
Chinese Journal OF Rice Science ›› 2015, Vol. 29 ›› Issue (2): 119-125.DOI: 10.3969/j.issn.1001-7216.2015.02.002
• Orginal Article • Previous Articles Next Articles
Zhi-bin CAO, Hong-wei XIE, Yuan-yuan NIE, Ling-hua MAO, Yong-hui LI, Yao-hui CAI*(
)
Received:2014-10-24
Revised:2014-12-03
Online:2015-03-10
Published:2015-03-10
Contact:
Yao-hui CAI
曹志斌, 谢红卫, 聂元元, 毛凌华, 李永辉, 蔡耀辉*(
)
通讯作者:
蔡耀辉
基金资助:CLC Number:
Zhi-bin CAO, Hong-wei XIE, Yuan-yuan NIE, Ling-hua MAO, Yong-hui LI, Yao-hui CAI. Mapping a QTL(qHTH5) for Heat Tolerance at the Heading Stage on Rice Chromosome 5 and Its Genetic Effect Analysis[J]. Chinese Journal OF Rice Science, 2015, 29(2): 119-125.
曹志斌, 谢红卫, 聂元元, 毛凌华, 李永辉, 蔡耀辉. 水稻抽穗扬花期耐热QTL(qHTH5) 定位及其遗传效应分析[J]. 中国水稻科学, 2015, 29(2): 119-125.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.1001-7216.2015.02.002
| 性状 Trait | 高温 High temperature | 对照温 Control temperature | ||||
|---|---|---|---|---|---|---|
| 蜀恢527 Shuhui 527 | YJ10-03-01 (NIL) | RP-NIL | 蜀恢 527 Shuhui 527 | YJ10-03-01 | RP-NIL | |
| 株高 Plant height/ cm | 105.4±2.8 | 104.1±1.5 | 1.3 | 106.6±3.3 | 105.3±2.3 | 1.3 |
| 穗长 Panicle length/cm | 25.5±0.7 | 24.9±0.4 | 0.6 | 25.1±1.2 | 25.6±1.4 | -0.5 |
| 单株有效穗数 No. of effective panicles per plant | 9.6±1.4 | 8.9±0.7 | 0.7 | 8.6±1.3 | 8.3±1.3 | 0.3 |
| 每穗实粒数 No. of filled grains per panicle | 74.1±4.1 | 89.8±10.1 | 15.7** | 113.1±14.6 | 112.4±17.5 | -0.7 |
| 每穗总粒数 No. of total grains per panicle | 134.1±11.1 | 133.9±4.3 | 0.2 | 136.8±19.1 | 137.3±21.1 | -0.5 |
| 结实率 Seed setting rate/% | 55.2±1.2 | 67.1±1.3 | -12.1** | 82.8±4.8 | 81.9±3.5 | 0.9 |
| 千粒重 1000-grain weight/g | 26.5±0.6 | 28.8±0.5 | -2.3** | 29.5±1.6 | 29.8±1.5 | -0.3 |
| 单株产量 Grain yield per plant/g | 19.5±4.0 | 23.8±3.5 | -4.3** | 29.3±6.2 | 28.6±4.2 | 0.9 |
Table 1 Phenotypic performances of Shuhui 527 and YJ10-03-01 under high temperature and control temperature at heading stage.
