Chinese Journal OF Rice Science ›› 2024, Vol. 38 ›› Issue (2): 140-149.DOI: 10.16819/j.1001-7216.2024.230502
• Research Papers • Previous Articles Next Articles
GAO Junru, QUAN Hongyu, YUAN Liuzhen, LI Qinying, QIAO Lei, LI Wenqiang()
Received:
2023-05-06
Revised:
2023-06-18
Online:
2024-03-10
Published:
2024-03-14
Contact:
* email: wqli@nwsuaf.edu.cn
通讯作者:
* email: wqli@nwsuaf.edu.cn
基金资助:
GAO Junru, QUAN Hongyu, YUAN Liuzhen, LI Qinying, QIAO Lei, LI Wenqiang. Map-based Cloning and Functional Analysis of a New Allele of D1, a Gene Controlling Plant Height in Rice (Oryza sativa L.)[J]. Chinese Journal OF Rice Science, 2024, 38(2): 140-149.
高郡茹, 权弘羽, 袁刘珍, 李钦颖, 乔磊, 李文强. 水稻D1基因新等位突变体的鉴定与功能分析[J]. 中国水稻科学, 2024, 38(2): 140-149.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2024.230502
标记名称 Marker name | 正向引物序列 Forward primer sequence(5′-3′) | 反向引物序列 Reverse primer sequence(5′-3′) | 用途 Use |
---|---|---|---|
R5M8 | CGAGATGGAGGGATTTGAC | CCCGATGACTAGGGATTAGAG | 基因定位Gene mapping |
R5M10 | TACAAAATATGCCCGTGTCG | GATCGTTCCGCAAACAGAG | 基因定位Gene mapping |
R5M12 | GGTAGGAGGTGGAAGAAGG | TTTAGAGGGTCGGGCGATT | 基因定位Gene mapping |
R5M14 | CGTCAACAGGCTTGAAAGA | TTGCCAGTCCCAAAGAGTA | 基因定位Gene mapping |
R5M14.5 | AACGCAGTTGTGCTAATCAG | AGATCTTGTTGCCAAAAAAT | 基因定位Gene mapping |
R5M15 | GACATTTCGTGTGAATTGTT | TTCACAACTTCACTCGAGAC | 基因定位Gene mapping |
R5M15.2 | ATTAAGGTAGGGGCATGAAT | ATCACAAAGCAGTTTCCAGA | 基因定位Gene mapping |
R5M15.6 | ACAAAAATATGATGTGGCAA | CAACCCAGAAACCATCTAGT | 基因定位Gene mapping |
R5M15.8 | CTGAGAATGACTGCTCCGAA | CTTAGCGCATGAGTGGTTTT | 基因定位Gene mapping |
R5M16 | CCCACTGTATTGGATTCTGC | CCACCAGGTCCCACGTTAT | 基因定位Gene mapping |
R5M18 | AATGCCCTTCTCATCCGTGTG | GTCTATGCGTGCTGTGGGCTA | 基因定位Gene mapping |
D1-1 | AAGAGAGAGGCTCAGGCATG | GGAACTCAAAAGCTCAAGGT | 突变位点检测Mutation site detection |
D1-2 | GGTGCAAAACTGCTGTGAAT | GTGGGCTATGCAAATTAACA | 突变位点检测Mutation site detection |
CDS-9F/13R | AAACAAAAGAGGTGGAGAGG | TCTCATGCTCTCATCAATCA | cDNA测序 cDNA sequencing |
CDS-10F/12R | GAATGATGGAGACCAAGGAA | CTGTTTCCCAGGTGCAATAG | cDNA测序 cDNA sequencing |
UBQ-qPCR | GGACTGGTTAAATCAATCGTCA | CCATATACCACGACCGTCAAAA | qRT-PCR |
D1-qPCR | CAGGAGGTTGAACATGCATATG | CCTGTGTGACTTACAACCTAGT | qRT-PCR |
Table 1. Primer sequences used in this study.
