中国水稻科学 ›› 2016, Vol. 30 ›› Issue (2): 216-222.DOI: 10.16819/j.1001-7216.2016.5118
• • 上一篇
收稿日期:
2015-07-20
修回日期:
2015-11-25
出版日期:
2016-03-10
发布日期:
2016-03-10
通讯作者:
李来庚
基金资助:
Received:
2015-07-20
Revised:
2015-11-25
Online:
2016-03-10
Published:
2016-03-10
Contact:
Lai-geng LI
摘要:
倒伏是水稻高产稳产的一个重要限制因素。水稻倒伏主要受植株形态、茎秆结构与细胞壁成分的影响。近年来,随着水稻基因组学和分子生物学的发展,水稻抗倒伏性状的研究已逐渐从植株表型分析发展到分子水平调控机理解析。本文综述了水稻株型、茎秆特性与细胞壁化学组成对水稻抗倒伏性状影响的分子机理。这些研究为水稻抗倒伏分子育种奠定了重要的理论基础。
中图分类号:
刘畅, 李来庚. 水稻抗倒伏性状的分子机理研究进展[J]. 中国水稻科学, 2016, 30(2): 216-222.
Chang LIU, Lai-geng LI. Advances in Molecular Understanding of Rice Lodging Resistance[J]. Chinese Journal OF Rice Science, 2016, 30(2): 216-222.
与抗倒伏相关表型性状 Phenotype related to lodging resistance | 基因名称 Gene name | TIGR基因编号 TIGR gene code | 基因功能注释 Gene function annotation | 参考文献 Reference |
---|---|---|---|---|
株型Plant architecture | SD1 | LOC_Os01g66100 | Gibberellin 20 oxidase 2 | [6-8] |
PROG1 | LOC_Os07g05900 | C2H2 zinc finger protein | [13-14] | |
TAC1 | LOC_Os09g35980 | Expressed protein | [15-16] | |
LA1 | LOC_Os11g29840 | Expressed protein | [17] | |
OsTB1/FC1/SCM3 | LOC_Os03g49880 | TCP family transcription factor | [18-21] | |
DEP1 | LOC_Os09g26999 | Keratin-associated protein 5-4 | [23-25] | |
LP/EP3 | LOC_Os02g15950 | OsFBK5-F-box domain and kelch repeat containing protein | [27-29] | |
OsAPO1/SCM2 | LOC_Os06g45460 | OsFBX202-F-box domain containing protein | [30-32] | |
IPA1/WFP/OsSPL14 | LOC_Os08g39890 | SBP-box gene family member | [35-37] | |
SDT | LOC_Os06g44034 | OsmiR156h microRNA precursor | [38] | |
茎秆Culm | SMOS1 | LOC_Os05g32270 | AP2 domain containing protein | [41-42] |
LSI1 | LOC_Os02g51110 | Silicon influx transporter | [45] | |
LSI2 | LOC_Os03g01700 | Silicon efflux transporter | [46] | |
LSI6 | LOC_Os06g12310 | Silicon influx transporter | [47] | |
PRL5 | Uncloned | Unknown | [51] | |
LRT5 | Uncloned | Unknown | [52] | |
次生细胞壁 | BC6 | LOC_Os09g25490 | OsCESA9-cellulose synthase | [55] |
Secondary cell wall | BC7/BC11 | LOC_Os01g54620 | OsCESA4-cellulose synthase | [56-57] |
BC3 | LOC_Os02g50550 | Dynamin | [58] | |
BC15/OsCTL1 | LOC_Os09g32080 | CHIT13-chitinase family protein precursor | [59] | |
BC14/OsNST1 | LOC_Os02g40030 | Golgi-localized nucleotide sugar transporters | [60] | |
BC10 | LOC_Os05g07790 | Glycosyltransferase family protein | [61] | |
OsMYB103L | LOC_Os08g05520 | MYB-like DNA-binding domain containing protein | [62] | |
OsNAC29/OsSWN2 | LOC_Os08g02300 | NAC transcription factor | [64] | |
BC1 | LOC_Os03g30250 | COBRA-like protein precursor | [66-67] | |
BC12 | LOC_Os09g02650 | Kinesin motor domain containing protein domain of unknown function 266 | [68] | |
CslF6 | LOC_Os08g06380 | CSLF6-cellulose synthase-like family F; beta1,3;1,4 glucan synthase | [69-70] | |
Os4CL3 | LOC_Os02g08100 | 4-coumarate-CoA ligase | [72-73] | |
OsCAD7/FC1 | LOC_Os04g52280 | Cinnamyl alcohol dehydrogenase | [74-75] | |
OsCAD2/gh2 | LOC_Os02g09490 | Cinnamyl alcohol dehydrogenase | [76-77] |
表1 已知水稻抗倒伏基因
Table 1 Reported Lodging resistance genes in rice.
