Chinese Journal OF Rice Science ›› 2018, Vol. 32 ›› Issue (1): 43-50.DOI: 10.16819/j.1001-7216.2018.7011
• Orginal Article • Previous Articles Next Articles
Biaolin HU1,2, Derun HUANG1, Yeqing XIAO2, Qiangsheng HE3, Yong WAN2,*(), Yeyang FAN1,*(
)
Received:
2017-01-19
Revised:
2017-04-02
Online:
2018-01-10
Published:
2018-01-10
Contact:
Yong WAN, Yeyang FAN
胡标林1,2, 黄得润1, 肖叶青2, 何强生3, 万勇2,*(), 樊叶杨1,*(
)
通讯作者:
万勇,樊叶杨
基金资助:
CLC Number:
Biaolin HU, Derun HUANG, Yeqing XIAO, Qiangsheng HE, Yong WAN, Yeyang FAN. QTL Analysis for Mineral Contents in Brown Rice Using a BC2F4:5 Population Derived from Dongxiang Wild Rice (Oryza rufipogon Griff.)[J]. Chinese Journal OF Rice Science, 2018, 32(1): 43-50.
胡标林, 黄得润, 肖叶青, 何强生, 万勇, 樊叶杨. 应用东乡野生稻回交重组自交系群体分析糙米矿质含量QTL[J]. 中国水稻科学, 2018, 32(1): 43-50.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2018.7011
染色体 Chromosome | 标记名称 Name of marker |
---|---|
1 | RM10176, RM10300, RM6466, RM129, RM11126 |
4 | RM401, RM273, RM303, RM3474, RM5709, RM349, RM348 |
5 | RM4777 |
6 | RM588, RM190, RM6003, RM19387, RM510, RM3805, RM276, RM19795, RM527, RM3724, RM7311, RM3330, RM564, |
RM19953, RM1161, RM20130, RM20591, RM340 | |
8 | RM547, RM22654, RM22684, RM72, RM339, RM42 |
9 | RM1896 |
11 | RM229, RM254, RM21, RM206, RM254, RM1233, RM224 |
12 | RM28597, RM270 |
Table 1 Forty-seven pairs of SSR markers for genotyping of the population.
染色体 Chromosome | 标记名称 Name of marker |
---|---|
1 | RM10176, RM10300, RM6466, RM129, RM11126 |
4 | RM401, RM273, RM303, RM3474, RM5709, RM349, RM348 |
5 | RM4777 |
6 | RM588, RM190, RM6003, RM19387, RM510, RM3805, RM276, RM19795, RM527, RM3724, RM7311, RM3330, RM564, |
RM19953, RM1161, RM20130, RM20591, RM340 | |
8 | RM547, RM22654, RM22684, RM72, RM339, RM42 |
9 | RM1896 |
11 | RM229, RM254, RM21, RM206, RM254, RM1233, RM224 |
12 | RM28597, RM270 |
含量 Content | BC2F4:5群体 BC2F4:5 population | 协青早B Xieqingzao B /(mg∙kg-1) | |||||
---|---|---|---|---|---|---|---|
平均值Mean /(mg∙kg-1) | 标准差 SD | 变异系数 CV/% | 范围Range /(mg∙kg-1) | 偏度 Skewness | 峰度 Kurtosis | ||
Mg | 1384.00 | 90.56 | 6.54 | 1207~1637 | 0.61 | 0.17 | 1256.00 |
Ca | 148.20 | 18.28 | 12.33 | 115.2~201.4 | 0.54 | –0.35 | 134.70 |
Zn | 26.90 | 2.07 | 7.70 | 22.66~32.06 | 0.27 | –0.46 | 26.71 |
Fe | 12.64 | 1.11 | 8.78 | 10.70~16.13 | 1.46 | 3.87 | 12.38 |
Mn | 43.11 | 3.93 | 9.12 | 35.61~53.56 | 0.33 | –0.55 | 38.21 |
Cu | 3.19 | 0.26 | 8.15 | 2.64~3.87 | 0.14 | –0.44 | 2.77 |
Table 2 Performance of mineral contents in brown rice in a Xieqingzao B3/Dongxiang wild rice BC2F4:5 population.
