[1]川田信一郎. 水稻的根系. 北京: 农业出版社, 1984.
Shinichiro K. Rice Roots. Beijing: Agriculture Press, 1984. (in Chinese)
[2]吴伟明, 程式华. 水稻根系育种的意义与前景. 中国水稻科学, 2005, 19(2): 174180.
Wu W M, Cheng S H. Significance and prospects of breeding for root system in rice(Oryza sativa). Chin J Rice Sci, 2005, 19(2): 174180. (in Chinese with English abstract)
[3]杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44(1): 3646.
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. China Agric Sci, 2011, 44(1): 3646. (in Chinese with English abstract)
[4]李鑫, 张战, 赵一洲, 等. 水稻根系研究进展. 北方水稻, 2014, 44(2): 7275.
Li X, Zhang Z, Zhao Y Z, et al. Research advance on the rice roots. North Rice, 2014, 44(2): 7275. (in Chinese with English abstract)
[5]Kamoshita A, Wade L J, Ali L, et al. Mapping QTLs for root morphology of a rice population adapted to rain fed lowland conditions. Theor Appl Genet, 2002, 104(5): 880893.
[6]Kamoshita A, Zhang J, Siopongco J, et al. Effects of phenotyping environment on identification of quantitative trait loci for rice root morphology under anaerobic conditions. Crop Sci, 2002, 42(1): 255265.
[7]Li Z, Mu P, Li C, et al. QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments.Theor Appl Genet, 2005, 110(7): 12441252.
[8]Qu Y, Mu P, Zhang H, et al. Mapping QTLs of root morphological traits at different growth stages in rice. Genetica, 2008, 133(2): 187200.
[9]Steele K A, Price A H,Shashidhar H E, et al. Markerassisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet, 2006, 112(2): 208221.
[10]Zheng H G,Babu R C, Pathan M S, et al. Quantitative trait loci for rootpenetration ability and root thickness in rice: comparison of genetic backgrounds. Genome, 2000, 43(1): 5361.
[11]Zheng B S, Yang L, Zhang W P, et al. Mapping QTLs and candidate genes for rice root traits under different watersupply conditions and comparative analysis across three populations.Theor Appl Genet, 2003, 107(8): 15051515.
[12]Zheng B S, Yang L, Mao C Z, et al. QTLs and candidate genes for rice root growth under flooding and upland conditions. J Genet Genom, 2006, 33(2): 141151.
[13]Inukai Y, Miwa M, Nagato Y, et al. Characterization of rice mutants deficient in the formation of crown roots. Breeding Sci, 2001, 51(2): 123129.
[14]Inukai Y, Miwa M, Nagato Y, et al. RRL1, RRL2 and CRL2 loci regulating root elongation in rice. Breeding Sci, 2001, 51(4): 231239.
[15]Zhao Y, Hu Y F, Dai M G, et al. The WUSCHELrelatedhomeobox gene WOX11 is required to activate shootborne crown root development in rice. Plant Cell, 2009, 21(3): 736748.
[16]Liu W, Xu Z H, Luo D, et al. Roles of OsCKH1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J, 2003, 36(2): 189202.
[17]Liu H, Wang S, Yu X, et al. ARL1, a LOBdomain protein required for adventitious root formation in rice. Plant J, 2005, 43(1): 4756.
[18]Xu M L, Jiang J F, Ge L, et al. FPF1 transgene leads to altered flowering time and root development in rice. Plant Cell Rep, 2005, 24(2): 7985.
[19]Liang Z W,Ichii M. Morphological characterization of the seedling of shortroot mutant LM10 selected from rice (Oryza sativa L. cv. IR8). Crop Sci, 1996, 65(3): 473478.
[20]Yao S G, Takeda S,Ichii M. Isolation and characterization of an abscisic acidinsensitive mutation that affects specifically primary root elongation in rice (Oryza sativa L.). Plant Sci, 2003, 164(6): 971978.
[21]Yao S G, Mushika J, Takeda S, et al. The shortroot mutation srt5 defines a sugarmediated root growth in rice (Oryza sativa L.). Plant Sci, 2004, 167(1): 4954.
[22]Inukai Y, Miwa M, Nagato Y, et al. Mechanical stimulussensitive mutation, rrl3, affects the cell production process in the root meristematic zone in rice. Plant Prod Sci, 2003, 6(4): 265273.
[23]Jiang H, Wang S, Dang L, et al. A novel shortroot gene encodes a glucosamine acetyltransferase required for maintaining normal root cell shape in rice. Amer Soc Plant Bio, 2005, 138(1): 232242.
