[1] |
Garciadeblas B, Senn M E, Banuelos M A, Rodríguez Navarro A.Sodium transport and HKT transporters: The rice model.Plant J, 2003, 34(6): 788-801.
|
[2] |
Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A.Two types of HKT transporters with different properties of Na+ and K+ transport inOryza sativa. Plant J, 2001, 27(2): 129-138.
|
[3] |
Maser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker EP, Shinmyo A, Oiki S, Schroeder J I, Uozumi N.Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants.Proc Natl Acad Sci USA, 2002, 99(9): 6428-6433.
|
[4] |
Garciadeblas B, Senn M E, Banuelos M A, Rodríguez N A.Sodium transport and HKT transporters: The rice model.Plant J, 2003, 34(6): 788-801.
|
[5] |
Uozumi N, Kim E J, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker E P, Nakamura T, Schroeder J I.TheArabidopsis HKT1 gene homolog mediates inward Na+ currents in xenopuslaevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol, 2000, 122(4): 1249-1259.
|
[6] |
Wang Q, Guan C, Wang P, Lü M L, Ma Q, Wu G Q, Bao A K, Zhang J L, Wang S M.AtHKT1;1 and AtHAK5 mediate low-affinity Na+, uptake in Arabidopsis thaliana, under mild salt stress. Plant Growth Regul, 2015, 75(3): 615-623.
|
[7] |
Wang Q, Guan C, Wang S M.Coordination ofAtHKT1;1 and AtSOS1 facilitates Na+, and K+, homeostasis in Arabidopsis thaliana, under salt stress. J Plant Biol, 2014, 57(5): 282-290.
|
[8] |
Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan W Y, Leung H Y, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder J I, Uozumi N. Enhanced salt tolerance mediated byAtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J, 2006, 44(6): 928-938.
|
[9] |
Uozumi N, Kim E J, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker E P, Nakamura T, Schroeder J I.TheArabidopsis HKT1 gene homolog mediates inward Na+ currents inxenopuslaevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol, 2000, 122(4): 1249-1259.
|
[10] |
Platten J D, Cotsaftis O, Berthomieu P, Bohnert H, Davenport R J, Fairbairn D J, Horie T, Leigh R A, Lin H X, Luan S, Mäser P, Pantoja O, Rodríguez-Navarro A, Schachtman D P, Schroeder J I, Sentenac H, Uozumi N, Véry A A, Zhu J K, Dennis E S, Tester M.Nomenclature for HKT transporters, key determinants of plant salinity tolerance.Trends Plant Sci, 2006, 11(8): 372-374.
|
[11] |
Fairbairn D J, Liu W, Schachtman D P, Gomez-Gallego S, Day S R, Teasdale R D.Characterisation of two distinct HKT1-like potassium transporters fromEucalyptus camaldulensis. Plant Mol Biol, 2000, 43(4): 515-525.
|
[12] |
Su H, Balderas E, Veraestrella R, Golldack D, Golldack D, Quigley F, Zhao C, Pantoja O, Bohnert H J.Expression of the cation transporterMcHKT1 in a halophyte. Plant Mol Biol, 2003, 52(5): 967-980.
|
[13] |
Wang R, Jing W, Xiao L, Jin Y, Shen L, Zhang W.The OsHKT1;1 transporter is involved in salt tolerance and regulated by an MYB-Type transcription factor.Plant Physiol, 2015, 168(3): 1076-1090.
|
[14] |
Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A.Two types of HKT transporters with different properties of Na+ and K+ transport inOryza sativa. Plant J, 2001, 27(2): 129-138.
|
[15] |
Horie T, Costa A, Kim T H, Han M J, Horie R, Leung H Y, Miyao A, Hirochika H, An G, Schroeder J I.RiceOsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J, 2007, 26(12): 3003-3014.