与抗倒伏相关表型性状 Phenotype related to lodging resistance | 基因名称 Gene name | TIGR基因编号 TIGR gene code | 基因功能注释 Gene function annotation | 参考文献 Reference |
---|---|---|---|---|
株型Plant architecture | SD1 | LOC_Os01g66100 | Gibberellin 20 oxidase 2 | [6-8] |
PROG1 | LOC_Os07g05900 | C2H2 zinc finger protein | [13-14] | |
TAC1 | LOC_Os09g35980 | Expressed protein | [15-16] | |
LA1 | LOC_Os11g29840 | Expressed protein | [17] | |
OsTB1/FC1/SCM3 | LOC_Os03g49880 | TCP family transcription factor | [18-21] | |
DEP1 | LOC_Os09g26999 | Keratin-associated protein 5-4 | [23-25] | |
LP/EP3 | LOC_Os02g15950 | OsFBK5-F-box domain and kelch repeat containing protein | [27-29] | |
OsAPO1/SCM2 | LOC_Os06g45460 | OsFBX202-F-box domain containing protein | [30-32] | |
IPA1/WFP/OsSPL14 | LOC_Os08g39890 | SBP-box gene family member | [35-37] | |
SDT | LOC_Os06g44034 | OsmiR156h microRNA precursor | [38] | |
茎秆Culm | SMOS1 | LOC_Os05g32270 | AP2 domain containing protein | [41-42] |
LSI1 | LOC_Os02g51110 | Silicon influx transporter | [45] | |
LSI2 | LOC_Os03g01700 | Silicon efflux transporter | [46] | |
LSI6 | LOC_Os06g12310 | Silicon influx transporter | [47] | |
PRL5 | Uncloned | Unknown | [51] | |
LRT5 | Uncloned | Unknown | [52] | |
次生细胞壁 | BC6 | LOC_Os09g25490 | OsCESA9-cellulose synthase | [55] |
Secondary cell wall | BC7/BC11 | LOC_Os01g54620 | OsCESA4-cellulose synthase | [56-57] |
BC3 | LOC_Os02g50550 | Dynamin | [58] | |
BC15/OsCTL1 | LOC_Os09g32080 | CHIT13-chitinase family protein precursor | [59] | |
BC14/OsNST1 | LOC_Os02g40030 | Golgi-localized nucleotide sugar transporters | [60] | |
BC10 | LOC_Os05g07790 | Glycosyltransferase family protein | [61] | |
OsMYB103L | LOC_Os08g05520 | MYB-like DNA-binding domain containing protein | [62] | |
OsNAC29/OsSWN2 | LOC_Os08g02300 | NAC transcription factor | [64] | |
BC1 | LOC_Os03g30250 | COBRA-like protein precursor | [66-67] | |
BC12 | LOC_Os09g02650 | Kinesin motor domain containing protein domain of unknown function 266 | [68] | |
CslF6 | LOC_Os08g06380 | CSLF6-cellulose synthase-like family F; beta1,3;1,4 glucan synthase | [69-70] | |
Os4CL3 | LOC_Os02g08100 | 4-coumarate-CoA ligase | [72-73] | |
OsCAD7/FC1 | LOC_Os04g52280 | Cinnamyl alcohol dehydrogenase | [74-75] | |
OsCAD2/gh2 | LOC_Os02g09490 | Cinnamyl alcohol dehydrogenase | [76-77] |
[1] | Donald C M, Hamblin J.The biological yield and harvest index of cereals as agronomic and plant breeding criteria.Adv Agron, 1976:361-405. |
[2] | 杨波, 杨文钰. 水稻抗倒伏研究进展. 耕作与栽培, 2011,(2):1-5,9. |
Yang B, Yang W Y.Progress of research on lodging resistance in rice.Till Cult, 2011,(2):1-5,9.(in Chinese) | |
[3] | Khush G S.Green revolution:Preparing for the 21st century.Genome, 1999, 42(4):646-655. |
[4] | 杨惠杰, 杨仁崔, 李义珍, 等. 水稻茎秆性状与抗倒性的关系. 福建农业学报, 2000,(2): 1-7. |
Yang H J, Yang S R, Li Y Z, et al.Relationship between culm traits and lodging resistance of rice cultivars.Fujiang J Agric Sci, 2000,(2):1-7.(in Chinese with English abstract) | |
[5] | 孙旭初. 水稻茎秆抗倒性的研究. 中国农业科学, 1987, 20(4):32-37. |