| 性状 Trait | 高温 High temperature | 对照温 Control temperature | ||||
|---|---|---|---|---|---|---|
| 蜀恢527 Shuhui 527 | YJ10-03-01 (NIL) | RP-NIL | 蜀恢 527 Shuhui 527 | YJ10-03-01 | RP-NIL | |
| 株高 Plant height/ cm | 105.4±2.8 | 104.1±1.5 | 1.3 | 106.6±3.3 | 105.3±2.3 | 1.3 |
| 穗长 Panicle length/cm | 25.5±0.7 | 24.9±0.4 | 0.6 | 25.1±1.2 | 25.6±1.4 | -0.5 |
| 单株有效穗数 No. of effective panicles per plant | 9.6±1.4 | 8.9±0.7 | 0.7 | 8.6±1.3 | 8.3±1.3 | 0.3 |
| 每穗实粒数 No. of filled grains per panicle | 74.1±4.1 | 89.8±10.1 | 15.7** | 113.1±14.6 | 112.4±17.5 | -0.7 |
| 每穗总粒数 No. of total grains per panicle | 134.1±11.1 | 133.9±4.3 | 0.2 | 136.8±19.1 | 137.3±21.1 | -0.5 |
| 结实率 Seed setting rate/% | 55.2±1.2 | 67.1±1.3 | -12.1** | 82.8±4.8 | 81.9±3.5 | 0.9 |
| 千粒重 1000-grain weight/g | 26.5±0.6 | 28.8±0.5 | -2.3** | 29.5±1.6 | 29.8±1.5 | -0.3 |
| 单株产量 Grain yield per plant/g | 19.5±4.0 | 23.8±3.5 | -4.3** | 29.3±6.2 | 28.6±4.2 | 0.9 |
Fig. 1. Mapping of qHLH5 by a substitution mapping strategy. Linkage map of the QTLs region produced with 1027 F2 plants. The number of recombinants between adjacent markers is indicated in the linkage map. Progeny testing of F3 homozygous recombinants delimited the qHLH5 locus to the region between markers RM592 and RM17921. The 117 recombinants were grouped into 10 groups based on genotypes. The numbers of recombinants in each group and phenotypic difference of each group from the controls YJ10-03-01 and Shuhui 527 for mean seed setting rate are shown on the right. An ‘a’ following the phenotypic value indicates that the mean phenotypic value of recombinant is not significantly different from that of YJ10-03-01 at P< 0.05; a ‘b’indicates that the mean phenotypic value of recombinant is not significantly different from that of Shuhui 527 at P< 0.05.
| 群体 Population | 区间 Interval | LODa | 表型方差b Phenotypic varianceb/% | 加性效应c Additive effectc/% | 显性效应d Dominance effectd/% |
|---|---|---|---|---|---|
| F2 | RM592-RM7921 | 5.61 | 8.6 | 5.2 | 3.2 |
| F3 | RM592-RM7921 | 8.90 | 19.4 | 11.3 | 2.9 |
Table 2 QTL analysis of seed setting rate under high temperature treatment in the F2 and F3 generations of YJ10-03-01/Shuhui 527 at heading stage.
| 群体 Population | 区间 Interval | LODa | 表型方差b Phenotypic varianceb/% | 加性效应c Additive effectc/% | 显性效应d Dominance effectd/% |
|---|---|---|---|---|---|
| F2 | RM592-RM7921 | 5.61 | 8.6 | 5.2 | 3.2 |
| F3 | RM592-RM7921 | 8.90 | 19.4 | 11.3 | 2.9 |
| [1] | Welch J R, Vincent J R, Auffhammer M, et al.Rice yields in tropical/subtropical Asia exhibit large but oppo-sing sensitivities to minimum and maximum temperatures.Proc Natl Acad Sci USA, 2010,107(33): 14562-14567. |
| [2] | Peng S, Huang J, Sheehy J E, et al.Rice yields decline with higher night temperature from global warming.Proc Natl Acad Sci USA, 2004, 101(27): 9971-9975. |
| [3] | Jagadish S V, Craufurd P Q, Wheeler T R.High temperature stress and spikelet fertility in rice(Oryza sativa L.).J Exp Bot, 2007, 58(07): 1627-1635. |
| [4] | 曹云英,段骅,杨立年,等. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因.作物学报, 2008, 34(12): 234-242. |
| [5] | 石舂林,金之庆,郑建初,等. 减数分裂期高温对水稻颖花结实率影响的定量分析. 作物学报, 2008, 34(04): 627-631. |
| [6] | 邓运,田小海,吴晨,等. 热害胁迫条件下水稻花药发育异常的早期特征. 中国生态农业报, 2010, 18(02);377-383. |
