Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (1): 29-36.DOI: 10.16819/j.1001-7216.2023.220705
• Research Papers • Previous Articles Next Articles
WANG Shiguang, LU Zhanhua, LIU Wei, LU Dongbai, WANG Xiaofei, FANG Zhiqiang, WU Haoxiang, HE Xiuying()
Received:
2022-07-05
Revised:
2022-09-05
Online:
2023-01-10
Published:
2023-01-10
Contact:
HE Xiuying
王石光, 陆展华, 刘维, 卢东柏, 王晓飞, 方志强, 巫浩翔, 何秀英()
通讯作者:
何秀英
基金资助:
WANG Shiguang, LU Zhanhua, LIU Wei, LU Dongbai, WANG Xiaofei, FANG Zhiqiang, WU Haoxiang, HE Xiuying. Generating Guangdong Simiao Rice Germplasms by Applying CRISPR/Cas9 Gene Editing and Marker-assisted Selection Technology[J]. Chinese Journal OF Rice Science, 2023, 37(1): 29-36.
王石光, 陆展华, 刘维, 卢东柏, 王晓飞, 方志强, 巫浩翔, 何秀英. 应用CRISPR/Cas9技术与分子标记辅助选择创制广东丝苗米新种质[J]. 中国水稻科学, 2023, 37(1): 29-36.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.220705
Fig. 1. Comparative analysis of grain size of parental brown rice. YNSM, Yuenongsimiao; YWSM, Yuewangsimiao; XYXZ, Xiangyaxiangzhan. Data are shown as means±SD, n=10; The uppercase and lowercase letters above the bars indicate statistical significance at the P=0.01 and P=0.05 level, respectively (t-test).
Fig. 2. Mutation types of Badh2 in gene knockout plants. A, Badh2 gene structure and location of the gene editing target. B, Sequence analysis of Badh2 gene target; C, Target region sequencing of Badh2 gene in the editing lines of Yuenongsimiao background. D, Detection of transgenic vector framework by specific Cas9 and gRNA primers. YNSM, Yuenongsimiao; YWSM, Yuewangsimiao; M, DL2000 DNA marker.
株系 Line | 株高 Plant height / cm | 有效穗数Effective panicle number | 穗长 Panicle length / cm | 每穗实粒数 Grain number per panicle | 谷粒长度 Grain length / mm | 谷粒长宽比 Grain length to width ratio | |||
---|---|---|---|---|---|---|---|---|---|
粤农丝苗YNSM | 94.2±3.6 CDde | 7.00±1.00 Ab | 22.81±0.72 Bc | 120.7±13.0 ABab | 9.34±0.10 De | 3.81±0.04 Cd | |||
yn-kobadh2-1 | 90.2±1.5 Df | 6.67±0.58 Ab | 24.65±0.36 ABab | 120.8±24.0 ABab | 9.79±0.11 BCcd | 3.90±0.10 Cd | |||
yn-kobadh2-2 | 92.6±2.4 CDef | 7.33±1.53 Aab | 23.39±1.44 ABbc | 111.1±24.9 ABabc | 9.56±0.06 CDde | 3.78±0.08 Cd | |||
粤王丝苗YWSM | 105.0±2.5 Aa | 8.00±1.00 Aab | 24.60±0.57 ABab | 99.5±8.9 Bbc | 10.12±0.03 ABab | 4.35±0.04 ABbc | |||
yw-kobadh2-1 | 100.4±1.5 ABbc | 8.33±0.58 Aab | 25.62±0.34 Aa | 91.1±8.8 Bc | 10.28±0.19 Aab | 4.50±0.04 ABab | |||
yw-kobadh2-2 | 103.4±3.2 Aab | 8.33±0.58 Aab | 24.73±0.63 ABab | 94.1±10.0 Bc | 10.38±0.11 Aa | 4.55±0.09 Aa | |||
