中国水稻科学 ›› 2017, Vol. 31 ›› Issue (2): 157-165.DOI: 10.16819/j.1001-7216.2017.6130
出版日期:
2017-03-20
发布日期:
2017-03-10
通讯作者:
刘巧泉
基金资助:
Zuopeng XU, Chongyuan ZHONG, Lijia ZHANG, Qiaoquan LIU*()
Online:
2017-03-20
Published:
2017-03-10
Contact:
Qiaoquan LIU
摘要:
目的 茎秆机械强度与植株抗倒伏性直接相关。发掘脆秆突变体,克隆其相关基因有助于了解茎秆机械强度遗传机制,为抗倒伏育种提供理论依据。方法 在经60Co-γ诱变的粳稻品种武育粳3号后代群体中获得一个脆秆突变体,命名为bc1 -wu3(brittle culm 1 from Wuyujing3),以突变体bc1 -wu3为母本,Kasalath为父本构建相应的F2分离群体,采用图位克隆的方法定位相应脆秆基因。结果 与野生型相比,突变体的叶片、叶鞘、茎秆等组织在全生育期始终表现为脆性,易折断;穗长和粒长显著降低,粒宽显著增加。茎秆细胞细胞壁糖成分测定表明,细胞壁中纤维素含量极显著下降,而木糖、葡萄糖及阿拉伯糖含量则显著增加。茎秆切片观察发现突变体茎秆的厚壁细胞层数减少,厚壁细胞细胞壁极显著变薄。遗传分析表明,bc1- wu3脆性性状受1对隐性核基因控制。采用图位克隆的技术将该基因定位于第3染色体标记MK12与MK18之间,物理距离为57 kb,在此定位区段内包含1个已克隆的脆性基因BC1(LOC_Os03g30250)。测序结果表明,突变体bc1-wu3中BC1基因第2外显子内(CDS 659 处)有1个碱基的替换(G-T),导致编码氨基酸由半胱氨酸变异为苯丙氨酸。实时荧光定量PCR结果表明,BC1基因在脆秆突变体bc1-wu3茎秆中的表达量显著降低。结论 据此推断本研究中定位的脆秆基因bc1-wu3为BC1新等位基因。相关结果加深了对BC1基因功能的认识,有助于阐明水稻茎秆强度遗传机制。
许作鹏, 仲崇元, 张丽佳, 刘巧泉. 水稻脆秆突变体bc1-wu3的鉴定与基因克隆[J]. 中国水稻科学, 2017, 31(2): 157-165.
Zuopeng XU, Chongyuan ZHONG, Lijia ZHANG, Qiaoquan LIU. Identification and Gene Cloning of the Brittle Culm Mutant bc1-wu3 in Rice[J]. Chinese Journal OF Rice Science, 2017, 31(2): 157-165.
