Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (4): 359-367.DOI: 10.16819/j.1001-7216.2020.9116
• Research Papers • Previous Articles Next Articles
Feng SHEN, Hongbo JIANG, Bo LIU, Xiuru ZHANG, Jun LIU, Wenxiao XIE, Jipan YAO, Liang MA*()
Received:
2019-11-01
Revised:
2020-01-17
Online:
2020-07-10
Published:
2020-07-10
Contact:
Liang MA
沈枫, 蒋洪波, 刘博, 张秀茹, 刘军, 解文孝, 姚继攀, 马亮*()
通讯作者:
马亮
基金资助:
Feng SHEN, Hongbo JIANG, Bo LIU, Xiuru ZHANG, Jun LIU, Wenxiao XIE, Jipan YAO, Liang MA. Difference of Metabolites in Brown Rice Between Liaojing 433 and Koshihikari with Good Eating Quality[J]. Chinese Journal OF Rice Science, 2020, 34(4): 359-367.
沈枫, 蒋洪波, 刘博, 张秀茹, 刘军, 解文孝, 姚继攀, 马亮. 优质食味粳稻辽粳433和越光糙米代谢产物差异分析[J]. 中国水稻科学, 2020, 34(4): 359-367.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2020.9116
Fig. 1. PCA and PLS-DA of metabolites of Liaojing 433 and Koshihikari. A, The principal component 1 accounted for 22.4% of the total variation, and the principal component 2 accounted for 15% of the total variation by PCA(principal components analyses); B, The principal component 1 accounted for 22.3% of the total variation, and principal component 2 accounted for 8.8% of the total variation by PLS-DA(partial least-squares discrimination analysis).
序号 No. | 代谢产物 Metabolites | VIP | P | 序号 No. | 代谢产物 Metabolites | VIP | P |
---|---|---|---|---|---|---|---|
1 | 儿茶素 Catechin | 1.4364 | 33 | 奎宁酸 Quinic acid | 1.4048 | ||
2 | 苯乙酰胺 Phenylacetamide | 2.0567 | 34 | 4-氨基丁酸 4-aminobutyric acid | 1.1059 | ||
3 | N-乙酰-D-己糖胺 | 1.1147 | 35 | 油酸 Oleic acid | 1.0250 | ||
N-acetyl-D-hexosamine | 36 | 海藻糖-6-磷酸 Trehalose-6-phosphate | 1.1060 | ||||
4 | 正辛醛 Octanal | 3.5360 | 37 | 3-羟基-3-4'-羟基-3'-甲氧基苯丙酸 | 1.6832 | 3.7968 | |
5 | 核糖-5-磷酸 Ribose-5-phosphate | 1.2869 | 3-hydroxy-3-4'-hydroxy-3'-methoxyphe | ||||
6 | 3-羟基苯甲酸 3-hydroxybenzoic acid | 1.2889 | 3.5573 | nylpropionic acid | |||
7 | 肌醇-4-单磷酸 | 1.5187 | 5.4579 | 38 | 肌酐 Creatinine | 2.3204 | 4.9027 |
Inositol-4-monophosphate | 39 | 鸟苷 Guanosine | 1.1265 | 3.3626 | |||
8 | 甘油 Glycerol | 2.1451 | 40 | 帕拉金糖醇 Palatinitol | 1.5140 | 3.8164 | |
9 | 尿酸 Uric acid | 5.8882 | 41 | 双半乳糖醛酸 Digalacturonic acid | 3.9823 | 2.5444 | |
10 | 延胡索酸 Fumaric acid | 3.3667 | 42 | 氨基葡萄糖酸 Glucosaminic acid | 4.4534 | 4.4615 | |
11 | 半乳糖醛酸 Galacturonic acid | 3.0153 | 43 | 2'-脱氧鸟苷 2'-deoxyguanosine | 6.3652 | 9.7448 | |
12 | β-甘油磷酸 Beta-glycerolphosphate | 1.0675 | 3.3689 | 44 | 胱硫醚 Cystathionine | 2.1555 | 7.5433 |
13 | 磷酸甘油酯 Glycerol-α-phosphate | 1.2960 | 2.4937 | 45 | 1, 5-脱水葡萄糖醇 1, 5-anhydroglucitol | 2.9614 | |
14 | 阿魏酸 Ferulic acid | 3.4483 | 46 | 5-羟基-3-吲哚乙酸 | 1.3300 | 4.1545 | |
15 | 乳糖酸 Lactobionic acid | 2.5625 | 5-hydroxy-3-indoleacetic acid | ||||
16 | 1-甲基海因 1-methylhydantoin | 3.7246 | 4.2807 | 47 | 6-脱氧葡萄糖 6-Deoxyglucose | 1.0534 | 5.8862 |
17 | 赖氨酸 Lysine | 1.1595 | 3.5415 | 48 | 肌醇 Myo-inositol | 1.1812 | 6.4424 |
18 | 2-酮葡萄糖二甲基缩醛 | 1.7079 | 49 | 泛酸 Pantothenic acid | 1.5303 | 5.4521 | |
2-ketoglucose dimethylacetal | 50 | N-乙酰半乳糖胺 N-acetylgalactosamine | 4.0490 | ||||
19 | 己内酰胺 Epsilon-caprolactam | 2.6232 | 2.3184 | 51 | 四氧酸 Alloxanoic acid | 1.2308 | 3.9297 |
