Chinese Journal OF Rice Science ›› 2017, Vol. 31 ›› Issue (6): 665-672.DOI: 10.16819/j.1001-7216.2017.7115
• Orginal Article • Previous Articles
Haixiang HUANG1, Qian QIAN2,*()
Received:
2017-05-20
Revised:
2017-06-25
Online:
2017-11-25
Published:
2017-11-10
Contact:
Qian QIAN
通讯作者:
钱前
基金资助:
CLC Number:
Haixiang HUANG, Qian QIAN. Progress in Genetic Research of Rice Grain Shape and Breeding Achievements of Long-grain Shape and Good Quality japonica Rice[J]. Chinese Journal OF Rice Science, 2017, 31(6): 665-672.
黄海祥, 钱前. 水稻粒形遗传与长粒型优质粳稻育种进展[J]. 中国水稻科学, 2017, 31(6): 665-672.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2017.7115
Fig. 1. GS3 gene mutational site identification in CMS-Jiahe 212.A, Phenotypic characteristic of cytoplasmic male sterile line Jiahe 212(CMS-Jiahe 212), Jiaheyou 7245 and its restorer line Zhonghui 7245 at the heading stage; B, Grain shape characteristic of CMS-Jiahe 212, Jiaheyou 7245 and its restorer line Zhonghui 7245; C, Comparison of the mutational site in GS3 gene among CMS-Jiahe 212, Jiaheyou 7245, Zhonghui 7245 and Nipponbare.
品种 Cultivar | 糙米率 Brown rice rate /% | 精米率 Milled rice rate /% | 整精米率 Head milled rice rate/% | 粒长 Grain length /mm | 长宽比 Length-width ratio | 垩白粒率 Chalky rice rate /% |
---|---|---|---|---|---|---|
嘉禾218 Jiahe 218 | 84.7 | 77.8 | 58.2 | 7.0 | 3.0 | 6 |
嘉禾288 Jiahe 288 | 84.5 | 75.6 | 70.8 | 5.4 | 1.8 | 54 |
嘉禾291 Jiahe 291 | 85.0 | 77.5 | 70.3 | 6.6 | 2.4 | 12 |
秀水63 Xiushui 63 | 83.4 | 74.9 | 71.3 | 4.9 | 1.7 | 20 |
粳稻一级 J1 | ≥84.0 | ≥77.0 | ≥72.0 | - | - | ≤10 |
籼稻一级 I1 | ≥81.0 | ≥73.0 | ≥50.0 | ≥6.6 | ≥2.8 | ≤10 |
品种 Cultivar | 垩白度 Chalkiness degree | 透明度 Transparency | 碱消值 Alkali spreading value | 胶稠度 Gel consistency/mm | 直链淀粉含量 Amylose content /% | 蛋白质含量 Protein content /% |
嘉禾218 Jiahe 218 | 0.6 | 1 | 7.0 | 74 | 16.6 | 9.3 |
嘉禾288 Jiahe 288 | 7.9 | 2 | 7.0 | 74 | 14.7 | 9.8 |
嘉禾291 Jiahe 291 | 1.5 | 1 | 7.0 | 81 | 16.5 | 10.2 |
秀水63 Xiushui 63 | 4.0 | 2 | 7.0 | 72 | 15.2 | 8.9 |
粳稻一级J1 | ≤1.0 | 1 | ≥7.0 | ≥80 | 15.0~18.0 | ≥9.0 |
籼稻一级I1 | ≤2.0 | 1 | ≥6.0 | ≥70 | 17.0~22.0 | ≥10.0 |
Table 1 Quality characters of some Jiahe series cultivars.