[24]Choi H K, Kieinhofs A, An G. Nucleotide sequence of rice nitrate reductase genes. Plant Mol Biol, 1989, 13(6): 731733.
[25]Taniguchi M, Futsuhara Y. A dense panicle mutant producing adventitious roots from spikelets. Rice Gene Newsl, 1988, 5: 113114.
[26]Sakamoto A, Ogawa M, Masumura T, et al. Three cDNA sequences coding for glutamine synthetase polypeptides in Oryza sativa L. Plant Mol Biol, 1989, 13(5): 611614.
[27]Jiang H, Wang S, Dang L, et al. A novel shortroot gene encodes a glucosamine acetyltransferase required for maintaining normal root cell shape in rice. Plant Physiol, 2005, 138(1): 232242.
[28]Ma J F,Goto S, Tamai K, et al. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol, 2001, 127(4): 17731780.
[29]Ma J F,Tamai K, Yamaji N, et al. A silicon transporter in rice. Nature, 2006, 440: 688691.
[30]Naimatullah B, Hirotaka Y, Nishizawa N K, et al. Cloning an ironregulated metal transporter from rice. J Exp Bot, 2002, 53(374): 16771682.
[31]王汝慈. 两个生育时期水稻耐低磷胁迫相关性状的QTL定位. 北京:中国农业科学院,2009.
Wang R C. QTL mapping of phosphorus deficiency tolerance at two development stages in rice(Oryza sativa L.). Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese with English abstract)
[32]Yoshida S, Forno D A , Cock J H, et al. Laboratory Manual for Physiological Studies of Rice. 3rd ed. Manila: IRRI ,1976:61 64.
[33]吴朝晖, 周建群, 青先国. 水稻根系分布形态研究法现状及展望. 湖南农业科学, 2008(5): 1114.
Wu C H, Zhou J Q, Qing X G. Advances in methods of studying rice root system. Hunan Agric Sci, 2008(5): 1114. (in Chinese with English abstract)
[34]黄沆, 陈光辉. 水稻根系育种的研究现状及展望. 湖南农业大学学报:自然科学版,2009, 35(1): 3539.
Huang H, Chen G H. Status and prospects of research on rice root breeding. J Hunan Agric Univ: Nat Sci, 2009, 35(1): 35-39. (in Chinese with English abstract)
[35]魏磊, 董华林, 武晓智, 等. 水稻根系育种研究进展. 湖北农业科学, 2012, 51(11): 21612163.
Wei L, Dong H L, Wu X Z, et al. Research advances on rice root breeding. Hubei Agric Sci, 2012, 51(11): 21612163. (in Chinese with English abstract)
[36]魏道智. 根系的研究进展. 中国农学通报, 2009, 25(17): 105112.
Wei D Z. Advances of research on roots. Chin Agric Sci Bull, 2009, 25(17): 105112. (in Chinese with English abstract)
[37]蔡昆争. 作物根系生理生态学. 北京: 化学工业出版社, 2011, 149162.
Cai K Z. Physiological Ecology of Crop Roots. Beijing: Chemical Industry Press, 2011: 149162.(in Chinese)
[38]Uga Y, Hanzawa E, Nagai S, et al. Identication of qSOR1, a major rice QTL involved in soilsurface rooting in paddy elds. Theor Appl Genet, 2012, 124(1): 7586.
[39]Kamoshita A, Wade J, Ali L, et al. Mapping QTLs for root morphology of a rice population adapted to rain fed lowland conditions. Theor Appl Genet, 2002, 104(5): 880893.
[40]Mitsuhiro O, Tamura W,Ebitani T, et al. Finemapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions. Theor Appl Genet, 2010, 121(3): 535547.
[41]Steele K A, Price A H,Witcombe J R, et al. QTLs associated with root traits increase yield in upland rice when transferred through markerassisted selection. Theor Appl Genet, 2012, 126(1): 101108.
[42]Kirk G J D, George T, Courtois B, et al. Opportunities to improve phosphorus efciency and soil fertility in rainfed lowland and upland rice ecosystems. Field Crops Res, 1998, 56(1): 7392.
[43]Ismail A M,Heuer S, Michael J, et al. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol, 2007, 65(4): 547570.
[44]Kamoshita A, Zhang J, Siopongco J, et al. Effects of phenotyping environment on identification of quantitative trait loci for rice root morphology under anaerobic conditions. Crop Sci, 2002, 42(1): 255265. |