20 | 阿拉伯糖醇 Arabitol | 1.1096 | 52 | 绿原酸 Chlorogenic acid | 1.0311 | 3.9339 | |
21 | 胞嘧啶 Cytosin | 2.1537 | 53 | 瓜氨酸 Citrulline | 1.2555 | ||
22 | 亚油酸 Linoleic acid | 1.1261 | 54 | 鸟氨酸 Ornithine | 1.4025 | ||
23 | 琥珀酸 Succinic acid | 1.0970 | 55 | 胍丁胺 Agmatine | 2.2319 | ||
24 | 木糖 Xylulose | 1.0928 | 56 | α-生育酚 Alpha tocopherol | 2.5750 | ||
25 | 二十二碳烯酸 Docosenoic acid | 1.2319 | 57 | β-丙氨酸 Beta-alanine | 1.2123 | 2.3480 | |
26 | 1, 2, 3, 4, 5, 6, 6氘代-葡萄糖 | 1.1868 | 58 | 纤维二糖 Cellobiose | 1.4162 | 2.9658 | |
Glucose-1, 2, 3, 4, 5, 6, 6 deuterated | 59 | 核糖醇 Ribitol | 2.7145 | ||||
27 | 二十八酸 Montanic acid | 1.5310 | 60 | 2-(哌啶基)苯甲腈 | 2.3812 | ||
28 | 半乳酸 Galactonic acid | 1.1788 | 2.3643 | 2-piperidinobenzonitrile | |||
29 | 乳酸 Lactic acid | 1.1132 | 61 | 5-单磷酸胞苷 Cytidine-5-monophosphate | 3.6268 | ||
30 | 1, 2, 4-苯三酚 1, 2, 4-benzenetriol | 1.7583 | 62 | β-甘露醇甘油酯 Beta-mannosylglycerate | 3.1918 | ||
31 | 三糖 Trisaccharide | 2.3646 | 63 | 5-甲氧色胺 5-methoxytryptamine | 2.1717 | ||
32 | 肌苷 Inosine | 1.2861 | 64 | 腐胺 Putrescine | 2.1706 |
Table 1 Different metabolic species and quantity between brown rice of Liaojing 433 and Koshihikari.
序号 No. | 代谢产物 Metabolites | VIP | P | 序号 No. | 代谢产物 Metabolites | VIP | P |
---|---|---|---|---|---|---|---|
1 | 儿茶素 Catechin | 1.4364 | 33 | 奎宁酸 Quinic acid | 1.4048 | ||
2 | 苯乙酰胺 Phenylacetamide | 2.0567 | 34 | 4-氨基丁酸 4-aminobutyric acid | 1.1059 | ||
3 | N-乙酰-D-己糖胺 | 1.1147 | 35 | 油酸 Oleic acid | 1.0250 | ||
N-acetyl-D-hexosamine | 36 | 海藻糖-6-磷酸 Trehalose-6-phosphate | 1.1060 | ||||
4 | 正辛醛 Octanal | 3.5360 | 37 | 3-羟基-3-4'-羟基-3'-甲氧基苯丙酸 | 1.6832 | 3.7968 | |
5 | 核糖-5-磷酸 Ribose-5-phosphate | 1.2869 | 3-hydroxy-3-4'-hydroxy-3'-methoxyphe | ||||
6 | 3-羟基苯甲酸 3-hydroxybenzoic acid | 1.2889 | 3.5573 | nylpropionic acid | |||
7 | 肌醇-4-单磷酸 | 1.5187 | 5.4579 | 38 | 肌酐 Creatinine | 2.3204 | 4.9027 |
Inositol-4-monophosphate | 39 | 鸟苷 Guanosine | 1.1265 | 3.3626 | |||
8 | 甘油 Glycerol | 2.1451 | 40 | 帕拉金糖醇 Palatinitol | 1.5140 | 3.8164 | |
9 | 尿酸 Uric acid | 5.8882 | 41 | 双半乳糖醛酸 Digalacturonic acid | 3.9823 | 2.5444 | |
10 | 延胡索酸 Fumaric acid | 3.3667 | 42 | 氨基葡萄糖酸 Glucosaminic acid | 4.4534 | 4.4615 | |
11 | 半乳糖醛酸 Galacturonic acid | 3.0153 | 43 | 2'-脱氧鸟苷 2'-deoxyguanosine | 6.3652 | 9.7448 | |
12 | β-甘油磷酸 Beta-glycerolphosphate | 1.0675 | 3.3689 | 44 | 胱硫醚 Cystathionine | 2.1555 | 7.5433 |
13 | 磷酸甘油酯 Glycerol-α-phosphate | 1.2960 | 2.4937 | 45 | 1, 5-脱水葡萄糖醇 1, 5-anhydroglucitol | 2.9614 | |
14 | 阿魏酸 Ferulic acid | 3.4483 | 46 | 5-羟基-3-吲哚乙酸 | 1.3300 | 4.1545 | |
15 | 乳糖酸 Lactobionic acid | 2.5625 | 5-hydroxy-3-indoleacetic acid | ||||
16 | 1-甲基海因 1-methylhydantoin | 3.7246 | 4.2807 | 47 | 6-脱氧葡萄糖 6-Deoxyglucose | 1.0534 | 5.8862 |
17 | 赖氨酸 Lysine | 1.1595 | 3.5415 | 48 | 肌醇 Myo-inositol | 1.1812 | 6.4424 |
18 | 2-酮葡萄糖二甲基缩醛 | 1.7079 | 49 | 泛酸 Pantothenic acid | 1.5303 | 5.4521 | |
2-ketoglucose dimethylacetal | 50 | N-乙酰半乳糖胺 N-acetylgalactosamine | 4.0490 | ||||
19 | 己内酰胺 Epsilon-caprolactam | 2.6232 | 2.3184 | 51 | 四氧酸 Alloxanoic acid | 1.2308 | 3.9297 |
20 | 阿拉伯糖醇 Arabitol | 1.1096 | 52 | 绿原酸 Chlorogenic acid | 1.0311 | 3.9339 | |
21 | 胞嘧啶 Cytosin | 2.1537 | 53 | 瓜氨酸 Citrulline | 1.2555 | ||
