa M,Hirano H Y,Sano Y.Altered tissue-specific expression at theWx gene of the opaque mutants in rice. Euphytica,1999,105(2):91-97. |
[8] | Liu L,Ma X,Liu S,Zhu C,Ling J,Yi H W,Yi S,Yu L R,Hui D,Liang C,Xi L,Zhi Z,Hu Z,Jian W.Identification and characterization of a novelWaxy allele from a Yunnan rice landrace. Plant Mol Biol,2009,71(6):609-626. |
[9] | Sato H,Suzuli Y,Sakai M,Lmbe T.Molecular characterization of Wx-mq, a novel mutant gene for low-amylose content in endosperm of rice (Oryza sativa L.). Breeding Sci,2002,52(2):131-135. |
[10] | Larkin P D,Park W D.Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.). Mol Breeding,2003,12(4):335-339. |
[11] | Bergman C J,Delgado J T, McClung A M, Fjellstrom R G. An improved method for using a microsatellite in the rice Waxy gene to determine amylose class. Cereal Chem,2001,78(3):257-260. |
[12] | Inukai T,Sako A,Hirano H Y,Sano Y.Analysis of intragenic recombination atwx in rice: Correlation between the molecular and genetic maps within the locus.Genome,2000,43(4):589-596. |
[13] | Shen B,Zhang J,Wu H,Ma K,Li Z,Zhang X,Zhang P,Huang X.Generation of gene-modified mice via Cas9/ RNA-mediated gene targeting.Cell Res,2013,23(5):720-723. |
[14] | Jinek M,Chylinski K,Fonfara I,Hauer M,Doudna J A,Charpentier E.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science,2012,337(6096):816-821. |
[15] | Shan Q W,Wang Y P,Li J,Zhang Y,Chen K L,Liang Z,Zhang K,Liu J X,Xi J J,Qiu J L,Gao C X.Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol,2013,31(8):686-688. |
[16] | Feng Z,Zhang B,Ding W,Liu X,Yang D L,Wei P,Cao F,Zhu S,Zhang F,Mao Y,Zhu J K.Efficient genome editing in plants using a CRISPR/Cas system. Cell Res,2013,23(10):1229-1232. |
[17] | 李开斌,张天春,阮文忠,徐加平,王正伟,黄文兴.超级粳稻楚粳27号的选育及应用.中国稻米,2012,18(5):71-72. |
Li K B,Zhang T C,Ruan W Z,Xu J P,Wang Z W,Huang W X.Breeding and application of super japonica rice variety Chujing 27.China Rice,2012,18(5):71-72. (in Chinese with English abstract). | |
[18] | 曾千春,李旭刚,马炳田,陈松彪,徐鸿林,孟昆,魏晓丽,朱祯.有效去除农杆菌和籼稻转化系统优化.分子植物育种,2003,1(5):783-790. |
Zeng Q C,Li X G,Ma B T,Chen S B,Xu H L,Meng K,Wei X L,Zhu Z.Efficient elimination ofA. tumefaciens and optimization of Agrobacterium-mediated transfor- mation of indica rice. Mol Plant Breed,2003,1(5):783-790. (in Chinese with English abstract) | |
[19] | Zhang G H,Gao M G,Zhang G Z,Sun J J,Jin X M,Wang C Y,Zhao Y,Li S S.A high through-put protocol of plant genomic DNA preparation for PCR.Acta Agron Sin,2013,39(7):1200-1205. |
[20] | Livak K J,Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2[-Delta Delta C(T)] method.Methods,2001,25(4):402-408. |
[21] | 齐万清,蒋刚生,谢建华,秦宣才,李铮友,曾千春.杂交早粳稻米品质在四个生态点的变化.西南农业学报,2008,21(6):1500-1504. |
Qi W Q,Jiang G S,Xie J H,Qin X C,Li Z Y,Zeng Q C.Quality variation of earlyjaponica hybrid rice from four ecological sites. Southwest China J Agric Sci,2008,21(6):1500-1504. (in Chinese with English abstract) | |
[22] | Xu R F,Li H,Qin R Y,Li J,Qiu C H,Yang Y C,Ma H,Li L,Wei P C,Yang J B.Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system.Sci Rep-UK,2015,5: 11491. |
[23] | Mussolino C,Cathomen T.RNA guides genome engineering.Nat Biotechnol,2013,31(3):208-209. |
[24] | Miao J,Guo D,Zhang J,Huang Q,Qin G,Zhang X,Gu H,Qu L J.Targeted mutagenesis in rice using CRISPR- Cas system.Cell Res,2013,23(10):1233-1236. |
[25] | Shan Q W,Wang Y,Li J,Gao C X.Genome editing in rice and wheat using the CRISPR/Cas system.Nat Protoc,2014,9(10):2395-2410. |
[26] | 邵高能,谢黎虹,焦桂爱,魏祥进,圣忠华,唐绍清,胡培松.利用CRISPR/CAS9技术编辑水稻香味基因Badh2.中国水稻科学,2017,31(2):216-222. |
Shao G N,Xie L H,Jiao G A,Wei X J,Sheng Z H,Tang S Q,Hu P S.CRISPR/CAS9-mediated editing of the fragrant geneBadh2 in rice. Chin J Rice Sci,2017,31(2):216-222. (in Chinese with English abstract) | |
[27] | Ma X L,Zhang Q Y,Zhu Q L,Liu W,Chen Y,Qiu R,Wang B,Yang Z F,Li H Y,Lin Y R,Xie Y Y,Shen R X,Chen S F,Wang Z,Chen Y L,Guo J X,Chen L T,Zhao X C,Dong Z C,Liu Y G.A Robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in Monocot and Dicot plants.Mol Plant,2015,8(8):1274-1284. |
[28] | Terada R,Nakajima M,Isshiki M,Okagaki R J,Wessler S R,Shimamoto K.Antisense Waxy genes with highly active promoters effectively suppressWaxy gene expression in transgenic rice. Plant Cell Physiol,2000,41(7):881-888. |
[29] | 刘巧泉,王兴稳,陈秀花,王宗阳,汤述翥,洪孟明,顾铭洪.转反义Wx基因糯稻的显性遗传及对稻米粒重的效应分析.中国农业科学,2002,35(2):117-122. |
Liu Q Q,Wang X W,Chen X H,Wang Z Y,Tang S Z,Hong M M,Gu M H.Effect of dominant Waxy character on kernel weight of transgenic rice with antisenseWx gene. Sci Agric Sin,2002,35(2):117-122. (in Chinese with English abstract) | |
[30] | 郭健.应用RNA干涉技术改变水稻淀粉组成的研究.广州: 华南农业大学,2008. |
Guo J.Improving the composition of rice with RNA interference technology. Guangzhou: South China Agricultural University,2008. () | |
[31] | Tian Z X,Qian Q,Liu Q Q,Yan M X,Liu X F,Yan C J,Liu G F,Gao Z Y,Tang S Z,Zeng D L,Wang Y H,Yu J M,Gu M H,Li J Y.Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities.Proc Natl Acad Sci USA,2009,106(51):21760-21765. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 肖正午, 方升亮, 曹威, 胡丽琴, 黎星, 解嘉鑫, 廖成静, 康玉灵, 胡玉萍, 张珂骞, 曹放波, 陈佳娜, 黄敏. 米粉质构特性与稻米理化性状的关系[J]. 中国水稻科学, 2024, 38(3): 316-323. |
[14] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[15] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||