标记名称 Marker name | 正向引物序列 Forward primer sequence(5′-3′) | 反向引物序列 Reverse primer sequence(5′-3′) | 用途 Use |
---|---|---|---|
R5M8 | CGAGATGGAGGGATTTGAC | CCCGATGACTAGGGATTAGAG | 基因定位Gene mapping |
R5M10 | TACAAAATATGCCCGTGTCG | GATCGTTCCGCAAACAGAG | 基因定位Gene mapping |
R5M12 | GGTAGGAGGTGGAAGAAGG | TTTAGAGGGTCGGGCGATT | 基因定位Gene mapping |
R5M14 | CGTCAACAGGCTTGAAAGA | TTGCCAGTCCCAAAGAGTA | 基因定位Gene mapping |
R5M14.5 | AACGCAGTTGTGCTAATCAG | AGATCTTGTTGCCAAAAAAT | 基因定位Gene mapping |
R5M15 | GACATTTCGTGTGAATTGTT | TTCACAACTTCACTCGAGAC | 基因定位Gene mapping |
R5M15.2 | ATTAAGGTAGGGGCATGAAT | ATCACAAAGCAGTTTCCAGA | 基因定位Gene mapping |
R5M15.6 | ACAAAAATATGATGTGGCAA | CAACCCAGAAACCATCTAGT | 基因定位Gene mapping |
R5M15.8 | CTGAGAATGACTGCTCCGAA | CTTAGCGCATGAGTGGTTTT | 基因定位Gene mapping |
R5M16 | CCCACTGTATTGGATTCTGC | CCACCAGGTCCCACGTTAT | 基因定位Gene mapping |
R5M18 | AATGCCCTTCTCATCCGTGTG | GTCTATGCGTGCTGTGGGCTA | 基因定位Gene mapping |
D1-1 | AAGAGAGAGGCTCAGGCATG | GGAACTCAAAAGCTCAAGGT | 突变位点检测Mutation site detection |
D1-2 | GGTGCAAAACTGCTGTGAAT | GTGGGCTATGCAAATTAACA | 突变位点检测Mutation site detection |
CDS-9F/13R | AAACAAAAGAGGTGGAGAGG | TCTCATGCTCTCATCAATCA | cDNA测序 cDNA sequencing |
CDS-10F/12R | GAATGATGGAGACCAAGGAA | CTGTTTCCCAGGTGCAATAG | cDNA测序 cDNA sequencing |
UBQ-qPCR | GGACTGGTTAAATCAATCGTCA | CCATATACCACGACCGTCAAAA | qRT-PCR |
D1-qPCR | CAGGAGGTTGAACATGCATATG | CCTGTGTGACTTACAACCTAGT | qRT-PCR |
Fig. 1. Phenotypic characterization of WT and d1-11 mutant A, Seedlings of 15-day-old WT and d1-11; B, Morphology of WT and d1-11 at the heading stage; C, Phenotypes of WT and d1-11 leaves at the heading stage. From left to right, three leaves represent flag leaf, the second leaf and the third leaf; D and E, Seed morphology; F-L, Agronomic comparison between WT and mutant. Bars represent mean ± SD (n=20). **P<0.01(the Student’s t-test).
Fig. 2. Cross section of leaves of the wild type and the mutant A-C, Leaf midrib, large vein and small vein in WT; D-F, Leaf midrib, large vein and small vein in mutant; G-I, Area of leaf midrib, large vein and small vein in WT and mutant; J-K, Number of large and small veins per leaf in WT and mutant. LV, large vein; SV, small vein; As, Air space. Bars represent mean ± SD (n=9). **P<0.01(the Student’s t-test)
Fig. 4. Genetic mapping and map-based cloning of the d1-11 gene A and B, Genetic mapping of d1-11; C, Gene structure of D1; D, Sequence comparison between WT and d1-11; E, RT-PCR analysis of D1 gene in WT and the d1-11 mutant. M, DNA marker; F, Alignments of D1 gene cDNA sequence in WT and d1-11.
Fig. 7. Analysis of drought resistance in the d1-11 mutant A, Phenotypes of WT and mutant under drought stress; B, Survival rate of WT and the mutant after recovery for 5 days; C and D, Relative water content (RWC) and rate of water loss (RWL) in WT and the mutant under non-stressed conditions. Bars represent mean ± SD(n=9). * and ** indicate significant difference between WT and the d1-11 mutant by the Student’s t-test (P<0.05, P<0.01), respectively.