品种 Cultivar | 糙米率 Brown rice rate /% | 精米率 Milled rice rate /% | 整精米率 Head milled rice rate/% | 粒长 Grain length /mm | 长宽比 Length-width ratio | 垩白粒率 Chalky rice rate /% |
---|---|---|---|---|---|---|
嘉禾218 Jiahe 218 | 84.7 | 77.8 | 58.2 | 7.0 | 3.0 | 6 |
嘉禾288 Jiahe 288 | 84.5 | 75.6 | 70.8 | 5.4 | 1.8 | 54 |
嘉禾291 Jiahe 291 | 85.0 | 77.5 | 70.3 | 6.6 | 2.4 | 12 |
秀水63 Xiushui 63 | 83.4 | 74.9 | 71.3 | 4.9 | 1.7 | 20 |
粳稻一级 J1 | ≥84.0 | ≥77.0 | ≥72.0 | - | - | ≤10 |
籼稻一级 I1 | ≥81.0 | ≥73.0 | ≥50.0 | ≥6.6 | ≥2.8 | ≤10 |
品种 Cultivar | 垩白度 Chalkiness degree | 透明度 Transparency | 碱消值 Alkali spreading value | 胶稠度 Gel consistency/mm | 直链淀粉含量 Amylose content /% | 蛋白质含量 Protein content /% |
嘉禾218 Jiahe 218 | 0.6 | 1 | 7.0 | 74 | 16.6 | 9.3 |
嘉禾288 Jiahe 288 | 7.9 | 2 | 7.0 | 74 | 14.7 | 9.8 |
嘉禾291 Jiahe 291 | 1.5 | 1 | 7.0 | 81 | 16.5 | 10.2 |
秀水63 Xiushui 63 | 4.0 | 2 | 7.0 | 72 | 15.2 | 8.9 |
粳稻一级J1 | ≤1.0 | 1 | ≥7.0 | ≥80 | 15.0~18.0 | ≥9.0 |
籼稻一级I1 | ≤2.0 | 1 | ≥6.0 | ≥70 | 17.0~22.0 | ≥10.0 |
品种 Cultivar | 株高 Plant height /cm | 穗长 Panicle length /cm | 单株穗数 No. of panicles per plant | 每穗总粒数 No. of grains per panicle | 实粒数 No. of filled grains per panicle | |||
---|---|---|---|---|---|---|---|---|
嘉禾291 Jiahe 291 | 97.8 | 16.9 | 21.5 | 103.1 | 93.9 | |||
嘉禾288 Jiahe 288 | 95.6 | 15.5 | 20.8 | 131.5 | 112.7 | |||
秀水134 Xiushui 134(CK) | 90.8 | 14.8 | 21.2 | 128.9 | 109.9 | |||
品种 Cultivar | 结实率 Seed-setting rate/% | 千粒重 1000-grain rate/g | 实产 Yield/(kg∙667 m-2) | 产量增减 Compared to CK/% | ||||
嘉禾291 Jiahe 291 | 91.1 | 33.8 | 667.2 | 12.2 | ||||
嘉禾288 Jiahe 288 | 85.7 | 27.6 | 635.5 | 6.9 | ||||
秀水134 Xiushui 134(CK) | 85.2 | 26.7 | 594.4 |
Table 2 Quality and economical characters of Jiahe 291 and Jiahe 288 compared with conventional late rice in 2016.
品种 Cultivar | 株高 Plant height /cm | 穗长 Panicle length /cm | 单株穗数 No. of panicles per plant | 每穗总粒数 No. of grains per panicle | 实粒数 No. of filled grains per panicle | |||
---|---|---|---|---|---|---|---|---|
嘉禾291 Jiahe 291 | 97.8 | 16.9 | 21.5 | 103.1 | 93.9 | |||
嘉禾288 Jiahe 288 | 95.6 | 15.5 | 20.8 | 131.5 | 112.7 | |||
秀水134 Xiushui 134(CK) | 90.8 | 14.8 | 21.2 | 128.9 | 109.9 | |||
品种 Cultivar | 结实率 Seed-setting rate/% | 千粒重 1000-grain rate/g | 实产 Yield/(kg∙667 m-2) | 产量增减 Compared to CK/% | ||||
嘉禾291 Jiahe 291 | 91.1 | 33.8 | 667.2 | 12.2 | ||||
嘉禾288 Jiahe 288 | 85.7 | 27.6 | 635.5 | 6.9 | ||||
秀水134 Xiushui 134(CK) | 85.2 | 26.7 | 594.4 |
[1] | 胡子诚, 贾锦娟. 长粒优质高产水稻新品种宁粳36的选育及其栽培要点.中国稻米, 2007(1): 26. |
Hu Z C, Jia J J.Breeding and cultivation method of Ningjing 36, a long-grain rice cultivar with good quality.China Rice, 2007(1): 26. (in Chinese) | |
[2] | 徐建龙, 薛庆中, 罗利军, 黎志康. 水稻粒重及其相关性状的遗传解析. 中国水稻科学, 2002, 16(1): 6-10. |
Xu J L, Xue Q Z, Luo L J, Li Z K.Genetic dissection of grain weight and its related traits in rice (Oryza sativa L.). Chin J Rice Sci, 2002, 16(1): 6-10. (in Chinese with English abstract) | |
[3] | 高志强, 占小登, 梁永书, 程式华, 曹立勇. 水稻粒形性状的遗传及相关基因定位与克隆研究进展. 遗传, 2011, 33(4): 314-321. |
Gao Z Q, Zhan X D, Liang Y S, Cheng S H, Cao L Y.Progress on genetics of rice grain shape trait and its related gene mapping and cloning.Hereditas(Beijing), 2011, 33(4): 314-321. (in Chinese with English abstract) | |
[4] | 罗玉坤, 朱智伟, 陈能, 段彬伍, 章林平. 中国主要稻米的粒型及其品质特性. 中国水稻科学, 2004, 18(2): 135-139. |