引物名称 | 正向引物 | 反向引物 | 实验目的 |
---|---|---|---|
Primer name | Forward primer (5′-3′) | Reverse primer (5′-3′) | Purpose |
RM6676 | TGCATAACACCCAAATGCCTTC | TATGTTACAATGTTCACGGTCC | 定位Mapping |
STS-3-86.6 | AGGATTTGGGCTGTCAATGC | AGCCTACCACAAGACATATAATCG | 定位Mapping |
MK2 | TGGTTCAATCATGTATAGGTCGTG | CATAAGTTATTAGTTAACACAAACC | 定位Mapping |
MK12 | GAATTGTGAGCATACAGCAA | ATTCGATTTTGTGGATTGAC | 定位Mapping |
MK16 | TGGCGTGCTAGACCTGATGTTTG | TGTCTGATAAGGCTCTCAATGCG | 定位Mapping |
MK18 | TCTTCTCTCATCGTCATCCT | ACAAGCCAACAAAGCTAGAG | 定位Mapping |
MK21 | AGCCTTTGCTCTCTCTCTCT | CTTTGTATCTGTGCGAGAAA | 定位Mapping |
bc1-1 | AAATGTTCCGCCGTCGCTAT | GTCGCCCATGATGCACTCG | 测序Sequence |
bc1-2 | CGCAGCAGACGCAACAGC | TTGAACCCCTATGGAGTA | 测序Sequence |
bc1-3 | CGGGACGAACCCAAGATT | GACGGTGGAAGGGACGAT | 测序Sequence |
bc1-4 | ACCCACCAACTTCACCCT | AGTCCTTTCGCATCAGCA | 测序Sequence |
bc1-5 | GCTCTCTACCACAACCTCTTA | TGTTTCTTTTTTCCTCTCAAT | 测序Sequence |
bc1-6 | CGTCCCCTACAACCAGC | GTCCTTTCGCATCAGCA | 测序Sequence |
bc1-RT | CTTTGAAATTGCCTGATAGA | AAAGTTTGTGGTGTGATTT | RT-PCR |
OsActin | GGAAGTACAGTGTCTGGATTGGAG | TCTTGGCTTAGCATTCTTGGGT | RT-PCR |
表1 本研究中使用的PCR引物
Table 1 PCR primers used in this study.
引物名称 | 正向引物 | 反向引物 | 实验目的 |
---|---|---|---|
Primer name | Forward primer (5′-3′) | Reverse primer (5′-3′) | Purpose |
RM6676 | TGCATAACACCCAAATGCCTTC | TATGTTACAATGTTCACGGTCC | 定位Mapping |
STS-3-86.6 | AGGATTTGGGCTGTCAATGC | AGCCTACCACAAGACATATAATCG | 定位Mapping |
MK2 | TGGTTCAATCATGTATAGGTCGTG | CATAAGTTATTAGTTAACACAAACC | 定位Mapping |
MK12 | GAATTGTGAGCATACAGCAA | ATTCGATTTTGTGGATTGAC | 定位Mapping |
MK16 | TGGCGTGCTAGACCTGATGTTTG | TGTCTGATAAGGCTCTCAATGCG | 定位Mapping |
MK18 | TCTTCTCTCATCGTCATCCT | ACAAGCCAACAAAGCTAGAG | 定位Mapping |
MK21 | AGCCTTTGCTCTCTCTCTCT | CTTTGTATCTGTGCGAGAAA | 定位Mapping |
bc1-1 | AAATGTTCCGCCGTCGCTAT | GTCGCCCATGATGCACTCG | 测序Sequence |
bc1-2 | CGCAGCAGACGCAACAGC | TTGAACCCCTATGGAGTA | 测序Sequence |
bc1-3 | CGGGACGAACCCAAGATT | GACGGTGGAAGGGACGAT | 测序Sequence |
bc1-4 | ACCCACCAACTTCACCCT | AGTCCTTTCGCATCAGCA | 测序Sequence |
bc1-5 | GCTCTCTACCACAACCTCTTA | TGTTTCTTTTTTCCTCTCAAT | 测序Sequence |
bc1-6 | CGTCCCCTACAACCAGC | GTCCTTTCGCATCAGCA | 测序Sequence |
bc1-RT | CTTTGAAATTGCCTGATAGA | AAAGTTTGTGGTGTGATTT | RT-PCR |
OsActin | GGAAGTACAGTGTCTGGATTGGAG | TCTTGGCTTAGCATTCTTGGGT | RT-PCR |
材料 | 抽穗期 | 株高 | 分蘖数 | 穗长 | 结实率 | 千粒重 | 粒长 | 粒宽 |
---|---|---|---|---|---|---|---|---|
Material | Heading date /d | Plant height/cm | No. of tillers | Panicle length/cm | Seed-setting rate/% | Thousand-grain weight/g | Grain length/mm | Grain width/mm |
WT | 103.2±0.3 | 84.1±3.4 | 10.0±2.1 | 16.5±1.7 | 96.5±1.0 | 26.69±0.19 | 7.11±0.91 | 3.15±0.85 |
bc1-wu3 | 103.1±0.3 | 82.7±2.1 | 9.0±2.2 | 14.7±1.1* | 95.2±0.9 | 26.77±0.17 | 6.97±0.89* | 3.35±0.54* |
表2 野生型(WT)和突变体bc1-wu3的农艺与产量性状
Table 2 Agronomic and yield traits of wild type(WT) and bc1-wu3.