含量 Content | BC2F4:5群体 BC2F4:5 population | 协青早B Xieqingzao B /(mg∙kg-1) | |||||
---|---|---|---|---|---|---|---|
平均值Mean /(mg∙kg-1) | 标准差 SD | 变异系数 CV/% | 范围Range /(mg∙kg-1) | 偏度 Skewness | 峰度 Kurtosis | ||
Mg | 1384.00 | 90.56 | 6.54 | 1207~1637 | 0.61 | 0.17 | 1256.00 |
Ca | 148.20 | 18.28 | 12.33 | 115.2~201.4 | 0.54 | –0.35 | 134.70 |
Zn | 26.90 | 2.07 | 7.70 | 22.66~32.06 | 0.27 | –0.46 | 26.71 |
Fe | 12.64 | 1.11 | 8.78 | 10.70~16.13 | 1.46 | 3.87 | 12.38 |
Mn | 43.11 | 3.93 | 9.12 | 35.61~53.56 | 0.33 | –0.55 | 38.21 |
Cu | 3.19 | 0.26 | 8.15 | 2.64~3.87 | 0.14 | –0.44 | 2.77 |
性状Trait | Mg | Ca | Zn | Fe | Mn |
---|---|---|---|---|---|
Ca | 0.288** | ||||
Zn | 0.362** | –0.057 | |||
Fe | 0.343** | 0.241** | 0.263** | ||
Mn | 0.514** | 0.568** | 0.387** | 0.048 | |
Cu | 0.186* | –0.212* | 0.188* | –0.013 | 0.164 |
Table 3 Correlation analysis between mineral contents in brown rice in a Xieqingzao B3/Dongxiang wild rice BC2F4:5 population.
性状Trait | Mg | Ca | Zn | Fe | Mn |
---|---|---|---|---|---|
Ca | 0.288** | ||||
Zn | 0.362** | –0.057 | |||
Fe | 0.343** | 0.241** | 0.263** | ||
Mn | 0.514** | 0.568** | 0.387** | 0.048 | |
Cu | 0.186* | –0.212* | 0.188* | –0.013 | 0.164 |
性状 Trait | QTL | 区间 Interval | LOD值 LOD value | 加性效应a Additive effecta | 显性效应 Dominance effect | 显性度 Dominance degree | 贡献率 Proportion of the variance explained/% | 文献 Reference |
---|---|---|---|---|---|---|---|---|
Mg | qMg1 | RM10176-RM10300 | 4.86 | –41.76 | –18.81 | –0.45 | 15.5 | 20 |
Ca | qCa1 | RM10176-RM10300 | 8.73 | –9.00 | –4.36 | –0.48 | 15.1 | |
qCa4 | RM273-RM303 | 3.12 | 17.88 | –4.98 | –0.28 | 13.6 | 20 | |
qCa6 | RM588-RM204 | 9.62 | 10.11 | 9.66 | 0.96 | 17.2 | 18 | |
qCa11 | RM21-RM206 | 7.27 | –5.17 | 10.56 | 2.04 | 13.5 | ||
Zn | qZn4 | RM3474-RM5709 | 11.01 | 0.99 | 0.06 | 0.06 | 16.1 | 9, 11 |
qZn6.1 | RM588-RM204 | 3.77 | –0.66 | –0.24 | –0.37 | 5.0 | 9, 11, 14, 15, 18 | |
qZn6.2 | RM20591-RM340 | 6.10 | –0.92 | 0.21 | 0.22 | 8.3 | 13 | |
qZn8 | RM72-RM22654 | 7.48 | –0.97 | –0.02 | –0.02 | 11.2 | 10, 15 | |
Fe | qFe1 | RM140-RM129 | 3.66 | 1.31 | 0.82 | 0.63 | 38.8 | 19 |
qFe11 | RM206-RM254 | 3.73 | 0.25 | 0.99 | 3.93 | 23.1 | ||
Mn | qMn6 | RM7311-RM3330 | 3.24 | –0.49 | 2.06 | 4.18 | 5.8 | |
qMn11 | RM21-RM206 | 18.58 | –2.81 | 1.90 | 0.68 | 47.2 | 9 | |
Cu | qCu6.1 | RM588-RM204 | 3.85 | –0.11 | 0.34 | 3.14 | 10.7 | 15, 18, 20 |
qCu6.2 | RM3724-RM7311 | 6.08 | 0.05 | 0.20 | 3.66 | 16.6 | ||
qCu8 | RM547-RM72 | 7.40 | 0.14 | –0.18 | –1.29 | 21.9 | 15 | |
qCu9 | RM1896-RM566 | 3.59 | 0.09 | 0.08 | 0.86 | 9.6 | 21 |
Table 4 QTLs for mineral contents in brown rice in the BC2F4:5 population derived from Dongxiang wild rice.