Sun X C.Studies on the resistance of the culm of rice to lodging.Sci Agric Sin, 1987, 20(4): 32-37.(in Chinese with English abstract) | |
[6] | Spielmeyer W, Ellis M H, Chandler P M.Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene.Proc Natl Acad Sci USA, 2002, 99(13):9043-9048. |
[7] | Monna L, Kitazawa N, Yoshino R, et al.Positional cloning of rice semidwarfing gene, sd-1: Rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis.DNA Res, 2002, 9(1):11-17. |
[8] | Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al.Green revolution: A mutant gibberellin-synthesis gene in rice.Nature, 2002, 416(6882):701-702. |
[9] | Oikawa T, Koshioka M, Kojima K, et al.A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice.Plant Mol Biol, 2004, 55(5):687-700. |
[10] | Asano K, Yamasaki M, Takuno S, et al.Artificial selection for a green revolution gene during japonica rice domestication.Proc Natl Acad Sci USA, 2011, 108(27):11034-11039. |
[11] | Okuno A, Hirano K, Asano K, et al.New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties.PLoS One, 2014, 9(2):e86870. |
[12] | 林泽川, 曹立勇. 水稻株型相关基因的定位与克隆研究进展. 中国稻米, 2014, (1):17-22,27. |
Lin Z C, Cao L Y.Progress on mapping and cloning of genes related to rice plant type.China Rice, 2014(1):17-22,27.(in Chinese with English abstract) | |
[13] | Jin J, Huang W, Gao J P, et al.Genetic control of rice plant architecture under domestication.Nat Genet, 2008, 40(11):1365-1369. |
[14] | Tan L, Li X, Liu F, et al.Control of a key transition from prostrate to erect growth in rice domestication.Nat Genet, 2008, 40(11):1360-1364. |
[15] | Yu B, Lin Z, Li H, et al.TAC1, a major quantitative trait locus controlling tiller angle in rice.Plant J, 2007, 52(5):891-898. |
[16] | Jiang J, Tan L, Zhu Z, et al.Molecular evolution of the TAC1 gene from rice (Oryza sativa L.).J Genet Genom, 2012, 39(10):551-560. |
[17] | Li P, Wang Y, Qian Q, et al.LAZY1 controls rice shoot gravitropism through regulating polar auxin transport.Cell Res, 2007, 17(5):402-410. |
[18] | Guo S, Xu Y, Liu H, et al.The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14.Nat Commun, 2013, 4:1566. |
[19] | Minakuchi K, Kameoka H, Yasuno N, et al.FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice.Plant Cell Physiol, 2010, 51(7):1127-1135. |
[20] | Takeda T, Suwa Y, Suzuki M, et al.The OsTB1 gene negatively regulates lateral branching in rice.Plant J, 2003, 33(3):513-520. |
[21] | Yano K, Ookawa T, Aya K, et al.Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism.Mol Plant, 2015, 8(2):303-314. |
[22] | 陈温福, 徐正进, 张龙步. 水稻超高产育种生理基础. 沈阳:辽宁科技出版社, 2003:220-223. |
Chen W F, Xu Z J, Zhang L B.The physidogical Basis of Rice Super High Yielding Breeding. Shenyang:Liaoning Science and Technology Publishing House, 2003: 220-223. | |
[23] | Huang X, Qian Q, Liu Z, et al.Natural variation at the DEP1 locus enhances grain yield in rice.Nat Genet, 2009, 41(4):494-497. |
[24] | Yan C J, Zhou J H, Yan S, et al.Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.).Theor Appl Genet, 2007, 115(8):1093-1100. |