材料 | 抽穗期 | 株高 | 分蘖数 | 穗长 | 结实率 | 千粒重 | 粒长 | 粒宽 |
---|---|---|---|---|---|---|---|---|
Material | Heading date /d | Plant height/cm | No. of tillers | Panicle length/cm | Seed-setting rate/% | Thousand-grain weight/g | Grain length/mm | Grain width/mm |
WT | 103.2±0.3 | 84.1±3.4 | 10.0±2.1 | 16.5±1.7 | 96.5±1.0 | 26.69±0.19 | 7.11±0.91 | 3.15±0.85 |
bc1-wu3 | 103.1±0.3 | 82.7±2.1 | 9.0±2.2 | 14.7±1.1* | 95.2±0.9 | 26.77±0.17 | 6.97±0.89* | 3.35±0.54* |
材料 | 鼠李糖 | 岩藻糖 | 阿拉伯糖 | 木糖 | 甘露糖 | 半乳糖 | 葡萄糖 | 纤维素 |
---|---|---|---|---|---|---|---|---|
Material | Rhamnose | Fucose | Arabinose | Xylose | Mannose | Galactose | Glucose | Cellulos |
WT | 1.86±0.02 | 1.05±0.01 | 23.46±0.51 | 217.64±2.60 | 1.20±0.41 | 6.95±0.26 | 45.76±1.89 | 426.52±7.13 |
bc1-wu3 | 2.02±0.04 | 1.08±0.01 | 29.61±0.85* | 310.93±9.65** | 1.21±0.40 | 8.74±0.22 | 55.42±0.72* | 261.17±2.53** |
表3 野生型(WT)与突变体bc1-wu3茎秆细胞细胞壁中糖组分含量比较
Table 3 Comparison of the sugar composition contents of culms between wild type(WT) and bc1-wu3. mg/g
材料 | 鼠李糖 | 岩藻糖 | 阿拉伯糖 | 木糖 | 甘露糖 | 半乳糖 | 葡萄糖 | 纤维素 |
---|---|---|---|---|---|---|---|---|
Material | Rhamnose | Fucose | Arabinose | Xylose | Mannose | Galactose | Glucose | Cellulos |
WT | 1.86±0.02 | 1.05±0.01 | 23.46±0.51 | 217.64±2.60 | 1.20±0.41 | 6.95±0.26 | 45.76±1.89 | 426.52±7.13 |
bc1-wu3 | 2.02±0.04 | 1.08±0.01 | 29.61±0.85* | 310.93±9.65** | 1.21±0.40 | 8.74±0.22 | 55.42±0.72* | 261.17±2.53** |
图4 野生型(WT)和突变体bc1-wu3茎秆细胞结构
Fig. 4. Scanning electron micrographs of the culm phenotype of wild type(WT) and bc1-wu3. A和B–茎秆横截面;C和D–茎秆厚壁细胞细胞壁厚度;E–厚壁细胞细胞壁厚度定量比较,数据为平均值±标准差(n=100)。**表示在0.01水平差异显著(t检验)。A and B, Comparison of the cross sections of internodes. Bars=20 μm. C and D, The sclerenchyma cells of the internodes under a scanning electron microscope. Bars =2 μm. E, Quantification of the thickness of the sclerenchyma cell wall. Error bars, mean ±SD(n=100). **P<0.01(t test).