性状 Trait | QTL | 区间 Interval | LOD值 LOD value | 加性效应a Additive effecta | 显性效应 Dominance effect | 显性度 Dominance degree | 贡献率 Proportion of the variance explained/% | 文献 Reference |
---|---|---|---|---|---|---|---|---|
Mg | qMg1 | RM10176-RM10300 | 4.86 | –41.76 | –18.81 | –0.45 | 15.5 | 20 |
Ca | qCa1 | RM10176-RM10300 | 8.73 | –9.00 | –4.36 | –0.48 | 15.1 | |
qCa4 | RM273-RM303 | 3.12 | 17.88 | –4.98 | –0.28 | 13.6 | 20 | |
qCa6 | RM588-RM204 | 9.62 | 10.11 | 9.66 | 0.96 | 17.2 | 18 | |
qCa11 | RM21-RM206 | 7.27 | –5.17 | 10.56 | 2.04 | 13.5 | ||
Zn | qZn4 | RM3474-RM5709 | 11.01 | 0.99 | 0.06 | 0.06 | 16.1 | 9, 11 |
qZn6.1 | RM588-RM204 | 3.77 | –0.66 | –0.24 | –0.37 | 5.0 | 9, 11, 14, 15, 18 | |
qZn6.2 | RM20591-RM340 | 6.10 | –0.92 | 0.21 | 0.22 | 8.3 | 13 | |
qZn8 | RM72-RM22654 | 7.48 | –0.97 | –0.02 | –0.02 | 11.2 | 10, 15 | |
Fe | qFe1 | RM140-RM129 | 3.66 | 1.31 | 0.82 | 0.63 | 38.8 | 19 |
qFe11 | RM206-RM254 | 3.73 | 0.25 | 0.99 | 3.93 | 23.1 | ||
Mn | qMn6 | RM7311-RM3330 | 3.24 | –0.49 | 2.06 | 4.18 | 5.8 | |
qMn11 | RM21-RM206 | 18.58 | –2.81 | 1.90 | 0.68 | 47.2 | 9 | |
Cu | qCu6.1 | RM588-RM204 | 3.85 | –0.11 | 0.34 | 3.14 | 10.7 | 15, 18, 20 |
qCu6.2 | RM3724-RM7311 | 6.08 | 0.05 | 0.20 | 3.66 | 16.6 | ||
qCu8 | RM547-RM72 | 7.40 | 0.14 | –0.18 | –1.29 | 21.9 | 15 | |
qCu9 | RM1896-RM566 | 3.59 | 0.09 | 0.08 | 0.86 | 9.6 | 21 |
[1] | Stein A J.Global impacts of human mineral malnutrition.Plant Soil,2010,335(1/2):133-154. |
[2] | White P J,Brown P H.Plant nutrition for sustainable development and global health.Ann Bot,2010,105(7):1073-1080. |
[3] | Rawat N,Neelam K,Tiwari V K,Dhaliwal H S.Biofortification of cereals to overcome hidden hunger.Plant Breeding,2013,132: 437-455. |
[4] | Bashir K,Takahashi R,Nakanishi H,Nishizawa N K.The road to micronutrient biofortification of rice: Progress and prospects.Front Plant Sci,2013,4: 15. |
[5] | Bhullar N K,Gruissem W.Nutritional enhancement of rice for human health: The contribution of biotechnology.Biotech Adv,2013,31(1):50-57. |
[6] | Gregorio G B,Senadhira D,Htut T.Breeding for trace mineral density in rice.Food Nutr Bull,2000,21(4):382-386. |
[7] | Srinivasa J,Arun B,Mishra V K,Singh G P,Velu G,Babu R,Vasistha N K,Joshi A K.Zinc and iron concentration QTL mapped in aTriticum spelta × T. aestivum cross. Theor Appl Genet,2014,127(7):1643-1651. |
[8] | Šimić D,Mladenovic D S,Zdunic Z,Jambrović A,Ledencan T,Brkić J,Brkić A,Brkić I.Quantitative trait loci for biofortification traits in maize grain.J Hered,2012,103: 47-54. |
[9] | Zhang M, Pinson S R M, Tarpley L, Huang X Y, Lahner B, Yakubova E, Baxter I O, Guerinot M L, Salt D E. Mapping and validation of quantitative trait loci associated with contents of 16 elements in unmilled rice grain.Theor Appl Genet,2014 127: 137-165. |
[10] | Du J,Zeng D L,Wang B,Qian Q,Zheng S,Ling H Q.Environmental effects on mineral accumulation in rice grains and identification of ecological specific QTLs.Environ GeoChem Health,2013,35(2):161-170. |