Luo Y K, Zhu Z W, Chen N, Duan B W, Zhang L P.Grain types and related quality characteristics of rice in China.Chin J Rice Sci, 2004, 18(2): 135-139. (in Chinese with English abstract) | |
[5] | 杨梯丰, 曾瑞珍, 朱海涛, 陈岚, 张泽民, 丁效华, 李文涛, 张桂权. 水稻粒长基因GS3在聚合育种中的效应. 分子植物育种, 2010, 8(1): 59-66. |
Yang T F, Zeng R Z, Zhu H T, Chen L, Zhang Z M, Ding X H, Li W T, Zhang G Q.Effect of grain length geneGS3 in pyramiding breeding of rice. Mol Plant Breed, 2010, 8(1): 59-66. (in Chinese with English abstract) | |
[6] | 姚国新, 卢磊. 水稻粒重基因定位克隆研究. 安徽农业科学, 2007, 35(27): 8468-8478. |
Yao G X, Lu L.Research on the localization and clone of grain weight genes in rice.J Anhui Agric Sci, 2007, 35(27): 8468-8478. (in Chinese with English abstract) | |
[7] | Mckenize K S, Rutger J N.Genetic analysis of amylase content, alkali spreading score and grain dimensions in rice.Crop Sci, 1983, 23(2): 306-313. |
[8] | 芮重庆, 赵安常. 籼稻粒重及粒型性状F1遗传特性双列分析. 中国农业科学, 1983, 16(5): 14-20. |
Rui C Q, Zhao C A.Genetic analysis of weight and shape of F1’s grains by diallel crossing method in hsien rice.Sci Agric Sin, 1983, 16(5): 14-20. (in Chinese with English abstract) | |
[9] | 石春海, 申宗坦. 早籼稻谷粒性状遗传效应分析. 浙江农业大学学报, 1994, 20(4): 405-410. |
Shi C H, Shen Z T.Analysis of genetic effects of grain traits inindica rice. J Zhejiang Agric Univ, 1994, 20(4): 405-410. (in Chinese with English abstract) | |
[10] | 林鸿宣,闵绍措,熊振民,钱惠荣,庄杰云,陆军,郑康乐. 应用RFLP图谱定位分析籼稻粒形数量性状基因座位. 中国农业科学, 1995, 28(4): 1-7. |
Lin H X, Min S K, Xiong Z M, Qian H R, Zhuang J Y, Lu J, Zheng K L.RFLP mapping of QTLs for grain shape traits inindica rice(Oryza sativa L. subsp indica). Sci Agric Sin, 1995, 28(4): 1-7. (in Chinese with English abstract) | |
[11] | 莫惠栋. 我国稻米品质的改良. 中国农业科学, 1993, 26(4): 8-14. |
Mo H D.Quality improvement of rice grain in china.Sci Agric Sin, 1993, 26(4): 8-14. (in Chinese with English abstract) | |
[12] | 刘晓辉. 谷子千粒重遗传的双列分析. 吉林农业科学, 1989(4): 33-35. |
Liu X H. Diallel genetic analysis of millet1000 grain weight.J Jilin Agric Sci, 1989(4): 33-35. (in Chinese) | |
[13] | 石春海, 申宗坦. 籼稻粒形及产量性状的加性相关和显性相关分析. 作物学报, 1996, 22(1): 36-42. |
Shi C H, Shen Z T.Additive and dominance correlation analysis of grain shape and yield traits in indica rice.Acta Agron Sin, 1996, 22(1): 36-42. (in Chinese with English abstract) | |
[14] | 石春海, 申宗坦. 早籼粒形的遗传和改良. 中国水稻科学, 1995, 9(1): 27-32. |
Shi C H, Shen Z T.Inheritance and improvement of grain shape inindica rice. Chin J Rice Sci, 1995, 9(1): 27-32. (in Chinese with English abstract) | |
[15] | 周清元, 安华, 张毅, 沈福成. 水稻子粒形态性状遗传研究. 西南农业大学学报, 2000, 22(2): 102-104. |
Zhou Y Q, An H, Zhang Y, Shen F C.Study on heredity of morphological character of rice grain. J Southwest Agric Univ, 2000, 22(2): 102-104. (in Chinese with English abstract) | |
[16] | 符福鸿, 王丰. 杂交水稻谷粒性状的遗传分析. 作物学报, 1994, 20(1): 39-45. |
Fu F H, Wang F.Genetic analysis on grain characters in hybrid rice.Acta Agron Sin, 1994, 20(1): 39-45. (in Chinese with English abstract) | |
[17] | Aya K, Hobo T, Sato-Izawa K, Ueguchi-Tanaka M, Kitano H, Matsuoka M.A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway.Plant & Cell Physiol, 2014, 55(5): 897-912. |
[18] | Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J.Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.Nat Genet, 2010, 42(6): 541-544. |
[19] | Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein.Theor Appl Genet, 2006, 112(6): 1164-1171. |