NWbadh2GW7-1 | 103.0±4.5 Aab | 9.00±1.73 Aa | 24.74±1.53 ABab | 100.6±13.9 ABbc | 10.01±0.05 ABc | 4.31±0.04 Bc | |||
NWbadh2GW7-2 | 97.2±2.9 BCcd | 8.33±0.58 Aab | 25.46±1.11 Aa | 135.7±5.0 Aa | 10.35±0.37 Aa | 4.36±0.21 ABbc | |||
株系 Line | 糙米长度 Grain length of brown rice / mm | 糙米长宽比Grain length to width ratio of brown rice | 千粒重 1000-grain weight / g | 产量 Grain yield / (kg·hm-2) | 2-AP含量 2-AP content / (μg·kg-1) | ||||
粤农丝苗YNSM | 6.92±0.07 Bb | 3.30±0.01 Bc | 21.08±0.38 ABab | 6256.9±247.5 ABab | 0.00±0.00 De | ||||
yn-kobadh2-1 | 7.01±0.13 Bb | 3.32±0.13 Bc | 21.43±0.45 Aa | 6203.6±1356.8 ABb | 440.79±23.69 Aa | ||||
yn-kobadh2-2 | 6.88±0.20 Bb | 3.37±0.11 Bc | 20.82±0.67 ABCabc | 5885.4±782.6 ABb | 306.07±30.18 Bc | ||||
粤王丝苗YWSM | 8.40±0.18 Aa | 4.68±0.09 Aa | 20.30±0.39 ABCDbcd | 5723.5±149.6 ABb | 0.00±0.00 De | ||||
yw-kobadh2-1 | 8.28±0.12 Aa | 4.62±0.10 Aa | 19.94±0.83 BCDcde | 5402.4±694.2 Bb | 239.39±5.51 Cd | ||||
yw-kobadh2-2 | 8.25±0.12 Aa | 4.45±0.14 Aab | 20.07±0.56 BCDcd | 5612.9±740.1 Bb | 276.67±13.68 BCc | ||||
NWbadh2GW7-1 | 8.18±0.30 Aa | 4.36±0.31 Ab | 19.70±0.46 CDde | 6342.1±1480.3 ABab | 439.99±21.78 Aa | ||||
NWbadh2GW7-2 | 8.36±0.21 Aa | 4.58±0.06 Aab | 19.16±0.15 De | 7708.4±298.4 Aa | 402.95±13.97 Ab |
Table 1. Agronomic traits of the wild type and generated lines.
株系 Line | 株高 Plant height / cm | 有效穗数Effective panicle number | 穗长 Panicle length / cm | 每穗实粒数 Grain number per panicle | 谷粒长度 Grain length / mm | 谷粒长宽比 Grain length to width ratio | |||
---|---|---|---|---|---|---|---|---|---|
粤农丝苗YNSM | 94.2±3.6 CDde | 7.00±1.00 Ab | 22.81±0.72 Bc | 120.7±13.0 ABab | 9.34±0.10 De | 3.81±0.04 Cd | |||
yn-kobadh2-1 | 90.2±1.5 Df | 6.67±0.58 Ab | 24.65±0.36 ABab | 120.8±24.0 ABab | 9.79±0.11 BCcd | 3.90±0.10 Cd | |||
yn-kobadh2-2 | 92.6±2.4 CDef | 7.33±1.53 Aab | 23.39±1.44 ABbc | 111.1±24.9 ABabc | 9.56±0.06 CDde | 3.78±0.08 Cd | |||
粤王丝苗YWSM | 105.0±2.5 Aa | 8.00±1.00 Aab | 24.60±0.57 ABab | 99.5±8.9 Bbc | 10.12±0.03 ABab | 4.35±0.04 ABbc | |||
yw-kobadh2-1 | 100.4±1.5 ABbc | 8.33±0.58 Aab | 25.62±0.34 Aa | 91.1±8.8 Bc | 10.28±0.19 Aab | 4.50±0.04 ABab | |||
yw-kobadh2-2 | 103.4±3.2 Aab | 8.33±0.58 Aab | 24.73±0.63 ABab | 94.1±10.0 Bc | 10.38±0.11 Aa | 4.55±0.09 Aa | |||
NWbadh2GW7-1 | 103.0±4.5 Aab | 9.00±1.73 Aa | 24.74±1.53 ABab | 100.6±13.9 ABbc | 10.01±0.05 ABc | 4.31±0.04 Bc | |||
NWbadh2GW7-2 | 97.2±2.9 BCcd | 8.33±0.58 Aab | 25.46±1.11 Aa | 135.7±5.0 Aa | 10.35±0.37 Aa | 4.36±0.21 ABbc | |||