[1] | Wing R A, Purugganan M D, Zhang Q. The rice genome revolution: From an ancient grain to Green Super Rice[J]. Nature Reviews Genetics, 2018, 19(8): 505-517. |
[2] | Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P. Green revolution genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400(6741): 256-261. |
[3] | Khush G S. Green revolution: The way forward[J]. Nature Reviews Genetics, 2001, 2(10): 815-822. |
[4] | Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T. Green revolution: a mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416(6882): 701-702. |
[5] | Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D H, An G, Kitano H, Ashikari M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant[J]. Science, 2003, 299(5614): 1896-1898. |
[6] | Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S. A rice brassinosteroid- deficient mutant, ebisu dwarf(d2), is caused by a loss of function of a new member of cytochrome P450[J]. Plant Cell, 2003, 15(12): 2900-2910. |
[7] | Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme[J]. Plant Molecular Biology, 2004, 54(4): 533-547. |
[8] | Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarfll, with reduced seed length[J]. Plant Cell, 2005, 17(3): 776-790. |
[9] | Ferrero-Serrano Á, Cantos C, Assmann S M. The role of dwarfing traits in historical and modern agriculture with a focus on rice[J]. Cold Spring Harbor Perspectives in Biology, 2019, 11(11): a034645. |
[10] | Ishikawa A, Tsubouchi H, Iwasaki Y, Asahi T. Molecular cloning and characterization of a cDNA for the alpha subunit of a G protein from rice[J]. Plant and Cell Physiology, 1995, 36(2): 353-359. |
[11] | Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene dwar1 encodes the alpha-subunit of GTP-binding protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(18): 10284. |
[12] | Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(13): 7575-7580. |
[13] | Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M. Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21): 11638-11643. |
[14] | Oki K, Inaba N, Kitagawa K, Fujioka S, Kitano H, Fujisawa Y, Kato H, Iwasaki Y. Function of the a subunit of rice heterotrimeric G protein in brassinosteroid signaling[J]. Plant and Cell Physiology, 2009, 50(1): 161-172. |
[15] | Hu X, Qian Q, Xu T, Zhang Y, Dong G, Gao T, Xie Q, Xue Y. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice[J]. PLoS Genetics, 2013, 9(3): e1003391. |
[16] | Ferrero-Serrano Á, Assmann S M. The alpha-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1[J]. Journal of Experimental Botany, 2016, 67(11): 3433-3443. |
[17] | Gaur, V S, Channappa G, Chakraborti M, Sharma T R, Mondal T K. ‘Green revolution’ dwarf gene sd1 of rice has gigantic impact[J]. Briefings in Functional Genomics, 2020, 19(5): 390-409. |
[18] | 李刚, 赵静, 王保民, 李召虎, 周成明, 何钟佩, 董学会. 植物生长物质对栽培甘草幼苗根内源激素变化动态研究[J]. 中国中药杂志, 2005(14): 1118-1120. |
Li G, Zhao J, Wang B M, Li Z H, Zhou C M, He Z P, Dong X H. Dynamic study on changes of endogenous hormones in roots of cultivated Glycyrrhiza uralensis seedlings affected by plant growth substances[J]. China Journal of Chinese Materia Medica, 2005(14): 1118-1120. (in Chinese) | |
[19] | Du H, Guo Z R, Xiong L Z. Determination of rice leaf water content[J]. Bio-Protocol, 2018: e1010157. |
[20] | Mao B, Cheng Z, Lei C, Xu F, Gao S, Ren Y, Wang J, Zhang X, Wang J, Wu F, Guo X, Liu X, Wu C, Wang H, Wan J. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax[J]. Planta, 2012, 235(1): 39-52. |
[21] | Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980, 8(19): 4321-4325. |
[22] | Michelmore R W, Paran I. Identification of markers linked to disease-resistance genes by bulked segregant analysis[J]. Proceedings of the National Academy of Sciences of USA, 1991, 88(21): 9828-9832. |
[23] | 张敏娟, 李帅军, 陈琼琼, 景秀清, 陈坤明, 石春海, 李文强. 水稻矮化少蘖突变体dlt3的基因定位和白质组学分析[J]. 中国水稻科学, 2018, 32(6): 529-537. |