[20] | Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q.Linking differential domain functions of the GS3 protein to natural variation of grain size in rice.Proc Natl Acad Sci USA, 2010, 107(45): 19579-19584. |
[21] | Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E.Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield.Nat Genet, 2013, 45(6): 707-711. |
[22] | Heang D, Sassa H.An atypical bHLH protein encoded byPOSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG. Breed Sci, 2012, 62(2): 133-141. |
[23] | Heang D, Sassa H.Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice.PLoS One, 2012, 7(2): e31325. |
[24] | Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q.Copy number variation at theGL7 locus contributes to grain size diversity in rice. Nat Genet, 2015, 47(8): 944-948. |
[25] | Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shang guan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice.Nat Genet, 2016, 48(4): 447-456. |
[26] | Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L, Gao J P, Lin H X.The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3.Cell Res, 2012, 22(12): 1666-1680. |
[27] | Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C.Control of grain size and rice yield by GL2-mediated brassinosteroid responses.Nat Plants, 2015, 21(2): 15195. |
[28] | Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q.A rare allele ofGS2 enhances grain size and grain yield in rice. Mol Plant, 2015, 8(10): 1455-1465. |
[29] | Song X J, Huang W, Shi M, Zhu M Z, Lin H X.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.Nat Genet, 2007, 39(5): 623-630. |
[30] | Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J.Isolation and initial characterization ofGW5, a major QTL associated with rice grain width and weight. Cell Res, 2008, 18(12): 1199-1209. |
[31] | Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J.GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice. Nat Plants, 2017, 3: 17043. |
[32] | Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X.Control of grain size, shape and quality byOsSPL16 in rice. Nat Genet, 2012, 44(8): 950-954. |
[33] | Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X.The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality.Nat Genet, 2015, 47(8): 949-954. |
[34] | Sun L, Li X, Fu Y, Zhu Z, Tan L, Liu F, Sun X, Sun X, Sun C.GS6, a member of the GRAS gene family, negatively regulates grain size in rice.J Integr Plant Biol, 2013, 55(10): 938-949. |
[35] | Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M.Deletion in a gene associated with grain size increased yields during rice domestication.Nat Genet, 2008, 40(8): 1023-1028. |
[36] | Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q.Natural variation in GS5 plays an important role in regulating grain size and yield in rice.Nat Genet, 2011, 43(12): 1266-1269. |
[37] | 徐正进, 陈温福, 马殿荣, 吕英娜, 周淑清, 刘丽霞. 稻谷粒形与稻米主要品质性状的关系. 作物学报, 2004, 30(9): 894-900. |
Xu Z J, Chen W F, Ma D R, Lv Y N, Zhou S Q, Liu L X.Correlations between rice grain shapes and main qualitative characteristics.Acta Agron Sin, 2004, 30(9): 894-900. (in Chinese with English abstract) | |
[38] | Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X.Natural variation at the DEP1 locus enhances grain yield in rice.Nat Genet, 2009, 41(4): 494-497. |