[25] | Zhou Y, Zhu J, Li Z, et al.Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication.Genetics, 2009, 183(1):315-324. |
[26] | 张喜娟, 李红娇, 李伟娟, 等. 北方直立穗型粳稻抗倒性的研究. 中国农业科学, 2009, 42(7):2305-2313. |
Zhang X J, Li H J, Li W J, et al.The lodging resistance of erect panicle japonica rice in Northern China.Sci Agric Sin, 2009, 42(7):2305-2313.(in Chinese with English abstract) | |
[27] | Piao R, Jiang W, Ham T H, et al.Map-based cloning of the ERECT PANICLE 3 gene in rice.Theor Appl Genet, 2009, 119(8):1497-1506. |
[28] | Li M, Tang D, Wang K, et al.Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice.Plant Biotechnol J, 2011, 9(9):1002-1013. |
[29] | Yu H, Murchie EH, González-Carranza Z H, et al. Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development.J Exp Bot, 2015, 66(5):1543-1552. |
[30] | Ikeda-Kawakatsu K, Maekawa M, Izawa T, et al.ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1.Plant J, 2012, 69(1):168-180. |
[31] | Ikeda K, Ito M, Nagasawa N, et al.Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate.Plant J, 2007, 51(6):1030-1040. |
[32] | Ookawa T, Hobo T, Yano M, et al.New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield.Nat Commun, 2010, 1:132. |
[33] | 程式华. 我国超级稻育种的理论与实践. 中国农技推广, 2005, (4):27-29. |
Cheng S H.Theory and practice of suger rice breeding in China.Chin Agric Technol Ext, 2005, (4):27-29.(in Chinese) | |
[34] | 胡江, 藤本宽, 郭龙彪, 等. 水稻抗倒力及相关抗倒伏性状的QTL分析. 中国水稻科学, 2008, 29(2):211-214. |
Hu J, Kan F, Guo L B, et al.QTL analysis of lodging resistance force and lodging resistance-related traits in rice.Chin J Rice Sci. 2008, 29(2):211-214.(in Chinese with English abstract) | |
[35] | Jiao Y, Wang Y, Xue D, et al.Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.Nat Genet, 2010, 42(6):541-544. |
[36] | Miura K, Ikeda M, Matsubara A, et al.OsSPL14 promotes panicle branching and higher grain productivity in rice.Nat Genet, 2010, 42(6):545-549. |
[37] | Lu Z, Yu H, Xiong G, et al.Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture.Plant Cell, 2013, 25(10):3743-3759. |
[38] | Zhao M, Liu B, Wu K, et al.Regulation of OsmiR156h through alternative polyadenylation improves grain yield in rice.PLoS One, 2015, 10(5):e0126154. |
[39] | Kashiwagi T, Ishimaru K.Identification and functional analysis of a locus for improvement of lodging resistance in rice.Plant Physiol, 2004, 134(2):676-683. |
[40] | Kashiwagi T, Togawa E, Hirotsu N, et al.Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.).Theor Appl Genet, 2008, 117(5):749-757. |
[41] | Hirano K, Okuno A, Hobo T, et al.Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance.PLoS One, 2014, 9(7):e96009. |
[42] | Aya K, Hobo T, Sato-Izawa K, et al.A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway.Plant Cell Physiol, 2014, 55(5):897-912. |
[43] | 刘慧娟, 饶玉春, 杨窑龙, 等. 水稻叶鞘相关性状的遗传分析. 分子植物育种, 2011(3): 278-287. |
Liu H J, Rao Y C, Yang Y L, et al.QTL analysis of leaf sheath traits in rice (Oryza sativa L.).Mol Plant Breed, 2011(3): 278-287.(in Chinese with English abstract) | |