22 | 亚油酸 Linoleic acid | 1.1261 | 54 | 鸟氨酸 Ornithine | 1.4025 | ||
23 | 琥珀酸 Succinic acid | 1.0970 | 55 | 胍丁胺 Agmatine | 2.2319 | ||
24 | 木糖 Xylulose | 1.0928 | 56 | α-生育酚 Alpha tocopherol | 2.5750 | ||
25 | 二十二碳烯酸 Docosenoic acid | 1.2319 | 57 | β-丙氨酸 Beta-alanine | 1.2123 | 2.3480 | |
26 | 1, 2, 3, 4, 5, 6, 6氘代-葡萄糖 | 1.1868 | 58 | 纤维二糖 Cellobiose | 1.4162 | 2.9658 | |
Glucose-1, 2, 3, 4, 5, 6, 6 deuterated | 59 | 核糖醇 Ribitol | 2.7145 | ||||
27 | 二十八酸 Montanic acid | 1.5310 | 60 | 2-(哌啶基)苯甲腈 | 2.3812 | ||
28 | 半乳酸 Galactonic acid | 1.1788 | 2.3643 | 2-piperidinobenzonitrile | |||
29 | 乳酸 Lactic acid | 1.1132 | 61 | 5-单磷酸胞苷 Cytidine-5-monophosphate | 3.6268 | ||
30 | 1, 2, 4-苯三酚 1, 2, 4-benzenetriol | 1.7583 | 62 | β-甘露醇甘油酯 Beta-mannosylglycerate | 3.1918 | ||
31 | 三糖 Trisaccharide | 2.3646 | 63 | 5-甲氧色胺 5-methoxytryptamine | 2.1717 | ||
32 | 肌苷 Inosine | 1.2861 | 64 | 腐胺 Putrescine | 2.1706 |
Fig. 2. Heat map of cluster analysis on differential metabolites of brown rice between Liaojing 433 and Koshihikari. The numbers 1-64 correspond to those in Table 1. The red rectangles indicate that the metabolite content is significantly up-regulated and the blue rectangles indicate the significant down-regulation of the metabolite content. Z1-Z6, Six repeats of Koshihikari; Y1-Y6, Six repeats of Liaojing 433.
差异代谢途径 Pathway name | 检测到的代谢物种类/参与此途径的代谢物总数 Detected/Total | 检测到的代谢产物种类Types of metabolites detected | ||
---|---|---|---|---|
辽粳433中相对含量高的代谢产物 Metabolites with relatively high contents in Liaojing 433 | 越光中相对含量高的代谢产物 Metabolites with relatively high contents in Koshihikari | |||
肌醇磷酸代谢Inositol phosphate metabolism | 1/17 | 肌醇 Myo-inositol | ||
抗坏血酸和醛酸代谢 Ascorbate and aldarate metabolism | 3/14 | 肌醇、抗坏血酸、尿苷二磷酸葡萄糖醛酸 Myo-inositol, ascorbic acid, uridine diphosphate glucuronic acid | ||
半胱氨酸和蛋氨酸代谢 Cysteine and methionine metabolism | 7/35 | 胱硫醚、丝氨酸、半胱氨酸、高丝氨酸、天冬氨酸、丙酮酸 Cystathionine, serine, cysteine, homoserine, aspartic acid, pyruvic acid | 甲硫氨酸 Methionine | |
赖氨酸生物合成 Lysine biosynthesis | 4/9 | 二氨基丙酸、天冬氨酸、高丝氨酸 Diaminopimelic acid, aspartic acid, homoserine | 赖氨酸 Lysine | |
泛酸盐和辅酶A生物合成 Pantothenate and CoA biosynthesis | 5/16 | β-丙氨酸、丙酮酸、泛酸 Beta-alanine, pyruvic acid, pantothenic acid | 缬氨酸、尿嘧啶Valine, uracil | |
β-丙氨酸代谢 beta-alanine metabolism | 5/12 | β-丙氨酸、天冬氨酸泛酸、亚精胺 Beta-alanine, aspartic acid, pantothenic acid, spermidine | 尿嘧啶 Uracil | |
嘌呤代谢 Purine metabolism | 10/55 | 谷氨酰胺、次黄嘌呤、硫酸盐、腺嘌呤、肌苷、鸟苷、尿囊酸、脱氧鸟苷 Glutamine, hypoxanthine sulfate, adenine, inosine, guanosine, allantoic acid, deoxyguanosine | 核酮糖-5-磷酸、尿酸Ribulose-5-phosphate, uric acid | |
苯丙烷生物合成 Phenylpropanoid biosynthesis | 5/31 | 酪氨酸、苯丙氨酸、4-羟基肉桂酸、阿魏酸、芥酸钠Tyrosine, phenylalanine, 4-hydroxycinnamic acid, ferulate, sinapate | ||
酪氨酸代谢 Tyrosine metabolism | 4/18 | 多巴、酪氨酸、琥珀酸、延胡索酸 Dopa, tyrosine, fumaric acid, succinic acid | ||
色氨酸代谢 Tryptophan metabolism | 4/25 | 羟色胺、吲哚乙酸、5-羟基吲哚乙酸 Serotonin, indoleacetic acid, 5-hydroxyindoleacetic acid | 色氨酸 Tryptophan | |
亚油酸代谢Linoleic acid metabolism | 1/5 | 亚油酸 Linoleic acid |
Table 2 Different metabolic pathways and involved metabolites between brown rice of Liaojing 433 and Koshihikari.