株系 Line | 糙米长度 Grain length of brown rice / mm | 糙米长宽比Grain length to width ratio of brown rice | 千粒重 1000-grain weight / g | 产量 Grain yield / (kg·hm-2) | 2-AP含量 2-AP content / (μg·kg-1) | ||||
粤农丝苗YNSM | 6.92±0.07 Bb | 3.30±0.01 Bc | 21.08±0.38 ABab | 6256.9±247.5 ABab | 0.00±0.00 De | ||||
yn-kobadh2-1 | 7.01±0.13 Bb | 3.32±0.13 Bc | 21.43±0.45 Aa | 6203.6±1356.8 ABb | 440.79±23.69 Aa | ||||
yn-kobadh2-2 | 6.88±0.20 Bb | 3.37±0.11 Bc | 20.82±0.67 ABCabc | 5885.4±782.6 ABb | 306.07±30.18 Bc | ||||
粤王丝苗YWSM | 8.40±0.18 Aa | 4.68±0.09 Aa | 20.30±0.39 ABCDbcd | 5723.5±149.6 ABb | 0.00±0.00 De | ||||
yw-kobadh2-1 | 8.28±0.12 Aa | 4.62±0.10 Aa | 19.94±0.83 BCDcde | 5402.4±694.2 Bb | 239.39±5.51 Cd | ||||
yw-kobadh2-2 | 8.25±0.12 Aa | 4.45±0.14 Aab | 20.07±0.56 BCDcd | 5612.9±740.1 Bb | 276.67±13.68 BCc | ||||
NWbadh2GW7-1 | 8.18±0.30 Aa | 4.36±0.31 Ab | 19.70±0.46 CDde | 6342.1±1480.3 ABab | 439.99±21.78 Aa | ||||
NWbadh2GW7-2 | 8.36±0.21 Aa | 4.58±0.06 Aab | 19.16±0.15 De | 7708.4±298.4 Aa | 402.95±13.97 Ab |
Fig. 3. Agronomic traits of new fragrant rice germplasms through Badh2 gene editing. A, Plant morphology of new edited lines of Yuenongsimiao and Yuewangsimiao background, respectively. Scale bar: 20 cm. B, Brown rice grain size of new edited lines of Yuenongsimiao and Yuewangsimiao background, respectively. Scale bar, 1 cm. C-G, Statistical analysis of effective panicle number, grain number per panicle, 1000-grain weight, grain yield and 2-AP content, respectively. Data are shown as means ± SD, n=3. The uppercase and lowercase letters above the bars indicate significance at 0.01 and 0.05 level, respectively (t-test). N.D, Not detected. YNSM, Yuenongsimiao; YWSM, Yuewangsimiao.
Fig. 4. Agronomic traits of new fragrant Simiao rice lines. A, Plant morphology of new fragrant Simiao Rice lines. Scale bar, 20 cm. B, Brown rice grain size of new fragrant Simiao Rice lines. Scale bar, 1 cm. C, Genotype identification of the GW7 gene using the functional markers GL7_Dup, GL7_InDel1与GL7_InDel2, respectively. D-G, Statistical analysis of brown rice grain length, width, and length to width ratio, and grain yield, respectively. YNSM, Yuenongsimiao; YWSM, Yuewangsimiao; XYXZ, Xiangyaxiangzhan; R498, Shuhui 498. Data are shown as means ± SD, n=3. The uppercase and lowercase letters above the bars indicate statistical significance at the P=0.01 and P=0.05 level, respectively (t-test).