Zhang M J, Li S J, Chen Q Q, Jing X Q, Chen K M, Shi C H, Li W Q. Genetic Mapping and proteomic analysis of the dwarf and low-tillering mutant dlt3 in rice[J]. Chinese Journal of Rice Science, 2018, 32(6): 529-537. (in Chinese with English abstract) | |
[24] | Li W Q, Zhang M J, Qiao L, Chen Y B, Zhang D P, Jing X Q, Gan P F, Huang Y B, Gao J R, Liu W T, Shi C H, Cui H C, Chen K M. Characterization of wavy root 1, an agravitropism allele, reveals the functions of OsPIN2 in fine regulation of auxin transport and distribution and in ABA biosynthesis and response in rice[J]. Crop Journal, 2022, 10(4): 980-992. |
[25] | Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences USA, 2002, 99(13): 9043-9048. |
[26] | Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: Rice "Green Revolution Gene" encodes a mutant enzyme involved in gibberellin synthesis[J]. DNA Research, 2002, 9(1): 11-17. |
[27] | Ishikawa S, Mackawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant Cell and Physiology, 2005, 46(1): 79-86. |
[28] | Choi J, Lee T, Cho J, Servante EK, Pucker B, Summers W, Bowden S, Rahimi M, An K, An G, Bouwmeester H J, Oldroyd G, Paszkowski U. The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice[J]. Nature Communications, 2020, 11(1): 1521-1524. |
[29] | Zheng J, Hong K, Zeng L, Wang L, Kang S, Qu M, Dai J, Zou L, Zhu L, Tang Z, Meng X, Wang B, Qian Q, Wang Y, Li J, Xiong G. Karrikin signaling acts parallel to and additively with strigolactone signaling to regulate rice mesocotyl elongation in darkness[J]. The Plant Cell, 2020, 32(9): 2780-2805. |
[30] | Liu F, Wang P, Zhang X, Li X, Yan X, Fu D, Wu G. The genetic and molecular basis of crop height based on a rice model[J]. Planta, 2017, 247(1): 1-26. |
[31] | Ferrero-Serrano N, Cantos C, Assmann S M. The role of dwarfing traits in historical and modern agriculture with a focus on rice[J]. Cold Spring Harbor Perspectives in Biology, 2019, 11(11): 1943-1964. |
[32] | Yang D W, Zheng X H, Cheng C P, Wang W D, Ye X F. A dwarfing mutant caused by deactivation function of alpha subunit of the heterotrimeric G-protein in rice[J]. Euphytica, 2014, 197(1): 145-159. |
[33] | Gilman A G. Proteins: Transducers of receptor- generated signals[J]. Annual Review of Biochemistry, 1986, 56(1): 615-649. |
[34] | Miura K, Agetsuma M, Kitano H, Yoshimura A, Matsuoka M, Jacobsen S, Ashikari M. A metastable DWARF1 epigenetic mutant affecting plant stature in rice[J]. Proceedings of the National Academy of Sciences of USA, 2009, 106(27): 11218-11223. |
[35] | Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ouyang Y. A G-protein pathway determines grain size in rice[J]. Nature Communications, 2018, 9(1): 851-861. |
[36] | 罗茂春, 赵政, 夏令, 郭迟鸣, 陈亮. 水稻矮秆基因d-ss的遗传分析与克隆[J]. 厦门大学学报, 2013, 52(5): 684-689. |
Luo M C, Zhao Z, Xia L, Guo C M, Chen L. Genetic analysis and cloning of the rice dwarf mutant d-ss[J]. Journal of Xiamen University, 2013, 52(5): 684-689. (in Chinese with English abstract) | |
[37] | 纪现军, 叶胜海, 周涯, 修芬连, 邓晓梅, 尚海漩, 刘继云, 陈萍萍, 李小华, 金庆生, 张小明. 水稻矮秆突变体zj88d的鉴定与基因定位[J]. 中国水稻科学, 2013, 27(1): 35-40. |
Ji X J, Ye S H, Zhou Y, Xiu F L, Deng X M, Shang H X, Liu J Y, Chen P P, Li X H, Jin Q S, Zhang X M. Characterization and gene mapping of a dwarf mutant zj88d in rice[J]. Chinese Journal of Rice Science, 2013, 27(1): 35-40. (in Chinese with English abstract) | |
[38] | Wang J, Wang J, Yang J, Zhao X Q, Zhu J Y, Fan F J, Li W Q, Wang F Q, Zhong W G. Genetic analysis and gene fine mapping of a midrib-deficient mutant dl-6[J]. Agricultural Science&Technology, 2015, 16(12): 2672. |
[39] | Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice[J]. Development, 2003, 130(4): 705-718. |
[40] | Kang G, Zhang N, Tan T H, Zhang Z, Wang R, Wu L T. Leaf microstructure and photosynthetic characteristics of a rice midvein-deficient mutant dl-14[J]. Biologia Plantarum, 2022, 66(9): 172-177. |