差异代谢途径 Pathway name | 检测到的代谢物种类/参与此途径的代谢物总数 Detected/Total | 检测到的代谢产物种类Types of metabolites detected | ||
---|---|---|---|---|
辽粳433中相对含量高的代谢产物 Metabolites with relatively high contents in Liaojing 433 | 越光中相对含量高的代谢产物 Metabolites with relatively high contents in Koshihikari | |||
肌醇磷酸代谢Inositol phosphate metabolism | 1/17 | 肌醇 Myo-inositol | ||
抗坏血酸和醛酸代谢 Ascorbate and aldarate metabolism | 3/14 | 肌醇、抗坏血酸、尿苷二磷酸葡萄糖醛酸 Myo-inositol, ascorbic acid, uridine diphosphate glucuronic acid | ||
半胱氨酸和蛋氨酸代谢 Cysteine and methionine metabolism | 7/35 | 胱硫醚、丝氨酸、半胱氨酸、高丝氨酸、天冬氨酸、丙酮酸 Cystathionine, serine, cysteine, homoserine, aspartic acid, pyruvic acid | 甲硫氨酸 Methionine | |
赖氨酸生物合成 Lysine biosynthesis | 4/9 | 二氨基丙酸、天冬氨酸、高丝氨酸 Diaminopimelic acid, aspartic acid, homoserine | 赖氨酸 Lysine | |
泛酸盐和辅酶A生物合成 Pantothenate and CoA biosynthesis | 5/16 | β-丙氨酸、丙酮酸、泛酸 Beta-alanine, pyruvic acid, pantothenic acid | 缬氨酸、尿嘧啶Valine, uracil | |
β-丙氨酸代谢 beta-alanine metabolism | 5/12 | β-丙氨酸、天冬氨酸泛酸、亚精胺 Beta-alanine, aspartic acid, pantothenic acid, spermidine | 尿嘧啶 Uracil | |
嘌呤代谢 Purine metabolism | 10/55 | 谷氨酰胺、次黄嘌呤、硫酸盐、腺嘌呤、肌苷、鸟苷、尿囊酸、脱氧鸟苷 Glutamine, hypoxanthine sulfate, adenine, inosine, guanosine, allantoic acid, deoxyguanosine | 核酮糖-5-磷酸、尿酸Ribulose-5-phosphate, uric acid | |
苯丙烷生物合成 Phenylpropanoid biosynthesis | 5/31 | 酪氨酸、苯丙氨酸、4-羟基肉桂酸、阿魏酸、芥酸钠Tyrosine, phenylalanine, 4-hydroxycinnamic acid, ferulate, sinapate | ||
酪氨酸代谢 Tyrosine metabolism | 4/18 | 多巴、酪氨酸、琥珀酸、延胡索酸 Dopa, tyrosine, fumaric acid, succinic acid | ||
色氨酸代谢 Tryptophan metabolism | 4/25 | 羟色胺、吲哚乙酸、5-羟基吲哚乙酸 Serotonin, indoleacetic acid, 5-hydroxyindoleacetic acid | 色氨酸 Tryptophan | |
亚油酸代谢Linoleic acid metabolism | 1/5 | 亚油酸 Linoleic acid |
[1] | Rehman H, Aziz T, Farooq M, Wakeel A, Rengel Z.Zinc nutrition in rice production systems[J]. Plant Soil, 2012, 361: 203-226. |
[2] | Mostafa K M, Quazi K H, Ehsan H C.Application of remote sensors in mapping rice area and forecasting its production: A Review[J]. Sensors, 2015, 15: 769-791. |
[3] | 景立权, 户少武, 穆海蓉, 王云霞, 杨连新. 大气环境变化导致水稻品质总体变劣[J]. 中国农业科学, 2018, 51(13): 2462-2475. |
Jing L Q, Hu S W, Mu H R, Wang Y X, Yang L X.Change of atmospheric environment leads to deterioration of rice quality[J]. Scientia Agricultura Sinica, 2018, 51(13): 2462-2475. (in Chinese with English abstract) | |
[4] | Ross M W, Robin D G.Breeding for micronutrients in staple food crops from a human nutrition perspective[J]. Journal of Experimental Botany, 2004, 55(396): 353-364. |
[5] | Uauy C, Distelfeld A, Fahima T, Blech A, Dubcovsky J.A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat[J]. Science, 2006, 314: 1298-1301. |
[6] | 成臣, 曾勇军, 程慧煌, 谭雪明, 商庆银, 曾研华, 石庆华. 齐穗至乳熟期不同温度对水稻南粳9108籽粒激素籽粒激素含量,淀粉积累及其合成关键酶活性的影响[J]. 中国水稻科学, 2019, 33(1): 57-67. |
Chen C, Zeng Y J, Cheng H H, Tab X M, Shang Q Y, Zeng Y H, Shi Q H.Effects of different temperature from full heading to milking on grain filling stage on grain hormones concentrations, activities of enzymes involved in starch synthesis and accumulation in rice Nanjing 9108[J]. Chinese Journal of Rice Science, 2019, 33(1): 57-67. (in Chinese with English abstract) | |
[7] | 周婵婵, 黄元财, 贾宝艳, 贾宝艳, 王岩, 李瑞峰, 王术, 冯跃, Dou F G.施氮量和灌溉方式的交互作用对东北粳稻米品质影响[J]. 中国水稻科学, 2019, 33(4): 357-367. |
Zhou C C, HuanY C, Jia B Y, Wang Y, Li R F, Wang S, Feng Y, Dou F G. Effect of interaction between nitrogen rate and irrigation regime on grain quality of japonica rice in northeast China[J]. Chinese Journal of Rice Science, 2019, 33(4): 357-367. (in Chinese with English abstract) | |