| [7] | 张彬, 丙雯交, 郑建初, 等. 水稻开花期花粉活力和结实率对高温的响应特征. 作物学报, 2007, 33(07): 1177-1181. |
| [8] | 彭海燕,周曾査,赵永玲,等. 2003年夏季长江中下游地区异常高温的分析.气象学, 2005, 25(04): 4355-4361. |
| [9] | 张涛,杨莉,蒋开锋,等. 水稻抽穗扬花期耐热性的QTL分析.分子植物种, 2008, 6(05): 867-873. |
| [10] | 曹立勇,赵建根,占小登,等. 水稻耐热性的QTL定位及耐热性与光合速率的相关性. 中国水稻科学, 2003, 17(03): 223-227. |
| [11] | 陈庆全,余四斌, 李春海, 等. 水稻抽穗开花期耐热性QTL的定位分析. 中国农业科学, 2008, 41(2): 315-321. |
| [12] | Xiao Y, Pan Y, Luo L, et al.Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice(Oryza sativa L.).Euphytica, 2011, 178(3): 331-338. |
| [13] | 盘毅,罗丽华,邓化冰,等. 水稻开花期高温胁迫下的花粉育性QTL定位.中国水稻科学, 2011, 25(1):99-102. |
| [14] | 王玉平,李仕贵,黎汉云,等. 高配合力优质水稻恢复系蜀恢527的选育与利用. 杂交水稻, 2004, 19(4): 12-14. |
| [15] | Rogers S O, Bendich A J.Extraction of total cellular DNA from plants, algae and fungi//Plant Molecular Biology Manual. Springer Netherlands, 1994: 183-190. |
| [16] | Lander E S, Green P, Abrahamson J, et al.MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations.Genomics, 1987, 1: 174-181. |
| [17] | Basten C J, Weir B S, Zeng Z B.QTL cartographer, Version 1.15. Raleigh, NC,USA:Department of Statistics, Northcarelina State University,2001. |
| [18] | van Ooijen J W. MapQTL5.0, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen, 2004: 63. |
| [19] | Wissuwa M, Wegner J, Ae N, et al.Substitution mapping of Pup1: A major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil.Theor Appl Genet, 2002, 105(6/7): 890-897. |
| [20] | 舒孝顺,陈良碧. 高温敏感不育水稻育性敏感期幼穗和叶片中的总 RNA 含量变化. 植物生理学通讯, 1999, 35(2): 108-110. |
| [21] | 郑建初,张彬,陈留根,等. 抽穗期高温对水稻产量构成要素和稻米品质的影响及其基因型差异. 江苏农业学报, 2005, 21(4): 249-254. |
| [22] | Andronova N G, Schlesinger M E.Causes of global temperature changes during the 19th and 20th centuries.Geophysical Res Lett, 2000, 27(14): 2137-2140. |
| [23] | Crowley T J.Causes of climate change over the past 1000 years.Science, 2000, 289(5477): 270-277. |
| [24] | 王亚伟,翟盘茂,田华. 近40年南方高温变化特征与2003年的高温事件. 气象, 2006, 32(10): 27-33. |
| [25] | Matsui T, Omasa K, Horie T.The difference in sterility due to high temperatures during the flowering period among japonica rice varieties.Plant Prod Sci, 2001, 4(2): 90-93. |
| [26] | 森谷国男,徐正进. 水稻高温胁迫抗性遗传育种研究概况. 杂交水稻, 1992, 33(1): 47-48. |
| [27] | 赵志刚,江玲,肖应辉,等. 水稻孕穗期耐热性QTLs分析. 作物学报, 2006, 32(5): 640-644. |
| [28] | 奎丽梅,谭禄宾,涂建,等. 云南元江野生稻抽穗开花期耐热QTL定位. 农业生物技术学报, 2008, 16(3): 461-464. |
| [29] | Temnykh S, Park W D, Ayres N, et al.Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.).Theor Appl Genet, 2000, 100(5): 697-712. |
| [1] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
| [2] | LIU Zhongqi, ZHANG Haiqing, HE Jiwai, GUI Jinxin. Genome-wide Association Analysis of Rice Seed Dehydration Rate at Maturity Stage [J]. Chinese Journal OF Rice Science, 2024, 38(2): 150-159. |
| [3] | HOU Benfu, YANG Chuanming, ZHANG Xijuan, YANG Xianli, WANG Lizhi, WANG Jiayu, LI Hongyu, JIANG Shukun. Mapping of Grain Shape QTLs Using RIL Population from Longdao 5/Zhongyouzao 8 [J]. Chinese Journal OF Rice Science, 2024, 38(1): 13-24. |
| [4] | HU Jiaxiao, LIU Jin, CUI Di, LE Si, ZHOU Huiying, HAN Bing, MENG Bingxin, YU Liqin, HAN Longzhi, MA Xiaoding, LI Maomao. Mapping Major QTLs for Panicle Traits Using CSSLs of Dongxiang Wild Rice (Oryza rufipogon Griff.) [J]. Chinese Journal OF Rice Science, 2023, 37(6): 597-608. |