[11] | Zhang X Q,Zhang G P,Guo L B,Wang H,Zeng D L.Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils.Euphytica,2011,180(2):173-179. |
[12] | Ishikawa S,Abe T,Kuramata M,Yamaguchi M,Ando T,Yamamoto T,Yano M.A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7.J Exp Bot,2010,61: 923-934. |
[13] | Xu Q,Zheng T Q,Hu X,Cheng L R,Xu J L,Shi Y M,Li Z K.Examining two sets of introgression lines in rice (Oryza sativa L.) reveals favorable alleles that improve grain Zn and Fe concentrations. PLoS One,2015,10(7):e0131846. doi:10.1371/journal.pone.0131846. |
[14] | Norton G J,Deacon C M,Xiong L Z,Huang S Y,Meharg A A.Genetic mapping of the rice ionome in leaves and grain: Identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium.Plant Soil,2010,329(1/2):139-153. |
[15] | Norton G J,Duan G L,Lei M,Zhu Y G,Meharg A A,Price A H.Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: Influence of flowering time on genetic loci.Ann Appl Biol,2012,161(1):46-56. |
[16] | Kumar K,Jian S,Jian R K.Linkage mapping for grain iron and zinc content in F2 population derived from the cross between PAU201 and Palman 579 in rice (Oryza sativa L.). Cereal Res Comm,2014,42(3):389-400. |
[17] | Lu K Y,Li L Z,Zheng X F,Zhang Z,Mou T,Hu Z.Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains.J Genet,2008,87(3):305-310. |
[18] | Yu Y H,Shao Y F,Liu J,Fan Y Y,Sun X C,Cao Z Y,Zhuang J Y.Mapping of quantitative trait loci for contents of macro- and microelements in milled rice (Oryza sativa L.). J Agric Food Chem,2015,63, 7813-7818. |
[19] | Anuradha K,Agarwal S,Rao K V,Rao K V,Viraktamath B C,Sarla N.Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Adhukar × Swarna RILs.Gene,2012,508(2):233-240. |
[20] | Garcia-Oliveira A L,Tan L B,Fu Y C,Sun C Q. Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain.J Integr Plant Biol,2009,51: 84-92. |
[21] | 黄莹莹,邹德堂,王敬国,刘化龙,兴旺,马婧,武琦. 水稻子粒锰、铁、锌、铜含量的QTL定位分析. 作物杂志, 2012(6):77-81. |
Huang Y Y,Zou D T,Wang J G,Liu H L,Xing W,Ma J,Wu Q.QTL mapping for Mn, Fe, Zn and Cu contents in rice grains.Crops, 2012(6):77-81. (in Chinese with English abstract) | |
[22] | Sands D C,Morris C E,Dratz E A,Pilgeram A.Elevating optimal human nutrition to a central goal of plant breeding and production of plant-based foods.Plant Sci,2009,177(5):377-389. |
[23] | Anandan A,Rajiv G,Eswaran R,Prakash M.Genotypic variation and relationships between quality traits and trace elements in traditional and improved rice (Oryza sativa L.) genotypes. J Food Sci,2011,76(4):122-130. |
[24] | Jiang S L,Shi C H,Wu J G.Studies on mineral nutrition and safety of wild rice (Oryza L.). Int J Food Sci Nutr,2009,60(s1):139-147. |
[25] | Tanksley S D, McCouch S R. Seed banks and molecular maps: Unlocking genetic potential from the wild.Science,1997,277: 1063-1066. |
[26] | 黄得润,陈洁,侯丽娟,樊叶杨,庄杰云.协青早B//协青早B/东乡野生稻BC1F5群体产量性状QTL分析.农业生物技术学报,2008,16(6):977-982. |