[8] | Cornejo F, Caceres P J, Martinez V C, Rosell C M, Frias J.Effects of germination on the nutritive value and bioactive compounds of brown rice breads[J]. Food Chemistry, 2015, 173: 298-304. |
[9] | Swati B P, Khalid K.Germinated brown rice as a value added rice product: A review[J]. Journal of Food Science and Technology, 2011, 48(6): 661-667. |
[10] | Nakabayashi R, Saito K.Metabolomics for unknown plant metabolites[J]. Analytical and Bioanalytical Chemistry, 2013, 405(15): 5005-5011. |
[11] | Feng Y C, Fu T X, Zhang L Y, Wang C Y, Zhang D J.Research on differential metabolites in distinction of rice origin based on GC-MS[J/OL].Journal of Chemistry, 2019: 1614504, doi: 10.1155/2019/1614504. |
[12] | Song E H, Jeong J, Park C Y, Kim H Y, Kin E H, Bang E J, Hong Y S.Metabotyping of rice for understanding its intrinsic physiology and potential eating quality[J]. Food Research International, 2018, 111: 20-30. |
[13] | Heuberger A L, Lewis M R, Chen M H, Brick M A, Leach J E, Ryan E P.Metabolomic and functional genomic analyses reveal varietal differences in bioactive compounds of cooked rice[J/OL].PLoS ONE, 2010, 5(9): e12915. |
[14] | 亓娜, 张欣, 施利利, 丁得亮, 崔晶, 王松文. 不同稻米食味及食味特性的比较[J]. 中国农学通报, 2013, 29(15): 204-208. |
Qi N, Zhang X, Shi L L, Di D L, Cui J, Wang S W.Study on different rice palatability characteristics[J]. Chinese Agricultural Science Bulletin, 2013, 29(15): 204-208. (in Chinese with English abstract) | |
[15] | 解文孝, 韩勇, 李建国, 沈峰, 刘博, 姜秀英, 刘军, 吕军, 蒋洪波, 唐志强, 张秀茹. 辽粳433跨区域栽培的适宜肥密运筹方式探讨[J]. 中国稻米, 2018, 24(3): 83-86. |
Xie W X, Han Y, Li J G, Shen F, Liu B, Jiang X Y, Liu J, Lü J, Jiang H B, Tang Z Q, Zhang X R.Discussion on appropriate fertilizer management methods for trans- regional cultivation of Liaojing 433[J]. China Rice, 2018, 24(3): 83-86. (in Chinese with English abstract) | |
[16] | Xia J G, Sinelnikov I V, Han B, Wishart D S.Metabo- Analyst 3.0: Making metabolomics more meaningful[J]. Nucleic Acids Research, 2015, 43: W251-W257. |
[17] | Zhao L J, Huang Y X, Hannah-Bick C, Fulton A N, Keller A A.Application of metabolomics to assess the impact of Cu(OH)2 nanopesticide on the nutritional value of lettuce(Lactuca sativa): Enhanced Cu intake and reduced antioxidants[J]. Nanolmpact, 2016(3-4): 58-66. |
[18] | 邹路易, 肖静静, 顾文秀, 李炜, 夏文水. 催化反应液中氨基葡萄糖酸的光度法测定[J]. 现代化工, 2011, 31(11): 93-95. |
Zou L Y, Xiao J J, Gu W X, Li W, Xia W S.New method for photometric determination of D-glucosaminic acid in catalytic reaction solution[J]. Modern Chemical Industry, 2011, 31(11): 93-95. (in Chinese with English abstract) | |
[19] | Ou S J, Chen G, Lin Z H, Bai Z P, Duan C Y, Mao C P.Chromium (Ⅲ) Complexes of D-glucosaminic acid and their effect on decreasing blood sugar in vivo[J]. Archiv der Pharmazie, 2006, 339(9): 527-530. |
[20] | 杨永超, 张海斐, 杨小振, 王中元, 魏春华, 张显. 甜瓜海藻糖-6-磷酸合成酶基因鉴定及表达[J]. 西北植物学报, 2017, 37(6): 1066-1072. |
Yang Y C, Zhang H F, Yang X Z, Wang Z Y, Wei C H, Zhang X.Expression analysis and genome-wide identification of trehalose-6-phosphate synthase gene family in melon (Cucumis melo L.)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(6): 1066-1072. (in Chinese with English abstract) | |
[21] | Kuivanen J, Dantas H, Mojzita D, Mallmann E, Biz A, Krieger N, Mitchell D A, Richard P.Conversion of orange peel to L-galactonic acid in a consolidated process using engineered strains of Aspergillus niger[J]. AMB Express, 2014, 4: 33. |
[22] | Semih O, Emine N T.Total dietary fiber intake, whole grain consumption, and their biological effects[J]. Bioactive Molecules in Food, 2019, 25: 701-722. |