|
[16] |
Platten J D, Cotsaftis O, Berthomieu P, Bohnert H, Davenport R J, Fairbairn D J, Horie T, Leigh R A, Lin H X, Luan S, Mäser P, Pantoja O, Rodríguez-Navarro A, Schachtman D P, Schroeder J I, Sentenac H, Uozumi N, Véry A A, Zhu J K, Dennis E S, Tester M.Nomenclature for HKT transporters, key determinants of plant salinity tolerance.Trends Plant Sci, 2006, 11(8): 372-374.
|
[17] |
Suzuki K, Yamaji N, Costa A, Okuma E, Kobayashi N I, Kashiwagi T, Katsuhara M, Wang C, Tanoi K, Murata Y, Schroeder J I, Ma J F, Horie T.OsHKT1;4-mediated Na+, transport in stems contributes to Na+, exclusion from leaf blades of rice at the reproductive growth stage upon salt stress.BMC Plant Biol, 2016, 16(1): 22.
|
[18] |
Suzuki K, Costa A, Nakayama H, Katsuhara M, Shinmyo A, Horie T.OsHKT2;2/1-mediated Na+ influx over K+ uptake in roots potentially increases toxic Na+ accumulation in a salt-tolerant landrace of rice Nona Bokra upon salinity stress.J Plant Res, 2016, 129(1): 67-77.
|
[19] |
Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X.A rice quantitative trait locus for salt tolerance encodes a sodium transporter.Nat Genet, 2005, 37(10): 1141.
|
[20] |
Sassi A, Mieulet D, Khan I, Moreau B, Gaillard I, Sentenac H, Véry A A.The rice monovalent cation transporter OsHKT2;4: Revisited ionic selectivity.Plant Physiol, 2012, 160(1): 498-510.
|
[21] |
胡一兵, 罗伟, 吴延寿, 徐国华. 水稻钠钾离子转运蛋白基因OsHKT2;3和OsHKT2;4的功能研究//2011年中国遗传学会大会论文摘要汇编. 乌鲁木齐: 中国遗传学会, 2011: 46.
|
|
Hu Y B, Luo W, Wu Y S, Xu G H.The functional study of rice Na+/K+ transporter OsHKT2;3 and OsHKT2;4 genes//Proceedings of China Genetics Conference in 2011. Urumqi, China: Chinese Genetics Society, 2011: 46. (in Chinese)
|
[22] |
顾建伟. 光敏色素B介导的光信号调控水稻ABA反应的研究. 郑州: 郑州大学, 2012.
|
|
Gu J W.Study on the regulation of ABA reaction of rice by photosensitive B mediated optical signal. Zhengzhou: Zhengzhou University, 2012. (in Chinese with English abstract)
|
[23] |
Lin H X, Zhu M Z, Yano M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Z H, Chao D Y.QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance.Theor Appl Genet, 2004, 108(2): 253-260.
|
[24] |
Cotsaftis O, Plett D, Johnson A A, Walia H, Wilson C, Ismail A M, Close T J, Tester M, Baumann U.Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress.Mol Plant, 2011, 4(1): 25-41.
|
[25] |
Kader M A, Seidel T, Golldack D, Lindberg S.Expressions ofOsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice(Oryza sativa L.) cultivars. J Exp Bot, 2006, 57(15): 4257.
|
[26] |
Sun Y, Xu W, Jia Y, Wang M, Xia G.The wheat TaGBF1 gene is involved in the blue-light response and salt tolerance. Plant J Cell & Mol Biol, 2016, 84(6): 1219-1230.
|
[27] |
Indorf M, Cordero J, Neuhaus G, Rodríguez-Franco M.Salt tolerance (STO), a stress-related protein, has a major role in light signaling.Plant J, 2007, 51(4): 563-574.
|
[28] |
Hasthanasombut S, Paisarnwipatpong N, Triwitayakorn K, Kirdmanee C, Supaibulwatana K.Expression ofOsBADH1 gene in indica rice(Oryza sativa L.) in correlation with salt, plasmolysis, temperature and light stresses. Plant Omics, 2011, 4(7): 400-407.
|
[29] |
Luttge U, Ratajczak R.The physiology, biochemistry and molecular biology of the plant vacuolar ATPase.Adv Bot Res, 1997, 25(8): 253-296.
|