[1] | FU Rongtao, CHEN Cheng, WANG Jian, ZHAO Liyu, CHEN Xuejuan, LU Daihua. Combined Transcriptome and Metabolome Analyses Reveals the Pathogenic Factors of Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(4): 375-385. |
[2] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[3] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[4] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[5] | GAO Junru, QUAN Hongyu, YUAN Liuzhen, LI Qinying, QIAO Lei, LI Wenqiang. Map-based Cloning and Functional Analysis of a New Allele of D1, a Gene Controlling Plant Height in Rice (Oryza sativa L.) [J]. Chinese Journal OF Rice Science, 2024, 38(2): 140-149. |
[6] | LIANG Chuyan, WU Mingming, HUANG Fengming, ZHAI Rongrong, YE Jing, ZHU Guofu, YU Faming, ZHANG Xiaoming, YE Shenghai. Prospects for the Application of Gene Editing and Genomic Selection in Rice Breeding [J]. Chinese Journal OF Rice Science, 2024, 38(1): 1-12. |
[7] | HOU Benfu, YANG Chuanming, ZHANG Xijuan, YANG Xianli, WANG Lizhi, WANG Jiayu, LI Hongyu, JIANG Shukun. Mapping of Grain Shape QTLs Using RIL Population from Longdao 5/Zhongyouzao 8 [J]. Chinese Journal OF Rice Science, 2024, 38(1): 13-24. |
[8] | CHENG Zuxin, XIAO Changchun, ZHANG Yuting, HUANG Xinying, SHI Xialei, LING Bo, WANG Hongchao, CHEN Xiaoling, LIN Lihui. Genetic Effects of Antioxidant Components in Red Rice and Its Interactions with Environment [J]. Chinese Journal OF Rice Science, 2024, 38(1): 25-32. |
[9] | JING Xiu, ZHOU Miao, WANG Jing, WANG Yan, WANG Wang, WANG Kai, GUO Baowei, HU Yajie, XING Zhipeng, XU Ke, ZHANG Hongcheng. Effect of Drought Stress on Root Morphology and Leaf Photosynthetic Characteristics of Good Taste japonica Rice from Late Stage of Panicle Differentiation to Early Stage of Grain Filling [J]. Chinese Journal OF Rice Science, 2024, 38(1): 33-47. |
[10] | LAN Jinsong, ZHUANG Hui. Advances in the Molecular Mechanism of Rice Plant Type [J]. Chinese Journal OF Rice Science, 2023, 37(5): 449-458. |
[11] | WANG Tengjiao, CHEN Chen. Mechanisms Behind Aleurone Development in Cereals and Its Application in Breeding [J]. Chinese Journal OF Rice Science, 2023, 37(5): 459-469. |
[12] | CHEN Mingliang, XIONG Wentao, SHEN Yumin, XIONG Huanjin, LUO Shiyou, WU Xiaoyan, HU Lanxiang, XIAO Yeqing. Genetic Dissection of Broad Spectrum Resistance of the Rice Maintainer Ganxiang B [J]. Chinese Journal OF Rice Science, 2023, 37(5): 470-477. |
[13] | HUANG Qina, XU Youxiang, LIN Guanghao, DANG Hongyang, ZHENG Zhenquan, ZHANG Yan, WANG Han, SHAO Guosheng, YIN Xianyuan. Effects of Silicon on Antioxidant Enzyme System and Expression Levels of Genes Related to Cd2+ Uptake and Transportation in Rice Seedlings Under Cadmium Stress [J]. Chinese Journal OF Rice Science, 2023, 37(5): 486-496. |
[14] | XU Huan, ZHOU Tao, SUN Yue, WANG Mumei, YANG Yachun, MA Hui, LI Hao, XU Dawei, ZHOU Hai, YANG Jianbo, NI Jinlong. Characterization and Gene Mapping of a Glume Lesion Mimic Mutant glmm1 in Rice [J]. Chinese Journal OF Rice Science, 2023, 37(5): 497-506. |
[15] | XIA Yang, LI Chuanming, LIU Qin, HAN Guangjie, XU Bin, HUANG Lixin, QI Jianhang, LU Yurong, XU Jian. Effects of Piriformospora indica on the Growth and Antioxidant System of Rice Seedlings Under Salt Stress [J]. Chinese Journal OF Rice Science, 2023, 37(5): 543-552. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||