[23] | Trompette A, Gollwitzer E S, Yadava k, Sichelstiel A K, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Ricod P, Harris N L, Marsland B J. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nature Medicine, 2014, 20: 159-166. |
[24] | 王荣芳, 杨晓博, 安小楠, 崔同. 红枣低聚糖的HPLC分析[J]. 食品研究与开发, 2017, 38(15): 148-151. |
Wang R F, Yang X B, An X N, Cui T.HPLC analysis of oligosaccharides in jujube[J]. Food Research and Development, 2017, 38(15): 148-151. (in Chinese with English abstract) | |
[25] | 师文文, 吕攀, 徐庆强, 赵杰, 肖凯. 油酸在黄曲霉毒素诱导肝细胞损伤中的保护作用[J]. 中国油料作物学报, 2019, 41(2): 267-274. |
Shi W W, Lü P, Xu Q Q, Zhao J, Xiao K.Protective effect of oleic acid on aflatoxin-induced hepatocyte injury[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(2): 267-274. (in Chinese with English abstract) | |
[26] | Khan A A, Alanazi A M, Jabeen M, Pervez K, Wahab R, Abdelhameed A S, Chauhan A.Biophysical interactions of novel oleic acid conjugate and its anticancer potential in heLa cells[J]. Journal of Fluorescence, 2015, 25(3): 519-525. |
[27] | Liu X H, Zeng X, Chen X M, Luo R X, Li L Z, Wang C S, Liu J P, Cheng J Q, Lu Y R, Chen Y N.Oleic acid protects insulin-secreting INS-1E cells against palmitic acid-induced lipotoxicity along with an amelioration of ER stress[J]. Endocrine, 2019, 64(3): 512-524. |
[28] | 张婧菲, 胡志萍, 王恬. 天然维生素E及其衍生物的研究进展[J]. 饲料工业, 2015, 8: 31-35. |
Zhang J F, Hu Z P, Wang T.Research progress of natural vitamin E and its analogues[J]. Feed Industry, 2015(8): 31-35. (in Chinese with English abstract) | |
[29] | Tigu F, Zhang J L, Liu G X, Cai Z, Li Y.A highly active pantothenate synthetase from Corynebacterium glutamicum enables the production of D-pantothenic acid with high productivity[J]. Applied Microbiology and Biotechnology, 2018, 102: 6039-6046. |
[30] | 李兴霖, 杨光, 赵平, 丁松乔. 微生物法测定婴幼儿配方乳粉中的泛酸含量[J]. 食品安全质量检测学报, 2017, 8(6): 2257-2262. |
Li X L, Yang G, Zhao P, Ding S Q.Detection of pantothenic acid in infant formula powders by microbiological method[J]. Journal of Food Safety and Quality, 2017, 8(6): 2257-2262. (in Chinese with English abstract) | |
[31] | Karalee D, Suriyong S.γ-Aminobutyric acid (GABA) content in different varieties of brown rice during germination[J]. Science Asia, 2012, 38: 13-17. |
[32] | 丁俊胄, 杨特武, 周强, 董梦钇, 熊善柏, 赵思明. 厌氧胁迫对发芽糙米中γ-氨基丁酸含量变化的影响[J].中国粮油学报, 2015(2): 6-10. |
Ding J Z, Yang T W, Zhou Q, Dong M Y, Xiong S B, Zhao S M.γ-aminobutyric acid content of brown rice induced by hypoxia stress during germination[J]. Journal of the Chinese Cereals and Oils Association, 2015(2): 6-10. (in Chinese with English abstract) | |
[33] | Smith A E, Walter A A, Graef J L, Kendall K L, Moon J R, Lockwood C M, Fukuda D H, Beck T W, Cramer J T, Stout J R.Effects of β-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial[J]. Journal of the International Society of Sports Nutrition, 2009, 6(1): 5. |
[34] | Saunders B, Sale C, Harris R C, Sunderland C.Effect of beta-alanine supplementation on repeated sprint performance during the loughborough intermittent shuttle test[J]. Amino Acids, 2012, 43: 39-47. |
[35] | Akeda K, Machida M, Kohara A, Oni N, Takemasa T.Effects of citrulline supplementation on fatigue and exercise performance in mice[J]. Journal of Nutritional Science and Vitaminology, 2011, 57(7): 246-250. |
[36] | Liu X, Zhang C C, Wang X R, Liu Q Q, Yuan D Y, Pan G, Sun S S M, Tu J M. Development of high-lysine rice via endosperm-specific expression of a foreign LYSINE RICH PROTEIN gene[J]. BMC Plant Biology, 2016, 16: 147. |