[1] | 王丰, 柳武革, 刘迪林, 廖亦龙, 付崇允, 朱满山, 李金华, 曾学勤, 马晓智, 霍兴. 广东优质稻发展及稻米品牌建设与展望[J]. 中国稻米, 2021, 27(4): 107-116. |
Wang F, Liu W G, Liu D L, Liao Y L, Fu C Y, Zhu M S, Li J H, Zeng X Q, Ma X Z, Huo X. Development of high quality rice, construction and prospects of rice brand in Guangdong Province[J]. China Rice, 2021, 27(4): 107-116. (in Chinese with English abstract) | |
[2] | Chen R Z, Deng Y W, Ding Y L, Guo J X, Qiu J, Wang B, Wang C S, Xie Y Y, Zhang Z H, Chen J X. Rice functional genomics: Decades’ efforts and roads ahead[J]. Science China Life Sciences, 2022, 65(1): 33-92. |
[3] | Chen S H, Yang Y, Shi W W Ji Q, He F, Zhang Z D, Cheng Z K, Liu X N, Xu M L. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance[J]. Plant Cell, 2008, 20(7): 1850-1861. |
[4] | Bradbury L M, Fitzgerald T L, Henry R J, Jin Q, Waters D L. The gene for fragrance in rice[J]. Plant Biotechnology Journal, 2005, 3(3): 363-370. |
[5] | Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954. |
[6] | Wang Y X, Xiong G S, Hu J, Jiang L. Copy number variation at gl7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[7] | 卢东柏, 廖耀平, 何秀英, 陈钊明, 程永盛, 凌鸿如. 水稻新品种粤王丝苗[J]. 中国种业, 2015(3): 81. |
Lu D B, Liao Y P, He X Y, Chen Z M, Cheng Y S, Ling H R. New rice variety Yuewangsimiao[J]. China Seed Industry, 2015(3): 81. (in Chinese) | |
[8] | 何秀英, 廖耀平, 陈钊明, 程永盛, 陈粤汉, 刘维. 优质抗病水稻新品种粤农丝苗的选育及应用[J]. 中国稻米, 2014, 20(2): 69-70. |
He X Y, Liao Y P, Chen Z M, Cheng Y S, Chen Y H, Liu W. Breeding and application of a new rice variety Yuenongsimao with good quality and disease resistance[J]. China Rice, 2014, 20(2): 69-70. (in Chinese with English abstract) | |
[9] | 何秀英, 陈粤汉, 廖耀平, 王玲, 陈钊明, 林菲, 程永盛. 优质稻主导品种粤晶丝苗2号的选育过程与应用情况[J]. 作物杂志, 2011(5): 131-133. |
He X Y, Chen Y H, Liao Y P, Wang L, Chen Z M, Lin F, Cheng Y S. Breeding and application of the leading variety of agriculture Yuejingsimiao 2 with good quality[J]. Crops, 2011(5): 131-133. (in Chinese) | |
[10] | 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻粤农丝苗白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220. |
Xue J, Lu D B, Liu W, Lu Z H, Wang S G, Wang X F, Fang Z Q, He X Y. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high- quality rice Yuenong Simiao[J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220. (in Chinese with English abstract) | |
[11] | 陆展华, 王晓飞, 刘维, 卢东柏, 王石光, 薛皦, 何秀英. 优质稻粤农丝苗抗倒伏影响因素和遗传分析[J]. 植物遗传资源学报, 2021, 22(3): 638-645. |
Lu Z H, Wang X F, Liu W, Lu D B, Wang S G, Xue J, He X Y. Influencing factors and genetic analysis of lodging resistance of high-quality rice Yuenong Simiao[J]. Journal of Plant Genetic Resources, 2021, 22(3): 638-645. (in Chinese with English abstract) | |
[12] | 何秀英, 刘维, 陆展华, 卢东柏, 王晓飞, 王石光, 廖耀平, 陈钊明. 华南优质稻主栽品种粤农丝苗的选育与应用[J]. 广东农业科学, 2021, 48(10): 52-59. |