[41] | Tanguilig V, Yambao E, O’toole J, Datta S. Water stress effects on leaf elongation, leaf water potential, transpiration, and nutrient uptake of rice, maize, and soybean[J]. Plant and Soil, 1987, 103(2): 155-168. |
[42] | Miyamoto N, Steudle E, Hirasawa T, Lafitte R. Hydraulic conductivity of rice roots[J]. Journal of Experimental Botany, 2001, 52(362): 1835-1840. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[4] | JING Xiu, ZHOU Miao, WANG Jing, WANG Yan, WANG Wang, WANG Kai, GUO Baowei, HU Yajie, XING Zhipeng, XU Ke, ZHANG Hongcheng. Effect of Drought Stress on Root Morphology and Leaf Photosynthetic Characteristics of Good Taste japonica Rice from Late Stage of Panicle Differentiation to Early Stage of Grain Filling [J]. Chinese Journal OF Rice Science, 2024, 38(1): 33-47. |
[5] | ZHU Wang, ZHANG Xiang, GENG Xiaoyu, ZHANG Zhe, CHEN Yinglong, WEI Huanhe, DAI Qigen, XU Ke, ZHU Guanglong, ZHOU Guisheng, MENG Tianyao. Morphological and Physiological Characteristics of Rice Roots Under Combined Salinity-Drought Stress and Their Relationships with Yield Formation [J]. Chinese Journal OF Rice Science, 2023, 37(6): 617-627. |
[6] | Xiaolong YANG, Jianping CHENG, Benfu WANG, Yang LI, Zhisheng ZHANG, Jinlan LI, Ping LI. Effects of Drought Stressat Grain Filling Stage on Rice Physiological Characteristics and Yield [J]. Chinese Journal OF Rice Science, 2021, 35(1): 38-46. |
[7] | Zhaomeng XU, Lihua LI, Xiaoqing GAO, Zhengjie YUAN, Xin LI, Xudan TIAN, Lanlan WANG, Shaohong QU. Comparative Transcriptome Analysis of Transgenic Rice Line Carrying the Rice Blast Resistance Gene Pi9 [J]. Chinese Journal OF Rice Science, 2020, 34(3): 245-255. |
[8] | Su CHEN, Jiankun XIE, Wenxin HUANG, Dengyun CHEN, Xiaojian PENG, Xueqin FU. Effects of Plant Growth-promoting Rhizobacteria(PGPR) on Physiological Characteristics of Rice Under Drought Stress [J]. Chinese Journal OF Rice Science, 2018, 32(5): 485-492. |
[9] | Peng WANG, Yue CAI, Wei-wei CHEN, Jing MA, Xin-gang CHEN, Xiao-jie TANG, Xiao-man YOU, Fei KONG, Jie ZHANG, Hai-gang YAN, Guo-xiang WANG, Ling JIANG, Wen-wei ZHANG, Jian-min WAN. Phenotyping and Gene Cloning of a Small-grain Dwarf Mutant sgd1(t) in Rice [J]. Chinese Journal OF Rice Science, 2016, 30(1): 1-9. |
[10] | Yong-jie YANG, Xue-qin YANG, Cai-xia ZHANG, Guan-fu FU, Ting-ting CHEN, Long-xing TAO. Effects of Nitric Oxide on Drought Stress-induced Physiological Characteristics in Leaves of Nipponbare (Oryza sativa L) [J]. Chinese Journal OF Rice Science, 2015, 29(1): 65-72. |
[11] | DING Lei1, LI Yingrui1, LI Yong2, SHEN Qirong1, GUO Shiwei1,*. Effects of Drought Stress on Photosynthesis and Water Status of Rice Leaves [J]. Chinese Journal of Rice Science, 2014, 28(1): 65-70. |
[12] | CHEN Junyu, WANG Kai, GONG Junyi, FAN Yeyang, HUANG Derun, ZHUANG Jieyun*. Effects of the RFT1 Region and Hd1 Region on Heading Date, Plant Height and Thousandgrain Weight in Rice (Oryza sativa) [J]. Chinese Journal of Rice Science, 2013, 27(2): 117-121. |
[13] | FU Jian1, Linkun GU 2, GUO Yiqing1, Liyuan ZHANG 2, WANG Linxian1, LI Dingqin1, WANG Bo1, Jeff Qingxi SHEN2,*, CHENG Zaiquan1,*. Construction and Highefficient Screenings of a Yeast TwoHybrid cDNA Library from the Droughtstressed Roots of Rice [J]. Chinese Journal of Rice Science, 2013, 27(2): 198-202. |
[14] | LUO Ding1,2, XU Hongxing1, YANG Yajun1, ZHENG Xusong1, LU Zhongxian1,*. Feeding Behavior and Oviposition Preference of Brown Planthoppers,Nilaparvata Lugens, on Different Rice Varieties under Drought Stress Stimulated by Polyethylene Glycol (PEG6000) [J]. Chinese Journal of Rice Science, 2012, 26(6): 731-736. |
[15] | JIANG Jianhua1,2, CHEN Lan1, LIU Qiangming1, HE Yingjun1, HONG Delin1,*. Mining Elite Alleles for Growth Duration and Productive Panicle Number per Plant by Association Mapping with Conditional Phenotypic Value in japonica Rice [J]. Chinese Journal of Rice Science, 2012, 26(5): 542-548. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||