图5 bc1-wu3基因精细定位及候选基因序列分析
Fig. 5. Fine mapping of bc1-wu3 gene and sequence analysis of the candidate gene. A–bc1-wu3的初步定位; B–bc1-wu3定位于MK12与MK18之间,物理距离为57 kb; C–MK12与MK18之间的57 kb范围内含10个ORF;D–LOC_Os03g30250为候选基因,序列比对分析结果表明,bc1-wu3候选基因的CDS序列中第659个碱基G突变为T,导致bc1-wu3编码的氨基酸由半胱氨酸(Cysteine)变为苯丙氨酸(Phenylalanine)。A, Primary mapping of bc1-wu3 gene; B, Fine mapping of bc1-wu3 gene in the 57 kb region between molecular markers MK12 and MK18; C, The region between marker MK12 and MK18 contains 10 ORF; D, The locus named LOC_Os03g30250 is identified as candidate gene. Sequence analysis result demonstrates that the CDS of bc1-wu3 carries one point mutation (G/T), resulting in the substitution from Cysteine to Phenylalanine.
[1] | 张忠旭, 陈温福, 杨振玉, 华泽田, 高日玲, 高勇, 赵迎春. 水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响. 沈阳农业大学学报, 1999, 30(2): 81-85. |
Zhang Z X, Chen W F, Yang Z Y, Hua Z T, Gao R L, Gao Y, Zhao Y C.Effect of lodging resistant on yield and its relationship with stalk physical characteristics.J Shenyang Agric Univ, 1999, 30(2): 81-85. (in Chinese with English abstract) | |
[2] | 马均, 马文波, 田彦华, 杨建昌, 朱开达, 周庆森. 重穗型水稻植株抗倒伏能力的研究. 作物学报, 2004, 30(2): 143-148. |
Ma J, Ma W B, Tian Y H, Yang J C, Zhu K D, Zhou Q S.The culm lodging resistance of heavy panicle type of rice.Acta Agron Sin, 2004, 30(2): 143-148. (in Chinese with English abstract) | |
[3] | 刘畅, 李来庚. 水稻抗倒伏性状的分子机理研究进展. 中国水稻科学, 2016, 30(2): 216-222. |
Liu CH, Li L G.Advance in molecular understanding of rice lodging resistance. Chin J Rice Sci, 2016, 30(2): 216-222. (in Chinese with English abstract) | |
[4] | 罗茂春, 田翠婷, 李晓娟, 林金星. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. 西北植物学报, 2007, 27(11): 2346-2353. |
Luo M C, Tian C T, Li X J, Lin J X.Relationship between morpho-anatomical traits together with chemical components and lodging resistance of stem in rice(Oryza sativa L .). Acta Bot Boreal, 2007, 27(11): 2346-2353. (in Chinese with English abstract) | |
[5] | 彭应财, 甘朝洪, 王鹤潼, 徐正进. 显性脆秆水稻不育系中脆A的选育. 杂交水稻, 2010, 25(4): 9-13. |
Peng Y C, Gan C H, Wang H T, Xu Z J.Breeding of dominant brittle culm CMS line Zhongcui A in rice.Hybrid Rice, 2010, 25(4): 9-13. (in Chinese with English abstract) | |
[6] | 蒋钰东, 何沛龙, 廖红香, 张孝波, 吴国超, 何光华, 林婷婷, 桑贤春. 水稻茎秆脆性及叶尖枯死突变体fld1的鉴定与基因定位. 植物学报, 2014, 49(6): 663-671. |
Jiang Y D, He P L, Liao H X, Zhang X B, Wu G C, He G H, Lin T T, Sang X C.Identification and gene mapping of a fragile and leaf-tip dead mutantfld1 in Oryza sativa. Chin Bull Bot, 2014, 49(6): 663-671. (in Chinese with English abstract) | |
[7] | Zhang B C, Liu X L, Qian Q, Liu L F, Dong G J, Xiong G Y, Zeng D L, Zhou Y H.Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice.Proc Natl Acad Sci, 2011, 108: 5110-5115. |