| [5] | XIE Kaizhen, ZHANG Jianming, CHENG Can, ZHOU Jihua, NIU Fuan, SUN Bin, ZHANG Anpeng, WEN Weijun, DAI Yuting, HU Qiyan, QIU Yue, CAO Liming, CHU Huangwei. Identification and QTL Mapping of Rice Germplasm Resources with Low Amylose Content [J]. Chinese Journal OF Rice Science, 2023, 37(6): 609-616. |
| [6] | XU Huan, ZHOU Tao, SUN Yue, WANG Mumei, YANG Yachun, MA Hui, LI Hao, XU Dawei, ZHOU Hai, YANG Jianbo, NI Jinlong. Characterization and Gene Mapping of a Glume Lesion Mimic Mutant glmm1 in Rice [J]. Chinese Journal OF Rice Science, 2023, 37(5): 497-506. |
| [7] | YAO Xiaoyun, CHEN Chunlian, XIONG Yunhua, HUANG Yongping, PENG Zhiqing, LIU Jin, YIN Jianhua. Identification of QTL for Milling and Appearance Quality Traits in Rice (Oryza sativa L.) [J]. Chinese Journal OF Rice Science, 2023, 37(5): 507-517. |
| [8] | WEI Minyi, MA Zengfeng, HUANG Dahui, QIN Yuanyuan, LIU Chi, LU Yingping, LUO Tongping, LI Zhenjing, ZHANG Yuexiong, QIN Gang. QTL-Seq Analysis for Identification of Resistance Locus to Bacterial Leaf Streak in Rice [J]. Chinese Journal OF Rice Science, 2023, 37(2): 133-141. |
| [9] | TANG Jie, LONG Tuan, WU Chunyu, LI Xinpeng, ZENG Xiang, WU Yongzhong, HUANG Peijin. Identification and Gene Mapping of a New Photo-thermo-sensitive Male Sterile Mutant tms3650 in Rice [J]. Chinese Journal OF Rice Science, 2023, 37(1): 45-54. |
| [10] | SUN Zhiguang, DAI Huimin, CHEN Tingmu, LI Jingfang, CHI Ming, ZHOU Zhenling, LIU Yan, LIU Jinbo, XU Bo, XING Yungao, YANG Bo, LI Jian, LU Baiguan, FANG Zhaowei, WANG Baoxiang, XU Dayong. Phenotypic Identification and Gene Mapping of a Lesion Mimic Mutant lmm7 in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(4): 357-366. |
| [11] | LIU Jin, CUI Di, YU Liqin, ZHANG Lina, ZHOU Huiying, MA Xiaoding, HU Jiaxiao, HAN Bing, HAN Longzhi, LI Maomao. Screening and QTL Mapping of Heat-tolerant Rice (Oryza sativa L.) Germplasm Resources at Seedling Stage [J]. Chinese Journal OF Rice Science, 2022, 36(3): 259-268. |
| [12] | HUANG Tao, WANG Yanning, ZHONG Qi, CHENG Qin, YANG Mengmeng, WANG Peng, WU Guangliang, HUANG Shiying, LI Caijing, YU Jianfeng, HE Haohua, BIAN Jianmin. Mapping and Analysis of QTLs for Rice Grain Weight and Grain Shape Using Chromosome Segment Substitution Line Population [J]. Chinese Journal OF Rice Science, 2022, 36(2): 159-170. |
| [13] | YANG Jinyu, BAI Chen, DING Xiaohui, SHEN Hongfang, WANG Lei, YING Jiezheng, E Zhiguo. Genetic Analysis and Gene Mapping of a Male Sterile Mutant ms7 in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(1): 27-34. |
| [14] | DONG Zheng, WANG Yamei, LI Yongchao, XIONG Haibo, XUE Canhui, PAN Xiaowu, LIU Wenqiang, WEI Xiucai, LI Xiaoxiang. Genome-wide Association Analysis of Cadmium Content in Rice Based on MAGIC Population [J]. Chinese Journal OF Rice Science, 2022, 36(1): 35-42. |
| [15] | Jie LI, Rongrong TIAN, Tianliang BAI, Chunyan ZHU, Jiawei SONG, Lei TIAN, Shuaiguo MA, Jiandong LÜ, Hui HU, Zhenyu WANG, Chengke LUO, Yinxia ZHANG, Peifu LI. Comprehensive Evaluation and QTL Analysis for Flag Leaf Traits Using a Backcross Population in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(6): 573-585. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||