中国水稻科学 ›› 2025, Vol. 39 ›› Issue (4): 451-464.DOI: 10.16819/j.1001-7216.2025.250209

• 专题:水稻生产机械化与智能化 • 上一篇    下一篇

水田侧深施肥末端分流式加速装置的设计与优化

林逸1, 孙良1,3,*(), 陈东顺1, 朱广飞4, 孔子阳1, 俞高红1,2   

  1. 1浙江理工大学 机械工程学院,杭州 310018
    2浙江农业智能感知与机器人全省重点实验室,杭州 310018
    3农业农村部东南丘陵山地农业装备重点实验室,杭州 310018
    4台州市一鸣机械股份有限公司,浙江 台州 318000
  • 收稿日期:2025-02-25 修回日期:2025-04-22 出版日期:2025-07-10 发布日期:2025-07-21
  • 通讯作者: *email: liangsun@zstu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2022YFD2001802);国家自然科学基金资助项目(52375275);浙江省科技计划资助项目(2022C02034)

Design and Optimization of a Terminal Shunting Acceleration Device for Rice Side Deep Fertilization

LIN Yi1, SUN Liang1,3,*(), CHEN Dongshun1, ZHU Guangfei4, KONG Ziyang1, YU Gaohong1,2   

  1. 1School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
    2Zhejiang Agricultural Intelligent Sensing and Robot Key Laboratory, Hangzhou 310018, China
    3Key Laboratory of Agricultural Equipment in Southeast Hills and Mountain Areas, Ministry of Agriculture and Rural Affairs, Hangzhou 310018, China
    4Taizhou Yiming Machinery Co., LTD., Taizhou 318000, China
  • Received:2025-02-25 Revised:2025-04-22 Online:2025-07-10 Published:2025-07-21
  • Contact: *email:liangsun@zstu.edu.cn

摘要:

【目的】解决水稻侧深施肥装置在施肥过程中施肥管末端落肥速度慢且易堵肥的问题。【方法】基于通用颗粒复合肥物理参数提出一种末端分流式加速装置,根据气固两相流理论的研究方法,将气流和肥料分流,使引出气流经变径管加速后引入出肥口,提升出肥口风速,加速肥料下落并预防堵塞。【结果】通过建立流体动力学与离散元耦合仿真模型,选取气肥分流器混合管倾角、弯径比以及导气口倾角作为影响因素,以导气口的肥料误入率和气流速度作为响应值,采用Box-Behnken三因素三水平的中心组合设计法设计正交仿真实验,组合出最佳的气肥分流装置的结构参数。结果表明,气肥分流装置的最佳结构参数组合为混合管倾角10°,导气管倾角16°,弯径比2。在此条件下进行台架实验,测量得到的加速后气流平均速度为19.74 m/s,肥料误入率为7.74%,肥料下落平均速度为2.14 m/s,【结论】该装置能有效提高施肥管末端风速及落肥速度,可为气送式水田施肥技术研究提供参考。

关键词: 颗粒肥, 气肥分流, 流固耦合, 气流加速, 侧深施肥

Abstract:

【Objective】 Addressing the slow fertilizer falling speed and susceptibility to clogging at the fertilizer tube outlet in rice side-deep fertilization devices, 【Method】 a terminal shunt-type acceleration device was developed based on the physical properties of universal granular compound fertilizers. Utilizing the gas-solid two-phase flow theory, the device separates the air stream and fertilizer particles. The diverted air stream is accelerated through a variable-diameter tube and then reintroduced at the fertilizer outlet, thereby increasing the outlet air velocity to accelerate fertilizer descent and prevent blockages. 【Result】 A coupled Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) simulation model was established. The inclination angle of the mixing tube, the bend-to-diameter ratio, and the inclination angle of the air induction port in the air-fertilizer shunting device were selected as influencing factors. Using the fertilizer misentry rate into the air induction port and the air flow velocity as response variables, a Box-Behnken experimental design (a three-factor, three-level response surface methodology) was employed to conduct simulation experiments and identify the optimal structural parameters. The results indicate that the optimal structural parameter combination is a mixing tube inclination angle of 10°, an air induction tube inclination angle of 16°, and a bend-to-diameter ratio of 2. Bench tests conducted under these optimal conditions yielded an average accelerated air velocity of 19.74 m/s, a fertilizer misentry rate of 7.74%, and an average fertilizer falling velocity of 2.14 m/s. 【Conclusion】 This device effectively enhances the air velocity at the fertilizer tube outlet and the fertilizer falling speed, providing a valuable reference for research into pneumatic rice fertilization technology.

Key words: granular fertilizer, gas and fertilizer distribution, fluid-structure coupling, acceleration of air flow, side deep fertilization