[8] | Zhou Y, Li S, Qian Q, Zeng D, Zhang M, Guo L, Liu X, Zhang B, Deng L, Liu X, Luo G,Wang X, Li J.BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice(Oryza sativa L.).Plant J, 2009, 57: 446-462. |
[9] | Xiong G Y, Li R, Qian Q, Song X Q, Liu X L, Yu Y, Zeng D L, Wan J, Li J, Zhou Y H.The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis.Plant J, 2010, 64(1): 56-70. |
[10] | 舒亚洲, 曾冬冬, 秦冉, 金晓丽, 郑希, 石春海. 水稻脆秆突变体bc16的鉴定和基因精细定位. 中国水稻科学, 2016, 30(4): 345-355. |
Shu Y Z, Zeng D D, Qin R, Jin X L, Zheng X, Shi C H.Identification and gene fine mapping of abrittle culm 16(bc 16) mutant in rice. Chin J Rice Sci, 2016, 30(4): 345-355. (in Chinese with English abstract) | |
[11] | Zhang B C, Deng L W, Qian Q, Xiong G Y, Zeng D L, Li R, Guo L B, Li J, Zhou Y H.A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol, 2009, 71(4-5): 509-524. |
[12] | Yan C J, Yan S, Zeng X H, Zhang Z Q, Gu M H.Fine mapping and isolation of Bc7(t), allelic to OsCesA4. J Genet Genom, 2007, 34(11): 1019-1027. |
[13] | Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H.Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall.Plant Physiol, 2003, 133(1): 73-83. |
[14] | Rao Y C, Yang Y L, Xin D D, Li X J, Zhai K E, Ma B J, Pan J W, Qian Q, Zeng D L.Characterization and cloning of a brittle culm mutant(bc88) in rice. Chin Sci Bull, 2013, 58(24): 3000-3006. |
[15] | Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S.RiceBrittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J Exp Bot, 2011, 62(6): 2053-2062. |
[16] | Zhang M, Zhang B C, Qian Q, Yu Y C, Li R, Zhang L W, Liu X L, Zeng D L, Li J Y, Zhou Y H.Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J, 2010, 63(2): 312-328. |
[17] | Li Y H, Qian Q, Zhou Y H, Yan M, Sun L, Zhang M, Fu Z, Wang Y, Han B, Pang X, Chen M, Li J.BRITTLE CULM1, which encodes a COBRA-Like protein, affects the mechanical properties of rice plants. Plant Cell, 2003, 15(9): 2020-2031. |
[18] | Wu B, Zhang B C, Dai Y, Zhang L, Shang-Guan K K, Peng Y G, Zhou Y H, Zhu Z.Brittle Culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiol, 2012, 159(4): 1440-1452. |
[19] | Ye Y F, Liu B M, Zhao M, Wu K, Cheng W M, Chen X B, Liu Q, Liu Z, Fu X D, Wu Y J.CEF1/OsMYB103L is involved in GA‑mediated regulation of secondary wall biosynthesis in rice. Plant Mol Biol, 2015, 89(4-5): 385-401. |
[20] | Song X J, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen S E, Ashikari M.Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice.Proc Natl Acad Sci, 2015, 112(1):76-81. |
[21] | 蔡建秀, 陈伟. 水稻穗上发芽生理生化及颖壳扫描电镜观察. 中国农学通报, 2007, 23(8): 207-211. |
Cai J X, Chen W.Study on the physiological biochemistry of pre-harvest sprouting and scanning electron microscopy of glume in rice.Chin Agric Sci Bull, 2007, 23(8): 207-211. (in Chinese with English abstract) | |