[37] | 马兆惠, 李坤, 程海涛, 陈云, 陈恒雪, 吕文彦. 表观直链淀粉和蛋白质双低型粳稻食味的关联性状分析[J]. 沈阳农业大学学报, 2019, 50(1): 10-18. |
Ma Z H, Li K, Cheng H T, Chen Y, Chen H X, Lü W Y.Correlation of low contents of apparent amylose and proteins with taste of japonica rice[J]. Journal of Shenyang Agricultural University, 2019, 50(1): 10-18. (in Chinese with English abstract) | |
[38] | 金正勋, 杨静, 钱春荣, 刘海英, 金学泳, 秋太权.灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响. 中国水稻科学, 2005, 19(4): 377-380. |
Jin Z X, Yang J, Qian C R, Liu H Y, Jin X Y, Qiu T Q.Effects of temperature during grain filling period on activities of key enzymes for starch synthesis and rice grain quality[J]. Chinese Journal of Rice Science, 2005, 19(4): 377-380. (in Chinese with English abstract) | |
[39] | Shen Y, Jin L, Xiao P, Lu Y, Bao J S.Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight[J]. Journal of Cereal Science, 2009, 49(1): 106-111. |
[40] | Yu C H, Li Y, Zhao X, Yang S Q, Li L, Cui N X, Rong L, Yi C Z.Benzene metabolite 1, 2, 4-benzenetriol changes DNA methylation and histone acetylation of erythroid-specific genes in K562 cells[J]. Archives of Toxicology, 2019, 93(1): 137-147 |
[41] | 何华庆, 李思光, 琪寿. 奎尼酸生物合成的代谢工程[J]. 中国生物工程杂志, 2005, 25(11): 57-61. |
He H Q, Li S G, Xu Q S.Advances of metabolic engineering in biosynthesis of quinic acid[J]. China Biotechnology, 2005, 25(11): 57-61. (in Chinese with English abstract) | |
[42] | Hanson K R, Havir E A.Phenylalanine ammonia lyase//Conn E E. Secondary Plant Products: The Biochemistry of Plants [M]. New York: Academic Press, 1981, 7: 577-626. |
[43] | Maroli A S, Nandula V K, Dayan F E, Duke S O, Gerard P, Tharayil N.Metabolic profiling and enzyme analyses indicate a potential role of antioxidant systems in complementing glyphosate resistance in an Amaranthus palmeri biotype[J]. Journal of Agricultural and Food Chemistry, 2015, 63(1): 9199-9209. |
[44] | Xu J J, Fang X, Li C Y, Yang L, Chen X Y. General and specialized tyrosine metabolism pathways in plants[J/OL]. aBIOTECH, 2019, . |
[45] | 郑清岭, 杨忠仁, 张晓艳, 张凤兰, 郝丽珍. 干旱胁迫对沙芥和斧形沙芥抗坏血酸含量及其代谢相关酶的影响[J]. 植物生理学报, 2018, 54(12): 1865-1874. |
Zheng Q L, Yang Z R, Zhang X Y, Zhang F L, Hao L Z.Effects of drought stress on ascorbic acid contents and metabolism related enzymes of Pugionium cornutum and P. dolabratum[J]. Plant Physiology Journal, 2018, 54(12): 1865-1874. (in Chinese with English abstract) | |
[46] | 李京霞, 夏惠, 吕秀兰, 王进, 梁东. 抗坏血酸的代谢和调控: 以模式植物和园艺植物为例[J]. 中国生物工程杂志, 2018, 38(3): 105-114. |
Li J X, Xia H, Lü X L, Wang J, Liang D.The metabolism and regulation of ascorbic acid: A case study via model and horticultural plant[J]. China Biotechnology, 2018, 38(3): 105-114. (in Chinese with English abstract) | |
[47] | Raboy V.Approaches and challenges to engineering seed phytate and total phosphorus[J]. Plant Science, 2009, 177: 281-296. |
[48] | Kumar V, Sinha A K, Makkar H S, Becker K.Dietary roles of phytate and phytase in human nutrition[J]. Food Chemistry, 2010, 120: 945-959. |
[1] | YAO Shu, ZHAO Chunfang, CHEN Tao, LU Kai, ZHOU Lihui, ZHAO Ling, ZHU Zhen, ZHAO Qingyong, LIANG Wenhua, HE Lei, WANG Cailin, ZHANG Yadong. Nutritional Quality and Cooking and Eating Quality Characteristics of Low Glutelin Semi-glutinous japonica Rice [J]. Chinese Journal OF Rice Science, 2023, 37(2): 178-188. |
[2] | CHEN Tao, ZHAO Qingyong, ZHU Zhen, ZHAO Ling, YAO Shu, ZHOU Lihui, ZHAO Chunfang, ZHANG Yadong, WANG Cailin. Development of New Low Glutelin Content japonica Rice Lines with Good Eating Quality and Fragrance by Molecular Marker-Assisted Selection [J]. Chinese Journal OF Rice Science, 2023, 37(1): 55-65. |