Huang D R,Chen J,Hou L J,Fan Y Y,Zhuang J Y.Identification of QTLs for yield traits in the BC1F5 population of Xieqingzao B//Xieqingzao B/Dongxiang wild rice.J Agric Biotech,2008,16(6):977-982. (in Chinese with English abstract) | |
[27] | Zheng K L,Huang N,Bennet J.PCR-based marker-assisted selection in rice breeding//IRRI Discussion Paper Series No. 12. Manila: IRRI,1995: 1-24. |
[28] | Wang S C,Basten C J,Zeng Z B.Windows QTL cartographer 2.5. Raleigh, NC: Department of Statistics, North Carolina State University, 2012. Windows QTL cartographer 2.5. Raleigh, NC: Department of Statistics, North Carolina State University, 2012. . |
[29] | McCouch S R, CGSNL. Gene nomenclature system for rice.Rice,2008,1: 72-84. |
[30] | Jiang S L,Wu J G,Thang N B,Feng Y,Yang X E,Shi C H.Genotypic variation of mineral elements contents in rice (Oryza sativa L.). Eur Food Res Technol,2008,228: 115-122. |
[31] | Jiang S L,Wu J G,Feng Y,Yang X E,Shi C H.Correlation analysis of mineral element contents and quality traits in milled rice (Oryza sativa L.). J Agric Food Chem,2007,55(23):9608-9613. |
[32] | 孙明茂,杨仁昌,李点浩,崔仁守,曹桂兰,李圭星,金弘烈,于元杰,李英泰,韩龙植.粳稻“龙锦1号/香软米1578”F3家系群糙米矿质元素含量变异及相关性分析.中国水稻科学,2008,22(3):290-296. |
Sun M M,Yang R C,Li D H,Choi I S,Cao G L,Lee K S,Kim H Y,Yu Y J,Lee Y T,Han L Z.Variation and correlation analysis of mineral element contents in brown rice of F3 lines from japonica combination “Longjin 1/Xiangruanmi 1578”.Chin J Rice Sci,2008,22(3):290-296. (in Chinese with English abstract) | |
[33] | 曾亚文,申时全,汪禄祥,刘家富,普晓英,杜娟.云南稻种矿质元素含量与形态及品质性状的关系.中国水稻科学,2005,19(2):127-131 |
Zeng Y W,Shen S Q,Wang L X,Liu J F,Pu X Y,Du J.Relationship between morphological and quality traits and mineral element content in Yunnan rice.Chin J Rice Sci,2005,19(2):127-131. (in Chinese with English abstract) | |
[34] | Pinson S R M,Tarpley L,Yan W G,Yeateref K,Lahnerg B,Yakubovah E,Huangi X Y,Zhangj M,Mary G M L,Salti D E. Worldwide genetic diversity for mineral element concentrations in rice grain.Crop Sci,2015,55(1):294-311. |
[35] | Huang Y,Tong C,Xu F F,Chen Y L,Zhang C Y,Bao J S.Variation in mineral elements in grains of 20 brown rice accessions in two environments.Food Chem,2016,192: 873-878. |
[1] | HOU Benfu, YANG Chuanming, ZHANG Xijuan, YANG Xianli, WANG Lizhi, WANG Jiayu, LI Hongyu, JIANG Shukun. Mapping of Grain Shape QTLs Using RIL Population from Longdao 5/Zhongyouzao 8 [J]. Chinese Journal OF Rice Science, 2024, 38(1): 13-24. |
[2] | HU Jiaxiao, LIU Jin, CUI Di, LE Si, ZHOU Huiying, HAN Bing, MENG Bingxin, YU Liqin, HAN Longzhi, MA Xiaoding, LI Maomao. Mapping Major QTLs for Panicle Traits Using CSSLs of Dongxiang Wild Rice (Oryza rufipogon Griff.) [J]. Chinese Journal OF Rice Science, 2023, 37(6): 597-608. |
[3] | YAO Xiaoyun, CHEN Chunlian, XIONG Yunhua, HUANG Yongping, PENG Zhiqing, LIU Jin, YIN Jianhua. Identification of QTL for Milling and Appearance Quality Traits in Rice (Oryza sativa L.) [J]. Chinese Journal OF Rice Science, 2023, 37(5): 507-517. |