[22] | Pogers S O, Bendich A J.Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues.Plant Mol Biol, 1985, 5(2): 569-576. |
[23] | Brown D M, Goubet F, Wong V W, Goodacre R, Stephens E, Dupree P, Turner S R.Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis.Plant J, 2007, 52: 1154-1168. |
[24] | 杨惠杰,杨仁崔,李义珍,姜照伟,郑景生.水稻茎秆性状与抗倒性的关系.福建农业学报,2000, 15(2) :1-7. |
Yang H J, Yang R C, Li Y Z, Jiang Z W, Zheng J S.Relationship between culm traits and lodging resistance of rice cultivars.Fujian J Agric Sci, 2000, 15(2): 1-7. (in Chinese with English abstract) | |
[25] | Zhang B C, Zhou Y H.Rice brittleness mutants: A way to open the ‘Black Box’ of monocot cell wall biosynthesis.J Integr Plant Biol, 2011, 53(2): 136-142. |
[26] | Liu L F, Shangguan K K, Zhang B C, Liu X L, Yan M X, Zhang L J, Shi Y Y, Zhang M, Qian Q, Li J Y, Zhou Y H.Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS Genet, 2013, 9(8): e1003704. |
[27] | Aohara T, Kotake T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S.RiceBRITTLE CULM 5(BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes.Plant Cell Physiol, 2009, 50(11): 1886-1897. |
[28] | 吴国超, 桑贤春, 马娇, 朱小燕, 任德勇, 郭爽, 蒋钰东, 杨正林, 凌英华, 何光华. 水稻矮脆突变体dwf1 的特性与基因定位. 植物遗传资源学报, 2014, 15(4): 795-801. |
Wu G C, Sang X C, Ma J, Zhu X Y, Ren D Y, Guo S, Jiang Y D, Yang Z L, Ling Y H, He G H.Genetic analysis and fine-mapping of a dwarf and fragile mutant dwf1 in rice.J Plant Genet Resour, 2014, 15(4): 795-801. (in Chinese with English abstract) | |
[29] | 张水金, 郑轶, 朱永生, 杨东, 涂诗航, 周鹏, 郑家团, 黄庭旭. 水稻脆性突变体研究进展. 福建农业学报, 2011, 26(5): 895-898. |
Zhang S J, Zheng Y, Zhu Y S, Yang D, Tu S H, Zhou P, Zheng J T, Huang T X.Advance in research on brittleness mutant of rice.Fujian J Agric Sci, 2011, 26(5): 895-898. (in Chinese with English abstract) | |
[30] | 汪海峰, 朱军莉, 刘建新, 吴跃明, 钱前, 腾胜. 饲喂脆茎全株水稻对生长肥育猪生长性能、养分消化和胴体品质的影响. 畜牧兽医学报, 2005, 36(11): 1139-1144. |
Wang H F, Zhu J L, Liu J X, Wu Y M, Qian Q, Teng S.Growth performance, nutrient digestibility and carcass quality of growing-finishing pigs fed different levels of whole crop rice brittle culm-1.Acta Veter Zootechn Sin, 2005, 36(11): 1139-1144. (in Chinese with English abstract) | |
[31] | 沈恒胜, 陈君琛, 曾大力, 涂杰峰, 汤葆莎, 滕胜. 低纤维基因突变水稻稻草细胞壁组分动态发育分析. 中国农业科学, 2004, 37(7): 943-947. |
Shen H S, Chen J C, Zeng D L, Tu J F, Tang B S, Teng S.Dynamic analysis on composition of cell wall for low-fiber mutation rice.Sci Agric Sin, 2004, 37(7): 943-947. (in Chinese with English abstract) | |
[32] | 吴超, 傅亚萍, 朱丽, 胡国成, 斯华敏, 孙宗修. 转高赖氨酸蛋白基因脆茎水稻的收获指数及秸秆赖氨酸含量的研究. 浙江农业学报, 2008, 20(4): 225-230. |
Wu C, Fu Y P, Zhu L, Hu G C, Si H M, Sun Z X.Studies on harvest index and culm lysine content in the transgenic brittle culm rice inserted lysine-rich protein gene.Acta Agric Zhejiang, 2008, 20(4): 225-230. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||