He X Y, Liu W, Lu Z H, Lu D B, Wang X F, Wang S G, Liao Y P, Chen Z M. Breeding and application of the main rice variety Yuenongsimiao with good quality in South China[J]. Guangdong Agricultural Sciences, 2021, 48(10): 52-59. (in Chinese with English abstract) | |
[13] | 陆展华, 刘维, 卢东柏, 王晓飞, 王石光, 何秀英. 优质稻品种粤农丝苗稻瘟病广谱抗性遗传及基因组成分析[J]. 植物遗传资源学报, 2020, 21(4): 827-833. |
Lu Z H, Liu W, Lu D B, Wang X F, Wang S G, He X Y. Genetic analysis and gene identification of high-quality rice Yuenong Simiao with broad spectrum resistance against rice blast[J]. Journal of Plant Genetic Resources, 2020, 21(4): 827-833. (in Chinese with English abstract) | |
[14] | Gao C X. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6): 1621-1635. |
[15] | Wang S G, Ma B T, Gao Q, Jiang G J, Zhou L, Tu B, Qin P, Tan X Q, Liu P X, Kang Y H, Liang C Z, Li S G. Dissecting the genetic basis of heavy panicle hybrid rice uncovered Gn1a and GS3 as key genes[J]. Theoretical and Applied Genetics, 2018, 131(6): 1391-1403. |
[16] | Zhang L, Ma B, Bian Z, Li X Y, Zhang C Q, Liu J Y, Li Q, Liu Q Q, He Z H. Grain size selection using novel functional markers targeting 14 genes in rice[J]. Rice, 2020, 13(1): 63. |
[17] | Wang S G, Liu W Lu D B, Lu Z H, Wang X F, Xue J, He X Y. Distribution of bacterial blight resistance genes in the main cultivars and application of Xa23 in breeding[J]. Frontiers in Plant Science, 2020, 11: 555228. |
[18] | Niu X L, Tang W, Huang W Z, Ren G J, Wang Q L, Luo D, Xiao Y Y, Yang S M, Wang F, Lu B R. RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2008, 8(1): 1-10. |
[19] | Khandagale K S, Chavhan R, Nadaf A B. RNAi-mediated down regulation of BADH2 gene for expression of 2-acetyl-1-pyrroline in non-scented indica rice IR-64 (Oryza sativa L.)[J]. 3 Biotech, 2020, 10(4): 1-9. |
[20] | Chen M L, Wei X J, Shao G N, Tang S Q, Luo J, Hu P S. fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2[J]. Plant Breeding, 2012, 131(5): 584-590. |
[21] | Shan Q W, Zhang Y, Chen K L, Zhang K, Gao C X. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology[J]. Plant Biotechnology Journal, 2015, 13(6): 791-800. |
[22] | 邵高能, 谢黎虹, 焦桂爱, 魏祥进, 圣忠华, 唐绍清, 胡培松. 利用 CRISPR/CAS9 技术编辑水稻香味基因 Badh2[J]. 中国水稻科学, 2017, 31(2): 216-222. |
Shao G N, Xie L H, Jiao G A, Wei X J, Sheng Z H, Tang S Q, Hu P S. CRISPR/CAS9-mediated editing of the fragrant gene Badh2[J]. Chinese Journal of Rice Science, 2017, 31(2): 216-222. (in Chinese with English abstract) | |
[23] | Ashokkumar S, Jaganathan D, Ramanathan V, Rahman H, Palaniswamy R, Kambale R, Muthurajan R. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing[J]. PloS ONE, 2020, 15(8): e0237018. |
[24] | Usman B, Nawaz G, Zhao N, Liu Y G, Li R B. Generation of high yielding and fragrant rice lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of cytochrome P450 gene family and OsBADH2and transcriptome and proteome profiling of revealed changes triggered by mutations[J]. Plants, 2020, 9(6): 788. |