[44] | 陈平平. 硅在水稻生活中的作用. 生物学通报, 1998, 33(8):6-8. |
Chen P P.The role of silicon in rice life.Bull Biol,1998, 33(8):6-8(in Chinese). | |
[45] | Ma J F, Tamai K, Yamaji N, et al.A silicon transporter in rice.Nature, 2006, 440(7084):688-691. |
[46] | Ma J F, Yamaji N, Mitani N, et al.An efflux transporter of silicon in rice.Nature, 2007, 448(7150):209-212. |
[47] | Yamaji N, Ma J F.A transporter at the node responsible for intervascular transfer of silicon in rice.Plant Cell, 2009, 21(9):2878-2883. |
[48] | 杨长明, 杨林章, 颜廷梅, 等. 不同养分和水分管理模式对水稻抗倒伏能力的影响. 应用生态学报, 2004,(4):646-650. |
Yang C M, Yang L Z, Yan T M, et al.Effects of nutrient and water regimes on lodging resistance of rice.Chin J Appl Ecol, 2004,(4):646-650(in Chinese with English abstract). | |
[49] | 邢雪荣, 张蕾. 植物的硅素营养研究综述. 植物学通报, 1998, 15(2):34-41. |
Xing X R, Zhang L.Review of the studies on silicon nutrition of plants.Chin Bull Bot, 1998, 15(2):34-41.(in Chinese with English abstract) | |
[50] | 张丰转, 金正勋, 马国辉, 等. 灌浆成熟期粳稻抗倒伏性和茎鞘化学成分含量的动态变化. 中国水稻科学, 2010, 24(3):264-270. |
Zhang F Z, Jin Z X, Ma G H, et al.Dynamic changes of lodging resistance and chemical component contents in culm and sheaths of japonica rice during grain filling.Chin J Rice Sci, 2010, 24(3):264-270.(in Chinese with English abstract) | |
[51] | Kashiwagi T, Madoka Y, Hirotsu N, et al.Locus prl5 improves lodging resistance of rice by delaying senescence and increasing carbohydrate reaccumulation.Plant Physiol Biochem, 2006, 44(2/3):152-157. |
[52] | Ishimaru K, Togawa E, Ookawa T, et al.New target for rice lodging resistance and its effect in a typhoon.Planta, 2008, 227(3):601-609. |
[53] | Sherratt M J, Baldock C, Haston J L, et al.Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues.J Mol Biol, 2003, 332(1):183-193. |
[54] | 罗茂春, 田翠婷, 李晓娟, 等. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. 西北植物学报, 2007, 27(11):2346-2353. |
Luo M C, Tian C T, Li X J, et al.Relationship between morpho-anatomical traits together with chemical components and lodging resistance of stem in rice(Oryza sativa L .).Acta Bot Bor-Occid Sin, 2007, 27(11):2346-2353.(in Chinese with English abstract). | |
[55] | Kotake T, Aohara T, Hirano K, et al.Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls.J Exp Bot, 2011, 62(6):2053-2062. |
[56] | Yan C, Yan S, et al, Gu M. Fine mapping and isolation of Bc7(t) , allelic toOsCesA4. J Genet Genom, 2007, 34(11):1019-1027. |
[57] | Zhang B, Deng L, Qian Q, et al.A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice.Plant Mol Biol, 2009, 71(4/5):509-524. |
[58] | Hirano K, Kotake T, Kamihara K, et al.Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis.Planta, 2010, 232(1):95-108. |
[59] | Wu B, Zhang B, Dai Y, et al.Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice.Plant Physiol, 2012, 159(4):1440-1452. |
[60] | Zhang B, Liu X, Qian Q, et al.Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice.Proc Natl Acad Sci USA, 2011, 108(12):5110-5115. |