[4] | Jie LI, Rongrong TIAN, Tianliang BAI, Chunyan ZHU, Jiawei SONG, Lei TIAN, Shuaiguo MA, Jiandong LÜ, Hui HU, Zhenyu WANG, Chengke LUO, Yinxia ZHANG, Peifu LI. Comprehensive Evaluation and QTL Analysis for Flag Leaf Traits Using a Backcross Population in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(6): 573-585. |
[5] | Xina CHEN, Zeke YUAN, Zhenzhen HU, Quanzhi ZHAO, Hongzheng SUN. QTL-Seq Mapping of Head Rice Rate QTLs in japonica Rice [J]. Chinese Journal OF Rice Science, 2021, 35(5): 449-454. |
[6] | Zhijuan JI, Yuxiang ZENG, Yan LIANG, YANGChangdeng. Research and Progress of Bakanae Disease Resistance in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(1): 1-10. |
[7] | Ting WU, Xia LI, Derun HUANG, Fenglin HUANG, Yulong XIAO, Biaolin HU. QTL Analysis for Yield Traits Related to Low Nitrogen Tolerance Using Backcrossing Recombinant Inbred Lines Derived from Dongxiang Wild Rice (Oryza rufipogon Griff.) [J]. Chinese Journal OF Rice Science, 2020, 34(6): 499-511. |
[8] | Feng SHEN, Hongbo JIANG, Bo LIU, Xiuru ZHANG, Jun LIU, Wenxiao XIE, Jipan YAO, Liang MA. Difference of Metabolites in Brown Rice Between Liaojing 433 and Koshihikari with Good Eating Quality [J]. Chinese Journal OF Rice Science, 2020, 34(4): 359-367. |
[9] | Anpeng ZHANG, Qian QIAN, Zhenyu GAO. Research Advances on Rice Seed Vigor [J]. Chinese Journal OF Rice Science, 2018, 32(3): 296-303. |
[10] | Wei LI, Zhonghua SHENG, Ziliang ZHU, Xiangjin WEI, Lei SHI, Yawen WU, Shaoqing TANG, Jianlong WANG, Peisong HU. QTL Mapping of japonica Rice Stigma Exsertion Rate [J]. Chinese Journal OF Rice Science, 2017, 31(1): 23-30. |
[11] | Zhong-hua SHENG, Zi-liang ZHU, Ning MA, Wei LI, Ji-wai HE, Xiang-jin WEI, Gao-neng SHAO, Jian-long WANG, Pei-song HU, Shao-qing TANG. QTL Mapping of Yield Related Traits in Super Rice Variety Zhongjiazao 17 [J]. Chinese Journal OF Rice Science, 2016, 30(1): 35-43. |
[12] | QU Lijun1,2, ZHANG Hongjun2, XIANG Chao2, WANG Hui3, XIA Jiafa3, LI Zefu3, GAO Yongming2,*, SHI Yingyao1,*. Study on the Genetic Basis for Abnormal Heading in Hybrid Rice [J]. Chinese Journal of Rice Science, 2013, 27(6): 559-568. |
[13] | JIANG Jianhua1, ZHANG Wanxia1, LIU Xiaoli1, LIU Qiangming1, LU Chao1, DANG Xiaojing1, ZHAO Qibing2, HONG Delin1,*. QTL Dissection of Plant Height at Different Growth Stages Under MultiEnvironments in japonica Rice [J]. Chinese Journal of Rice Science, 2012, 26(1): 55-64. |
[14] | XU Jianjun1,2, ZHAO Qiang3, ZHAO Yuanfeng1, ZHU Lei1, XU Chenwu1, GU Minghong1, HAN Bin3, LIANG Guohua1,*. Mapping of QTLs for Flag Leaf Shape Using WholeGenome Resequenced Chromosome Segment Substitution Lines in Rice [J]. Chinese Journal of Rice Science, 2011, 25(5): 483-487. |
[15] | JIANG Jian-hua,ZHAO Qi-bing,LIU Qiang-ming,CHEN Lan,CHEN Fu-long,QIAO Bao-jian,HONG De-lin. Mining Applicable Elite Alleles of Growth Duration, Plant Height and Productive Panicle Number per Plant by Conditional QTL Mapping in Japonica Rice [J]. Chinese Journal of Rice Science, 2011, 25(3): 277-283 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||