[3] | Cailin WANG, Yadong ZHANG, Tao CHEN, Zhen ZHU, Qingyong ZHAO, Shu YAO, Ling ZHAO, Chunfang ZHAO, Lihui ZHOU, Xiaodong Wei, Kai LU, Wenhua LIANG. Rapid Breeding of New Semi-glutinous japonica Rice Varieties with Good Eating Quality by Crossing Between Sister Lines [J]. Chinese Journal OF Rice Science, 2021, 35(5): 455-465. |
[4] | Yangyang PAN, Yibo CHEN, Chongrong WANG, Hong LI, Daoqiang HUANG, Degui ZHOU, Zhidong WANG, Lei ZHAO, Rong GONG, Shaochuan ZHOU. Metabolism of γ-aminobutyrate and 2-acetyl-1-pyrroline Analyses at Various Grain Developmental Stages in Rice (Oryza sativa L.) [J]. Chinese Journal OF Rice Science, 2021, 35(2): 121-129. |
[5] | Biaolin HU, Derun HUANG, Yeqing XIAO, Qiangsheng HE, Yong WAN, Yeyang FAN. QTL Analysis for Mineral Contents in Brown Rice Using a BC2F4:5 Population Derived from Dongxiang Wild Rice (Oryza rufipogon Griff.) [J]. Chinese Journal OF Rice Science, 2018, 32(1): 43-50. |
[6] | Shu YAO, Xin YU, Li-hui ZHOU, Tao CHEN, Qing-yong ZHAO, Zhen ZHU, Ya-dong ZHANG, Chun-fang ZHAO, Ling ZHAO, Cai-lin WANG. Amylose Content in Good Eating Quality Rice Under Different Nitrogen Rates and Sowing Dates [J]. Chinese Journal OF Rice Science, 2016, 30(5): 532-540. |
[7] | WU Wei ,CHENG Fang-min ,LIU Zheng-hui. Variations in Grain Phytic Acid and Protein Contents among japonica Rice Cultivars from Jiangsu-Zhejiang Area and Their Correlation [J]. Chinese Journal of Rice Science, 2007, 21(3): 331-334 . |
[8] | LIU Qi-hua ,CAI Jian ,LIU Min ,CHAI Ting-you ,LI Tian. Effect of Chalkiness on Cooking,Eating and Nutritional Quality in Two indica Rice [J]. Chinese Journal of Rice Science, 2007, 21(3): 327-330 . |
[9] | GE Guo-ke,ZHANG Zhi,SHI Chun-hai,WU Jian-guo,YE Zi-hong. Impacts of Amylose Content or Protein Content on Genetic Correlations Between the Weight of Brown Rice and Appearance Quality Traits of Rice [J]. Chinese Journal of Rice Science, 2007, 21(1): 44-50 . |
[10] | SUN Cheng-xiao ,DUAN Bin-wu ,XIE Li-hong ,CHEN Neng. Determination of Several Quality Characteristics of Brown Rice by Near Infrared Transmission Spectroscopy [J]. Chinese Journal of Rice Science, 2006, 20(4): 451-454 . |
[11] | HUANG Cheng-hua ,YAO Hong-wei ,YE Gong-yin ,CHENG Jia-an. Effects of Sublethal Dose of Fipronil on Detoxifying Enzymes in the Larvae of Chilo suppressalis and Sesamia inferens [J]. Chinese Journal of Rice Science, 2006, 20(4): 447-450 . |
[12] | DONG Ming-hui ,SANG Da-zhi ,WANG Peng ,WANG Xue-ming ,YANG Jian-chang. Changes in Cooking and Nutritional Qualities of Grains at Different Positions Within a Rice Panicle under Different Nitrogen Levels [J]. Chinese Journal of Rice Science, 2006, 20(4): 389-395 . |
[13] | LI Qian-feng ,LIU Qiao-quan ,ZHANG Da-jiang ,WANG Hong-mei ,YU Heng-xiu ,GU Ming-hong ,YAO Quan-hong . Expression of Recombinant Phytase in Transgenic Rice [J]. Chinese Journal of Rice Science, 2006, 20(3): 243-247 . |
[14] | LI Wei-fen,YU Song-dong,SUN Jian-yi*. Effect of NSP Enzymes Supplementation on Digestion of Early Rice Grain and Brown Rice in Vitro [J]. Chinese Journal of Rice Science, 2004, 18(1): 86-88 . |
[15] | HE Jian-hua ,XU Qing-guo ,HUANG Mei-hua ,JIN Hong ,ZENG Shu-yuan . Nutritional Characteristics of Feeder Rice Grain and Brown Rice [J]. Chinese Journal of Rice Science, 2000, 14(4): 229-232 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||