[61] | Zhou Y, Li S, Qian Q, et al.BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.).Plant J, 2009, 57(3):446-462. |
[62] | Yang C, Li D, Liu X, et al.OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.).BMC Plant Biol, 2014, 14:158. |
[63] | Huang D, Wang S, Zhang B, et al.A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice.Plant Cell, 2015, 27(6):1681-1696. |
[64] | Zhong R, Lee C, McCarthy R L, et al. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors.Plant Cell Physiol, 2011, 52(10):1856-1871. |
[65] | Zhang B, Zhou Y.Rice brittleness mutants: A way to open the ‘black box’ of monocot cell wall biosynthesis.J Integr Plant Biol, 2011, 53(2):136-142. |
[66] | Li Y, Qian Q, Zhou Y, et al.BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants.Plant Cell, 2003, 15(9):2020-2031. |
[67] | Liu L, Shang-Guan K, Zhang B, et al.Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.PLoS Genet, 2013, 9(8):e1003704. |
[68] | Zhang M, Zhang B, Qian Q, et al.Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice.Plant J, 2010, 63(2):312-328. |
[69] | Vega-Sánchez M E, Verhertbruggen Y, Christensen U, et al. Loss of cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties and defense responses in vegetative tissues of rice.Plant Physiol, 2012, 159(1):56-69. |
[70] | Burton R A, Wilson S M, Hrmova M, et al.Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1, 3;1, 4)-beta-D-glucans.Science, 2006, 311(5769):1940-1942. |
[71] | Li F, Zhang M, Guo K, et al.High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.Plant Biotechnol J, 2015, 13(4):514-525. |
[72] | Hu W J, Kawaoka A, Tsai C J, et al.Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (Populus tremuloides).Proc Natl Acad Sci USA, 1998, 95(9):5407-5412. |
[73] | Gui J, Shen J, Li L.Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice.Plant Physiol, 2011, 157(2):574-586. |
[74] | Grima-Pettenati J, Campargue C, Boudet A, et al.Purification and characterization of cinnamyl alcohol dehydrogenase isoforms from Phaseolus vulgaris.Phytochemistry, 1994, 37(4):941-947. |
[75] | Li X, Yang Y, Yao J, et al.FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice.Plant Mol Biol, 2009, 69(6):685-697. |
[76] | Ookawa T, Inoue K, Matsuoka M, et al.Increased lodging resistance in long-Culm, low-lignin gh2 rice for improved feed and bioenergy production.Sci Rep, 2014, 4:65-67. |
[77] | Hirano K, Aya K, Kondo M, et al.OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm.Plant Cell Rep, 2012, 31(1):91-101. |
[78] | 王勇, 向波, 冼季夏, 等. 水稻抗倒伏研究现状及存在的问题. 广西农业科学, 2007, 39(2):141-144. |
Wang Y, Xiang B, Xian L X, et al.Research status and existing problems of rice resistance to lodging.J Guangxi Agric Sci, 2007, 39(2):141-144.(in Chinese with English abstract) | |
[79] | 吴伟明, 程式华. 水稻根系育种的意义与前景. 中国水稻科学, 2005,19(2):174-180. |
Wu W M, Cheng S H.Significance and prospects of breeding for root system in rice(Oryza sativa).Chin J Rice Sci, 2005,19(2):174-180.(in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||