[25] | Tang Y C, Abdelrahman M, Li J B, Wang F J, Ji Z Y, Qi H X, Wang C L, Zhao K J. CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice[J]. Plant Biotechnology Journal, 2021, 19(4): 642. |
[26] | Hui S Z, Li H J, Mawia A M, Zhou L, Cai J Y, Ahmad S, Lai C K, Shao G N, Sheng Z H, Tang S Q, Wang J L, Wei X J, Hu S K, Hu P S. Production of aromatic three-line hybrid rice using novel alleles of BADH2[J]. Plant Biotechnology Journal, 2022, 20(1): 59-74. |
[27] | Kovach M J, Calingacion M N, Fitzgerald M A, McCouch S R. The origin and evolution of fragrance in rice (Oryza sativa L.)[J]. Proceedings of the National Academy of Sciences, 2009, 106(34): 14444-14449. |
[28] | 刘维, 何秀英, 廖耀平, 程永盛, 卢东柏, 陆展华, 陈钊明, 陈粤汉. 利用分子标记辅助选择育种(MAS)技术改良水稻恢复系粤恢826[J]. 南方农业学报, 2017, 48(10): 1748-1754. |
Liu W, He X Y, Liao Y P, Cheng Y S, Lu D B, Lu Z H, Chen Z M, Chen Y H. Improving rice restorer line Yuehui 826 by marker-assisted selection (MAS) breeding technology[J]. Journal of Southern Agriculture, 2017, 48(10): 1748-1754. (in Chinese with English abstract) | |
[29] | 刘维, 廖耀平, 卢东柏, 陆展华, 程永盛, 陈粤汉, 陈钊明, 王晓飞, 王石光, 何秀英. 分子标记技术聚合Wx基因改良水稻早熟不育系品质[J]. 分子植物育种, 2022, 20(14): 4691-4699. |
Liu W, Liao Y P, Lu D B, Lu Z H, Cheng Y S, Chen Y H, Chen Z M, Wang X F, Wang S G, He X Y. Molecular marker technology polymerizes Wx genes to improve the quality of rice early-maturing sterile lines[J]. Molecular Plant Breeding, 2022, 20(14): 4691-4699. (in Chinese with English abstract) | |
[30] | Song X G, Meng X B, Guo H Y, Cheng Q, Jing Y H, Chen M J, Liu G F, Wang B, Wang Y H, Li J Y. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size[J]. Nature Biotechnology, 2022, 40: 1403-1411. |
[31] | Yu H, Lin T, Meng X B, Du H L, Zhang J K, Liu G F, Chen M J, Jing Y H, Kou L Q, Li X X, Gao Q, Liang Y, Liu X D, Fan Z L, Liang Y T, Cheng Z K, Chen M S, Tian Z X, Wang Y H, Chu C C, Zuo J R, Wan J M, Qian Q, Han B, Zuccolo A, Wing R A, Gao C X, Liang C Z, Li J Y. A route to de novo domestication of wild allotetraploid rice[J]. Cell, 2021, 184(5): 1156-1170. |
[32] | Wei Z, Abdelrahman M, Gao Y, Ji Z Y, Mishra R, Sun H D, Sui Y, Wu C Y, Wang C L, Zhao K J. Engineering broad-spectrum resistance to bacterial blight by CRISPR/Cas9-mediated precise homology directed repair in rice[J]. Molecular Plant, 2021, 14(8): 1215-1218. |
[33] | 刘文静, 胡文彬, 周政, 刘烨, 赵正洪, 徐庆国. 一种新的水稻香味基因功能标记的开发与应用[J]. 热带作物学报, 2022, 43(4): 675-683. |
Liu W J, Hu W B, Zhou Z, Liu Y, Zhao Z H, Xu Q G. Development and application of a new functional marker of fragrant gene in rice (Oryza sativa L.)[J]. Chinese Journal of Tropical Crops, 2022, 43(4): 675-683. (in Chinese with English abstract) |
[1] |
HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong.
Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515. |
[2] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[3] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[4] | FENG Aiqing, WANG Congying, SU Jing, FENG Jinqi, CHEN Kailing, LIN Xiaopeng, CHEN Bing, LIANG Meiling, YANG Jianyuan, ZHU Xiaoyuan, CHEN Shen. Development and Agronomic Traits Analysis of New Rice Resistance Lines to Xanthomonas oryzae pv. oryzicola [J]. Chinese Journal OF Rice Science, 2023, 37(6): 587-596. |
[5] | LI Jingfang, WEN Shuyue, ZHAO Lijun, CHEN Tingmu, ZHOU Zhenling, SUN Zhiguang, LIU Yan, CHEN Haiyuan, ZHANG Yunhui, CHI Ming, XING Yungao, XU Bo, XU Dayong, WANG Baoxiang. Development of Aromatic Salt-tolerant Rice Based on CRISPR/Cas9 Technology [J]. Chinese Journal OF Rice Science, 2023, 37(5): 478-485. |
[6] | LI Gang, GAO Qingsong, LI Wei, ZHANG Wenxia, WANG Jian, CHEN Baoshan, WANG Di, GAO Hao, XU Weijun, CHEN Hongqi, JI Jianhui. Directed Knockout of SD1 Gene Improves Lodging Resistance and Blast Resistance of Rice [J]. Chinese Journal OF Rice Science, 2023, 37(4): 359-367. |
[7] | DUAN Min, XIE Liujie, GAO Xiuying, TANG Haijuan, HUANG Shanjun, PAN Xiaobiao. Creation of Thermo-sensitive Genic Male Sterile Rice Lines with Wide Compatibility Based on CRISPR/Cas9 Technology [J]. Chinese Journal OF Rice Science, 2023, 37(3): 233-243. |
[8] | MA Zhaohui, SHI Yihan, CHENG Haitao, SONG Wenwen, LU Lianji, LIU Renguang, LÜ Wenyan. Effects of Embryo Morphology and Endosperm Composition on Embryo-remaining Characteristics in Rice [J]. Chinese Journal OF Rice Science, 2023, 37(3): 265-275. |
[9] | CHEN Tao, ZHAO Qingyong, ZHU Zhen, ZHAO Ling, YAO Shu, ZHOU Lihui, ZHAO Chunfang, ZHANG Yadong, WANG Cailin. Development of New Low Glutelin Content japonica Rice Lines with Good Eating Quality and Fragrance by Molecular Marker-Assisted Selection [J]. Chinese Journal OF Rice Science, 2023, 37(1): 55-65. |
[10] | ZHANG Yuanye, YIN Liying, LI Rongtian, HE Mingliang, LIU Xinxin, PAN Tingting, TIAN Xiaojie, BU Qingyun, LI Xiufeng. Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing [J]. Chinese Journal OF Rice Science, 2022, 36(6): 572-578. |
[11] | YIN Liying, ZHANG Yuanye, LI Rongtian, HE Mingliang, WANG Fangquan, XU Yang, LIU Xinxin, PAN Tingting, TIAN Xiaojie, BU Qingyun, LI Xiufeng. Improvement of Herbicide Resistance in Rice by Using CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2022, 36(5): 459-466. |
[12] | ZHOU Yonglin, SHEN Xiaolei, ZHOU Lishuai, LIN Qiaoxia, WANG Zhaolu, CHEN Jing, FENG Huijie, ZHANG Zhenwen, CHEN Xiaoting, LU Guodong. OsLOX10 Positively Regulates Defense Responses of Rice to Rice Blast and Bacterial Blight [J]. Chinese Journal OF Rice Science, 2022, 36(4): 348-356. |
[13] | LI Zhaowei, SUN Congying, LING Donglan, ZENG Huiling, ZHANG Xiaomei, FAN Kai, LIN Wenxiong. Construction of osarf7 Mutants in Rice Based on CRISPR/Cas9 Technology and Investigation on Their Agronomic Traits [J]. Chinese Journal OF Rice Science, 2022, 36(3): 237-247. |
[14] | LIANG Minmin, ZHANG Huali, CHEN Junyu, DAI Dongqing, DU Chengxing, WANG Huimei, MA Liangyong. Developing Fragrant Early indica TGMS Line with Blast Resistance by Using CRISPR/Cas9 Technology [J]. Chinese Journal OF Rice Science, 2022, 36(3): 248-258. |
[15] | HUANG Tao, WANG Yanning, ZHONG Qi, CHENG Qin, YANG Mengmeng, WANG Peng, WU Guangliang, HUANG Shiying, LI Caijing, YU Jianfeng, HE Haohua, BIAN Jianmin. Mapping and Analysis of QTLs for Rice Grain Weight and Grain Shape Using Chromosome Segment Substitution Line Population [J]. Chinese Journal OF Rice Science, 2022, 36(2): 159-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||